
ECS 162
WEB PROGRAMMING

5/20

Announcements

¨ My lab hours after class in 67 Kemper
¨ Sorry we missed 9AM lab hour today

¨ Flashcards 1 due Thurs
¤ Just card creation page, stores cards in DB
¤ One Node+Express server, started by “node [server

name].js”
¤ HTML should contain a single div, React fills in DOM

React benefits

¨ Problems React solves
¤ Modularity and reuse of components
¤ Flexibility of DOM

¤ How to achieve this?

Different DOM structures

¨ Need a component with an if statement. If narrow
window, produces one DOM subtree, if wide
another.

¨ Check viewport width in .js rather than using a
media query.

head head

title div

image doppler

div

title image

doppler

Topics for today

¨ “this” in classes
¨ modules
¨ redirection

Behavior of “this”

class Weather {
constructor (temp) {

this.fahrenheit = temp;
}

celsius () {
return (this.fahrenheit-32)*5/9;
}

}

Detail: behavior of “this”

let davis = new Weather(71);
console.log(davis.celsius());

let newTemp = davis.celsius;
console.log(newTemp());

¨ Second one crashes! “this” is undefined in newTemp.

Similar problem

let sanFrancisco = new Weather(64);
sanFrancisco.newTemp = davis.celsius;

console.log(sanFrancisco.newTemp());

¨ Here “this” refers to the sanFrancisco object, even
though it is a method of the davis object.

¨ How do we fix this?

Behavior of “this”

let sanFrancisco = new Weather(64);
sanFrancisco.newTemp = davis.celsius;

console.log(sanFrancisco.newTemp());

¨ Here “this” refers to the sanFrancisco object, even
though it is a method of the davis object.

¨ How do we fix this?
¨ The answer used to be “closure”

Closure solution

class Weather {
constructor (temp) {

this.fahrenheit = temp;
let that = this;
this.celsius = function () {

console.log(that);
return ((that.fahrenheit-32)*5/9).toFixed(1);

}
}

¨ “That” is a local
variable of the
constructor

¨ The method is defined
in the constructor

¨ It keeps “that” in its
closure

ES5 solution: bind

class Weather {
constructor (temp) {

this.fahrenheit = temp;
this.celsius = this.celsius.bind(this);

}

celsius () {
console.log(this);
return ((this.fahrenheit-32)*5/9).toFixed(1);

}
}

ES6 - define method with arrow fn

class Weather {
constructor (temp) {

this.fahrenheit = temp;
this.celsius = () => {

return ((this.fahrenheit-32)*5/9).toFixed(1);
}

}
}

Semantics of arrow functions

¨ A function defined with a statement or expression,
even a method, uses the value of “this” in the
context in which it is run.

¨ An arrow function uses the value from the context in
which it was defined.

¨ This is the semantic distinction between arrow
functions and function expressions.

In React classes

class CreateCardMain extends React.Component {
constructor(props) {

super(props);
this.state = { opinion: "Life is a bowl of cherries" }
this.checkReturn = this.checkReturn.bind(this);

...

¨ When method checkReturn gets called, it needs to
be able to use “this” to change state in object.

Modules

¨ We’ve been using modules for libraries in Node,
including express, fs, sqlite3, request.

¨ Modules are also useful for breaking code up into
several files (eg. server, API request, database).

¨ As usual, there are multiple ways to do it.
¨ “require” is built into Node
¨ “import” is built into the browser
¨ Let’s start with “import”, in the browser.

New file Ajax.js

export function sendTranslate(callback,phrase) {
let url = "translate?english="+phrase;
let xhr = new XMLHttpRequest();
xhr.open("GET",url);

…
¨ Contains functions that send and receive AJAX

requests.
¨ Functions that need to be called from outside the

module are labeled with “export”.
¨ Similarly data that needs to be seen from outside.

In .jsx file

import { sendTranslate } from './ajax.js';

¨ Brings in any of the exported functions from the
module.

¨ Our module and the function it is called from both
should be in /public (or a child).

¨ Both need to be downloaded to the broswer.

In .html file

<script src="lango.js" type="module"></script>
<script src="ajax.js" type="module"></script>

¨ Both need to be labled type=“module” (I am not
sure why).

Browser software ecosystem

¨ Everything used on the browser has to be
downloaded; nothing is installed.

¨ Scripts might be downloaded from many places.
¨ Until recently, ‘’import” and “export” were not well-

supported by browsers. So everything existed in
one big namespace. What is the problem with this?

Browser software ecosystem

¨ Everything used on the browser has to be
downloaded; nothing is installed.

¨ Scripts might be downloaded from many places.
¨ Until recently, ‘’import” and “export” were not well-

supported by browsers. So everything existed in
one big namespace. What is the problem with this?

Two modules might use the same function or variable
name, causing crashes or other bugs.
¨ Also, using lots of modules, either your own or

imported, gets complicated.

Bundlers

¨ A bundler takes multiple modules (your own or
included), handles compiling and linking to produce
a single .js file for your app.

¨ Configuring the bundler on the server is kind of like
making a makefile for a C program.

¨ Other possible features:
¤ linter – checks for possible bugs
¤ source-map – connect .js to original .jsx files for the

debugger
¤ minification – shrink .js file down
¤ etc, etc…

Bundlers

¨ The Webpack bundler is widely used with React
¨ Webpack also includes a server (do not use in this

assignment).
¨ Newer options coming up, eg. Parcel.

¨ On this project, just putting the pieces together is
easier learning a bundler.

¨ On projects with multiple front-end programmers
and hundreds of modules, bundlers are very
important.

Modules on the server

¨ On server, we can install modules, instead of
downloading them, so no bundling into one .js file.

¨ Handling namespaces, keeping track of updating
modules, etc. still important.

¨ We have been including modules installed with npm
using “require”. This has been around forever.

¨ There are multiple ways to get “import” working on
the server, but I’m going to stick with require.

Our own server-side module

¨ In useAPI.js, at the bottom, export what needs to be
visible to other files:

exports.functionName = functionName;

¨ In langoServer.js, import using “require”:
const api = require('./useAPI');

¨ Calling it api (or whatever) helps with namespace
issues.

Our own server-side module

¨ Use via “api” variable:
api.issueRequest(q.english, handleAPIresponse);

¨ Have as many files as you want. One for API, one
for database, one maybe for login?

¨ Only API module has to require “request”, only DB
module has to require “sqlite3”, etc.

Redirects

¨ You get to this app (and most apps) by typing a
single URL, which brings in an HTML page, which
brings in everything else...

¨ An app might need several HTML pages, but with
React this is often unnecessary – much faster to
rebuild the DOM than to download a new HTML
page and then rebuild the DOM.

¨ React-router actually simulates using multiple pages,
really stays in browser and redraws UI.

Redirects

¨ Sometimes we really need to go to another Web
page, particularly somebody else’s Web page.

¨ To use “login with Google”, we will need to go to
some pages at Google, and then come back.

¨ We want the card creation and card review pages
visible only if the user is logged in.

¨ We do these redirects in the server, using express.

Server Pipeline

Static file?

Translate?

Store?

req

resp

resp

resp

File not found?

resp

Redirect

¨ New redirect pipeline stage sends HTTP response
with new URL to go to.

login?

resp
Return code: 302
Redirect address:

https://accounts.google.com/o/oauth2/v2/auth?response_type=c
ode&redirect_uri=http%3A%2F%2Fserver162.site%3A30057%2

Fauth%2Fredirect&scope=profile&client_id=472036695689-
s9n5kubr2kuqftbvk0ujl67i324njo3p.apps.googleusercontent.com

Browser

¨ Gets redirect HTTP response, without going into our
code immediately sends new HTTP request to the
specified address at Google.

¨ This kicks off the login process. More Wds.

