
ECS 162
WEB PROGRAMMING

5/29



Announcements

¨ Last chance on regrade requests for the midterm.  
We will not consider any submitted after midnight 
Thursday.  Submit on Gradescope. 

¨ If you did poorly on Flashcard 1, but you hand in a 
complete working app for Flashcard 2, I will 
discount your Flashcard 1 grade.  So it should be 
worth your time to get it working. 



Comic version of login



HTTPS

¨ Notice the Browser says she will encrypt the HTTP 
request, making him an HTTPS request, when he 
heads off to Google.

¨ What actually gets in encrypted?  It still has to be 
addressed to Google, otherwise how would it get 
there. 

¨ But the whole URL contains lots of information that 
does not have to be public.



What does HTTPS hide? 

¨ Everything after the domain name.  So

https://accounts.google.com/o/oauth2/v2/auth?
response_type=code&redirect_uri=http://server
162.site:30057/auth/redirect&scope=profile&cl
ient_id=[actual cliend id]

looks to intermediate places on the internet like
https://accounts.google.com

with everything else encrypted. 



Really odd part

¨ HTTPS vs HTTP is a property of the Server, not the 
Browser.  So how is the Browser doing the 
encryption?  



Really odd part

¨ HTTPS vs HTTP is a property of the Server, not the 
Browser.  So how is the Browser doing the 
encryption? 
Uses Public Key Encryption.

¨ Fundamental trick of secure internet communication 
(TLS/SSL, transport layer security).

¨ Encryption with two separate keys (each of which is 
really a big, pseudo-random number). 



Asymmetric Encryption

¨ Functions using the keys encrypt or decrypt
¨ Green decrypts anything encrypted by purple, and 

visa versa.

Plain Text 9abvy35

(cyphertext)

Plain Text

Plain Text7gd<94fPlain Text



TLS with public keys

¨ Server hands out encryption key to whoever wants 
it; this is the public key. 

¨ Now Client (or anyone) can encrypt data sent to 
Server, and can decrypt data it receives. 

Client Server
request public key



Man in the middle attack

¨ What does the stick-up the bird suffered 
correspond to in real life?

¨ “Packet sniffers” or “packet capture” are programs 
that look at passing HTTP requests/responses and 
other TCP/IP packets.  These are widely used  
legitimately, but can be malicious. 

¨ Is the government reading your email?  Probably 
not; more likely they will get data from the big 
companies if they want it. 



What can a man-in-the-middle do?

¨ With an HTTP request (unencrypted), a router can 
see all of it and change any part of it. 

¨ Our Server sends this redirect URL in an 
unencrypted HTTP response: 

¨ What might be a problem? 

https://accounts.google.com/o/oauth2/v2/auth?resp
onse_type=code&redirect_uri=http://server162.site:

30057/auth/redirect&scope=profile&client_id=
[actual client id]



The URL for the request to Google

https://accounts.google.com/o/oauth2/v2/auth?resp
onse_type=code&redirect_uri=http://server162.site:

30057/auth/redirect&scope=profile&client_id=
[actual client id]

¨ We don’t want someone using our Client ID.  
¨ While it would be nice to hide the redirect address, 

it’s going to get an HTTP request later in the 
process, so we can’t. 

¨ How does Oauth2 handle “public” Client IDs?  



Recall Digital Signature

¨ “Sign” by adding encrypted text to the plain text

¨ After decryption: 

My Client ID jhf45$dxs

¨ Uses a secret symmetic key.

My Client ID

My Client ID jhf45$dxs

My Client ID My Client ID



Signing a request to the Server

¨ Server thus verifies that Browser knows the 
symmetric secret key.

¨ What is the secret symmetric key? 

Client
(app)

Service 
Provider 
(Google)

jhf45$dxsMy Client ID



Signing a request to the Server

¨ Server thus verifies that Browser knows the 
symmetric secret key.

¨ What is the secret symmetric key?  The client secret! 

Client
(app)

Service 
Provider 
(Google)

jhf45$dxsMy Client ID



HTTPS 
request 

to 
Google

auth/redirect
HTTPS request to 

Google with 
temporary access code

redirect 
to 

server

authorize and 
give 

temporary 
access code; 
redirect to 

server

enter uid
and 

password, 
click submit

User
Browser

Server

Authorizer, 
eg Google

provide 
profile 

information, 
eg. of Google 

user

gotProfile
Store profile data in 
database (optional); 
start session, redirect 
response to first page 

of App
redirect 
to first 
pageSee 

first 
page! display

serve first page 
with static server



HTTPS 
request 

to 
Google

auth/redirect
HTTPS request to 

Google with 
temporary access code

redirect 
to 

server

authorize and 
give 

temporary 
access code; 
redirect to 

server

enter uid
and 

password, 
click submit

User
Browser

Server

Authorizer, 
eg Google

provide 
profile 

information, 
eg. of Google 

user

gotProfile
Store profile data in 
database (optional); 
start session, redirect 
response to first page 

of App
redirect 
to first 
pageSee 

first 
page! display

serve first page 
with static server

Digital 
Signature



Summary

¨ HTTPS protects communications with Google (or 
other Service Provider) from man-in-the-middle 
attacks.

¨ Client ID is passed as plain text between Server 
and Browser, not secured.

¨ Digital Signature using the Client Secret is required 
for Server to actually get the User’s profile 
information from Google.

¨ Keep Client Secret secret!  If revealed, request a 
new one.  



Where else did we see digital signature? 



Where else did we see digital signature? 

¨ The Server signs the session cookies he distributes to 
Browsers during login. 

¨ This lets him recognize his own cookies.  
¨ What if a man-in-the-middle stole the session 

cookie? 



Where else did we see digital signature? 

¨ The Server signs the session cookies he distributes to 
Browsers during login. 

¨ This lets him recognize his own cookies.  
¨ What if a man-in-the-middle stole the session 

cookie?
He could impersonate the Browser to the Server.  
¨ This is an obvious security flaw in our app.
¨ What is a good way to prevent this?



Where else did we see digital signature? 

¨ The Server signs the session cookies he distributes to 
Browsers during login. 

¨ This lets him recognize his own cookies.  
¨ What if a man-in-the-middle stole the session 

cookie?
He could impersonate the Browser to the Server.  
¨ This is an obvious security flaw in our app.
¨ What is a good way to prevent this?
Our Server should be using HTTPS.  Next year. 



SOP, revisited

¨ Recall the Same Origin Policy usually prevents CM 
from sending an AJAX request to BofA.  But if a 
hacker finds a hole in the SOP, they can send a 
Cross-Site Request Forgery (CSRF)

BofA
Celebrity 

Makeovers

Browser



HTTPS is no defense here

¨ The Browser 
will attach the 
session cookie 
to any AJAX 
request, even a 
forged one.

BofA CM

Browser

¨ Encrypted session cookies are no defense if CSRF is 
possible!  So what can we do? 



Csurf vs CSRF 

¨ Idea:  App’s Browser code puts some kind of 
encrypted token in the body of any legitimate HTTP 
request (the session cookie itself or something more 
complex).

¨ The Server checks the token in the body. 
¨ The hacker doing the CSRF needs to know token to 

be able to fake a legitimate request. 
¨ Express has a Csurf module that handles the Server 

end of this defense.


