
ECS 162
WEB PROGRAMMING

5/24

Last time

¨ What does it mean to be logged in?
¤ Browser has a session cookie which she attaches to

every HTTP request
¤ Server has a record of the session, with a timeout
¤ Server pipeline has stages for recognizing still-valid

session cookies and connecting each session with its user,
and the user’s data

¤ Later server pipeline stages might use user data (eg. to
get right cards out of database), and/or require a
valid session and user to work at all.

Login process

¨ Today - How do we start up a session?
¨ Steps:

1. Authenticate – user gives password to Google
2. Server gets user profile information from Google
3. New user? If so, enter in user database
4. Set up Server session info

Authentication

¨ Two options: local or third party.
¨ Third party (eg. login with Google, login with

Facebook, login with github...) is usually better for
simple apps like ours.

¨ Why?

Authentication

¨ Two options: local or third party.
¨ Third party (eg. login with Google, login with

Facebook, login with github...) is usually better for
simple apps like ours.

¨ Why?
1. We don’t want to be responsible for passwords or
other information that might get compromised.
¨ Oauth2 is an open standard for authorization

through third parties. Controversial, not particularly
secure, what everybody uses....

No passwords in HTTP requests!

¨ Recall that an HTTP request is just a text file sent
over the internet.

¨ Anyone snooping anywhere it passes through can
read it.

¨ So it would be a disaster for the user to put his
password (even a password for Lango) into an HTTP
request.

¨ Instead, we need HTTPS (secure HTTP). In an HTTPS
request/response, the body of the request and the
body of the response are encrypted.

HTTP vs HTTPS

Never do this!
Password is publicly
visible.

HTTP / PUT
dest: server162.site

...

{ uid: haplessUser,
password: awesomePswd,

...

HTTPS / PUT
dest: google/login

...

mi74nfya9foencqb3561
...

Perfectly fine.
Password in
encrypted in body.

HTTPS

¨ So, another reasons we don’t do local login:
2. Our site only supports HTTP, so we can’t do local
logins. The user could never send us a password.

¨ Instead, they will send their password directly to
Google, in an HTTPS message.

¨ We redirect user to Google, they login, Google
redirects them back to us.

Permission for Lango from Google

¨ We need to register Lango for login with Google.
¨ They already know about Lango since it uses the

Translation API.
¨ We can add login service to that existing project.
¨ If we wanted user data they consider private, they

would want to know more about the app, but since
we will ask for minimal profile data, this is
instantaneous (if complicated...directions on Assn 6
page).

Login Data object

const googleLoginData = {
clientID: ’[server’s id key]',
clientSecret: ’[another secret key]',
callbackURL: '/auth/redirect'

};
¨ Lango is the client.
¨ The two keys are the credentials we got from

Google, identifying our server.
¨ The callback URL is where we want Google to

return to on the server after successful login.

Let passport store login data

passport.use(
new GoogleStrategy(googleLoginData,

gotProfile));

¨ On start up, we store this data with Passport
¨ gotProfile is a callback function we’ll need later in

the process; might as well store it now.

Beginning of login process

app.get('/auth/google',
passport.authenticate('google',{ scope: ['profile'] }));

¨ Pipeline stage that responds to URL:
http://server162.site:[port]/auth/google

¨ Kicks off login process

Cookie?

Stage to pipeline to start login

req

Static file?

/auth/google is url for
start login stage.
Writes note and sends
redirect response to
browser.

start login?
Translate?

Store?

File not
found?

Beginning of login process

app.get('/auth/google',
passport.authenticate('google',{ scope: ['profile'] }));

¨ passport.authenticate prepares a URL for Browser
to send to Google, and sends it in a redirect
response.

“note” for Google

¨ URL is like a note that Lango gives to the Browser, to
show to Google:

“This user wants to log in to Lango with Google.
We’re OK with that. We’d like to get their profile
data. If they succeed in logging in, please send them
back to us, at server162.site:[port]/auth/redirect”

The actual HTTP response

Return code: 302
Redirect address:

https://accounts.google.com/o/oauth2/v2/auth?resp
onse_type=code&redirect_uri=http://server162.site:
30057/auth/redirect&scope=profile&client_id=[actu

al cliend id]

click
login
with

Google

HTTP
Request
auth/

google auth/
google

Make URL with
Google credentials,

send redirect response

redirect
to

Google

send
login
screen

enter
username,
password

User
Browser

Server

Authorizer,
eg Google

display
login
screen

Why all this redirect business?

¨ Why doesn’t Lango contact Google directly and tell
them that the user wants to log in?

Why all this redirect business?

¨ Why doesn’t Lango contact Google directly and tell
them that the user wants to log in?

Google can’t contact the Browser. Google is the server
in the login transaction, and has to be contacted by the
browser.
Instead, we stay in the simple request-response model.

¤ The Browser sent an HTTP request to the Server. The
Server responds to that request (with a redirect).

¤ The Browser sends an HTTPS request to Google, which it
responds to in a perfectly normal way.

HTTPS
request

to
Google

auth/redirect
HTTPS request to

Google with
temporary access code

redirect
to

server

authorize and
give

temporary
access code;
redirect to

server

enter uid
and

password,
click submit

User
Browser

Server

Authorizer,
eg Google

provide
profile

information,
eg. of Google

user

gotProfile
Store profile data in
database (optional);
start session, redirect
response to first page

of App
redirect
to first
pageSee

first
page! display

serve first page
with static server

HTTP redirect to auth/redirect

Return code: 302

Redirect address:
http://server162.site:30057/auth/redirect?code=[te
mporary_profile_access_code&scope=profile+https:/

/www.googleapis.com/auth/userinfo.profile

¨ It’s redirecting to Server, but telling it how to
request profile information from Googe for user.

Pipeline stage for auth/redirect

app.get('/auth/redirect’,
passport.authenticate('google'),
function (req, res) {

console.log('Logged in and using cookies!')
res.redirect('/user/hello.html');

});
¨ Has two handler functions, done one after the other.
¨ res.redirect in the second one sends off the response

object, to the app page user should see after login.

Action behind the scenes...

passport.authenticate('google')

¨ This first handler for auth/redirect sends off an
HTTPS request to Google to get the user’s profile
data, using the temporary code that Google sent
us.

¨ The callback for this request is the gotProfile
callback we defined way back when.

¨ After this we can do database and session set up!

What is profile information?

{ id: '106646915971583712375',
displayName: 'Nina Amenta',
name: { familyName: 'Amenta',

givenName: 'Nina' },
photos: [{ value:

'https://lh6.googleusercontent.com/-
Jk9n2DtIoaA/AAAAAAAAAAI/AAAAAAAAA0g/81n7
GPscyYk/photo.jpg' }] }
¨ What’s that picture?

Photo

How do we feel about this?

¨ It was pretty easy for us to get this info.
¨ Do we think of all this as public?

Boilerplate

¨ Most of this code is boilerplate, that is, stuff we
copy, paste and modify.

¨ Database and session set-up has calls functions that
let us customize
¤ What do we put in our database for each user,
¤ What goes into the req.user field for late pipeline

stages to use.

¨ More on that next time.

