
ECS 162
WEB PROGRAMMING

5/22

Midterm - MC

ABC

Midterm - Programming

ABC

Midterm - Combined

ABC

What does “logged in” mean?

¨ Before we work on the login procedure, we need to
think about what it means to be logged in.

¨ How does the system remember that we are logged
in?

¨ How does it use this information to handle requests?
¨ Let’s start with something that seems irrelevant...

Cookies

¨ Recall that the Server has no memory.
¨ Anything the Server does want to remember about

an interaction he sends to the Browser, as a cookie.
¨ The Browser sends the cookie back to the Server

with every subsequent HTTP request, for some
specific period of time, or maybe forever.

¨ Mostly this happens without user intervention,
although you can go into your browser and delete
cookies.

Some of my Chrome cookies

Sessions

¨ Consider a Web app with a login page.
¨ The Server has to remember that the user is logged

in, so that he can give him access to his flashcards,
or bank account, or whatever.

¨ This is an exception to the usual rule that the Server
has no memory.

¨ Also, he needs to recognize HTTP requests from
different users, and give each one their own data.

Sessions

¨ The Server sends a session cookie (aka session id,
session token) to the Browser, which is a big random
number.

¨ The Browser includes the session cookie in all
subsequent HTTP requests, just like she would with
any other cookie.

¨ The Server sees the cookie and looks up the user.
¨ The Server provides user data in an HTTP response

only if the cookie is found.

Sessions

¨ This is what it means to be logged into a Web site.
¨ When you log off, the Server forgets your session

cookie.
¨ Users rarely log out of Web sites, they just wander

off, or close their browser.
¨ The Server forgets the session key after a while,

maybe a couple of hours.

¨ Browsers may or may not forget session keys when
you close tabs or close the browser.

In Express Server Pipeline

¨ Pipeline passes
(req, res) pair from stage to stage
until response gets sent.
¨ Additional information can be put into in

(req, res) as we go along.

req Static file?

resp
Translate?

resp
Store?

resp
File not found?

resp

Cookie?

In Express Server Pipeline

¨ If there is a cookie, the
cookie stage puts info
about the ongoing
session into req.session

req

Static file?

resp
Translate?

resp

Store?

resp

File not found?

resp

In Express Server Pipeline

Cookie?req

Static file?

Translate?

Store?

File not found?¨ Later pipeline stages check
req.session to see how to handle
request

¨ For instance, static server might not
serve some files to a user who is not
logged in

Implementation in Express

¨ We use two new modules:

const express = require('express');
const passport = require('passport');
const cookieSession = require('cookie-session');

¨ Passport will handle login process but also sets up
and stays involved in session.

¨ Cookie-session sends cookies to Browser, checks
them on every incoming HTTP request.

Cookie pipeline stage

¨ Right at beginning of pipeline
app.use(cookieSession({

maxAge: 6 * 60 * 60 * 1000,
keys: ['snickerdoodle']

}));
¨ maxAge is how long the Server will remember the

cookie, in ms. So this is how long?

Cookie pipeline stage

¨ Right at beginning of pipeline
app.use(cookieSession({

maxAge: 6 * 60 * 60 * 1000,
keys: ['snickerdoodle']

}));
¨ maxAge is how long the Server will remember the

cookie, in ms. So this is how long?
1000ms/sec, 6*60*60 sec = 6 hrs

Cookie pipeline stage

¨ Right at beginning of pipeline
app.use(cookieSession({

maxAge: 6 * 60 * 60 * 1000,
keys: ['snickerdoodle']

}));
¨ keys is a list of random keys used to

cryptographically sign session cookies.

Encryption and session cookies

¨ Session id is:
“session1”+hash(“session1”+“snickerdoodle”)

where hash() is SHA1 encryption
¨ Server checks that hash(“session1”+”snickerdoodle”)

is really the second half of the returned cookie. This
at least shows that it is one of it’s own cookies (since
somebody trying to fake it does not know the key
“snickerdoodle”).

¨ It is way better to use a real random string instead
of “snickerdoodle”; why?

Passport session stages

app.use(passport.initialize());
app.use(passport.session());

¨ Passport helps us set up data in the req object that
later pipeline stages can use.

¨ Example: if the request was from a valid session,
show the card creation page, otherwise redirect to
login.

¨ Example: return the user name provided by Google
in response to an AJAX query.

Passport session stages

app.use(passport.initialize());
app.use(passport.session());

¨ The first one initializes req somehow for further
Passport stages

¨ The second one attaches user information to req, in
req.user. It calls a function deserializeUser, which
we get to write. deserializeUser can, for instance,
take information out of an sqlite3 User database
table, based on an input userID.

Using session info

¨ Middleware to check if user is logged in, if not,
redirect to login:

function isAuthenticated(req, res, next) {
if (req.user) {

console.log("Authenticated user",req.user);
next();

} else { res.redirect('/login.html'); }
}

Using session information in req obj

¨ How would we teach our Server to answer an AJAX
query for the user’s name, eg.

server162.site:[port]/query/name=true
¨ One approach: have the passport session pipeline

stage put user’s name in req.user.name (it can get
the user’s name from their Google profile when they
log in).

¨ Then, add a new middleware stage that answers
the query by returning req.user.name in the json
body of the response.

