
ECS 162
WEB PROGRAMMING

5/15

FAQ

¨ This week we are just working on the card creation
screen. No need to add login or review pages.

¨ When the user hits enter in the text box on the left,
translation should update.

¨ When the user clicks “save”, card should be stored
in database.

Final design

React main ideas

¨ Create virutal HTML components to encapsulate
widgets

¨ Programming illusion in which DOM is re-
constructed, completely from scratch, whenever it
changes – however you got into a particular UI
state, that state always looks the same.

¨ What is the problem with reconstructing the DOM
from scratch whenever anything changes?

Virtual DOM

¨ What is the drawback of this idea?
¤ User does not want to see redraws, flashes, thing that

they did not touch blinking, etc.
¤ Slow!
¤ Solution…

¨ Virtual DOM

Virtual DOM

¨ React maintains an internal copy of the DOM – this
is the virtual DOM

¨ At every event:
¤ Rebuilds virtual DOM from scratch
¤ Compares to current real DOM
¤ Makes minimal changes to get real DOM to match

virtual DOM

¨ Surprisingly fast.

React Beginning

¨ HTML file is page with empty body. DOM will be
constructed by React, not initialized by HTML

<body>
<div id="root"></div>
<script src=“lango.js"></script>

</body>

¨ Can also combine DOM elements initialized in HTML
with elements added by React

Load the React module in HTML

<script src="https://unpkg.com/react-
dom@16/umd/react-dom.development.js"></
script>
<script>src="https://unpkg.com/react@16/umd/rea
ct.development.js"></script>

React building the DOM

¨ In Javascript file,

const lango = React.createElement('h1’, { id: 'logo' },
'Lango!’);

¨ React.createElement returns a wrapper around a
real <h1> HTML element.

¨ Arguments are: type of element, object containing
inline properties, and contents.

React building the DOM

¨ To get the element onto the Web page, call:

ReactDOM.render(lango,
document.getElementById('root'));

¨ This tells React to add whatever is logo to the
selected DOM element.

A virtual component

¨ Can define a component with a function:
function FirstCard() {

return React.createElement(
"div",
{ className: "textCard" }

);

}
¨ Rendering the component displays the div
¨ Components start with capital letters, real HTML

elements with lowercase.

Virtual component with contents

function FirstCard() {
return React.createElement(

"div",
{ className: "textCard" },
React.createElement(

"p", null, "Hello, world!”));

}
¨ This could get messy if you wanted a lot of contents

JSX

¨ JSX is an extension to Javascript that is popular for
working with the React module.

function FirstCard() {
return (<div className="textCard">
<p>Hello, world!</p>
</div>);
}

¨ Nicer way of saying what was on previous slide
¨ Those <> are not HTML, but are intended to look

like HTML.

Getting JSX

¨ JSX is not built into Javascript and is not interpreted
in the browser (in general…)

¨ You need to compile JSX into Javascript, and then
use the resulting Javascript as usual

¨ There are various ways of doing this on your own
machine. A popular approach:

https://github.com/facebook/create-react-app

¨ I’ll discuss how to do it minimally on the server.

Calling the compiler

npx babel lango.jsx --presets react-app/prod > lango.js

¨ Observe that result is what we expected
¨ Babel is the compiler
¨ npx is a command that runs executables in the

node_modules directory
¨ Need to install them. Directions at the bottom of:
https://reactjs.org/docs/add-react-to-a-website.html

Making the compiler run itself

¨ Set the compiler to “watch” your JSX source code and
when anything .jsx changes, recompile it automatically

npx babel --presets react-app/prod --extensions ".jsx"
. --out-dir . –watch &

¨ The & on the end makes the command run in the
background

¨ Start this up each time you start working on your JSX

CSS and flexbox

¨ Layout and styling for these DOM elements is
handled exactly as before – we still need CSS!

Combining in an element

const main = (<main>
{lango}
<FirstCard/>
</main>);

¨ Parens just prevent the Javascript interpreter from
helpfully inserting unwanted semicolons.

¨ lango is a variable, an expression that we want to
evaluate. This is what the {} indicates.

The text entry card

function FirstInputCard() {
return (<div className="textCard">

<textarea />
</div>);

}

¨ Regular HTML textarea tag.
¨ Like the input tag but a bigger box.

Do something when user hits return

¨ We want to translate the text when the user hits the
return key in the input box.

¨ So not an onclick…
¨ Use onKeyPress event, occurs every time user hits a

key. Only actually do something (fire off AJAX
request) when the key is the return key.

¨ How to attach event listeners to elements using
React?

Adding onKeyPress function

function FirstInputCard () {
return <div className="cardside">

<input onKeyPress={checkReturn} />
</div>;

}

¨ Basically same as adding it in HTML

Handling key press

function checkReturn(event) {
console.log(event.charCode);
}

¨ If the charCode is 13, it was the return key; fire off
AJAX request and get translation

