
1

ECS 162
WEB PROGRAMMING

5/3

Midterm Mon May 6

¨ SCANTRON

¨ Open notes. No computers/phones.
¨ Recommend: make a few pages of good notes.

¤ Making notes uncovers things you need to study
¤ Include code snippets to illustrate syntax of commands

¨ Last year's test, on “labs” page
¨ Comics on their own page

¨ You'll get an email with your assigned seat on
Sunday night.

2

Programming problems

¨ Fill in some functions that are part of a short Javascript
program, probably using a CORS API or doing an AJAX
request (so, something with an XMLHttpRequest).

¨ Make request, specify callback
¨ When response comes back, extract information from

JSON and modify DOM elements

Other topics

¤ buttons, textboxes, images, paragraphs, divs, etc.
¤ CSS, including flexbox
¤ media queries
¤ Javascript data types, conversions, equality
¤ objects
¤ functions
¤ variable scope
¤ closures
¤ string and array methods and properties
¤ server, handling static files and queries

3

HTML

¨ Browser executes the HTML by constructing
(initializing) the Document Object Model (DOM)

¨ Link CSS in head, Javascript usually right before the
end of the body

¨ Later Javascript code modifies the DOM (not the
HTML)

¨ Elements can be hidden but not removed by
changing their display property

CSS

¨ CSS properties control how elements are displayed

¨ Browser uses CSS as it renders the DOM
¨ Font stacks

font-family: ‘Helvetica Neue’, Helvetica, Arial, sans-serif;

¨ Using selectors (id, class, element type)
¨ CSS cascade rules

¤ Most specific
¤ If equally specific, last applied

4

Media queries

¨ Media queries for fundamental changes to the CSS.

¨ Base media queries only on width of the viewport,
etc, avoid special behavior for specific devices.

/* on small screens */

@media (max-width: 480px) {

#menuIcon { display: block; } /* show menu icon */
nav { display: none; } /* hide nav bar */

}

Changing styles in Javascript

div.narrow {

width: 200px; }
div.wide {

width: 60%; }

¨ Best practice: change class names in Javascript, let
those determine the styles. Then we can apply
media queries to different classes to handle
different UI modes properly.

5

Color

¨ In CSS:

color: #ff8020;
means all the red, about half the green, and a little
blue -- an intense reddish orange.

background-color: #99ff99;
// text color
color: #000000;

Default CSS layout

¨ Inline elements follow one another like words in text
¤ is inline, also text things like

¨ Block elements stack on top of each other, like
paragraphs
¤ <p>,<div>,<header>
¤ Width fills container, height shrinks to fit contents

¨ Can set width of block element to something smaller

6

Size units

¨ Reference pixel size, designed to subtend same
width in user’s visual field, irrespective of device -
margin: 10px;

¨ Percent of container size - width: 20%;

¨ Percent of viewport size - height: 100vh;

¨ For text, em, which sizes font relative to normal font
size on that device, which is designed to be small
but readable - font-size: 1.3 em;

Flexbox

¨ Setting

display: flex;
makes a box a flexbox container

flex-direction: row; or

flex-direction: column;

indicates main layout direction for its contents, the
other direction is the cross direction.

¨ Two main approaches to distributing items.

7

Using justify & align

body { display: flex;

flex-direction: column; }

main { display: flex;

flex-direction: row;

justify-content: space-around;

align-items: center;

flex-grow: 1; }

div { display: flex;

flex-directon: row;
align-items: center; }

p { width: 100px; }

Using grow & shrink

body { display: flex;

flex-direction: column; }

main { display: flex;

flex-direction: row;

justify-content: space-around;

align-items: center;

flex-grow: 1; }

div { display: flex;

flex-directon: row;
align-items: center; }

p { width: 100px; }

8

Using using shrink and grow

body { display: flex;

flex-direction: column; }

main { display: flex;

flex-direction: row;

justify-content: space-around;

align-items: center;

flex-grow: 1; }

div { display: flex;

flex-directon: row;
align-items: center; }

p { width: 100px; }

How does flexbox determine
the width of the divs?

Using using shrink and grow

body { display: flex;

flex-direction: column; }

main { display: flex;

flex-direction: row;

justify-content: space-around;

align-items: center;

flex-grow: 1; }

div { display: flex;

flex-directon: row;
align-items: center; }

p { width: 100px; }

How does flexbox determine
the width of the divs?

They get the width of their
contents, plus margin and
padding.

What if we took out the css on
the paragraph?

9

Using using shrink and grow

body { display: flex;

flex-direction: column; }

main { display: flex;

flex-direction: row;

justify-content: space-around;

align-items: center;

flex-grow: 1; }

div { display: flex;

flex-directon: row;
align-items: center; }

p { width: 100px; }

How does flexbox determine
the width of the divs?

They get the width of their
contents, plus margin and
padding.

What if we took out the css on
the paragraph?

The paragraphs, and divs,
would expand to fill the width
of main.

Javascript

¨ All numbers are really floating point

¨ Operations and comparisons do automatic
string/number conversion, except for "==="

3.0 == "3" // true!

3.0 === "3" // false!

6+"cars" === "6cars" // true!

10

Functions

¨ Two kinds of declarations

function makeTile () { …. }
let makeTile = function () { …. }

¨ Second form uses an anonymous function on RHS

¨ Functions are objects, and can have properties and
methods.

if (makeTile.tileID == undefined) {
makeTile.tileID = 0; } else { makeTile.tileID++ }

Scope

¨ Variables defined with let are visible throughout the
function; variables defined with let are visible
throughout their block (bounded by {}).

¨ Variables defined with var are visible throughout
their functions; generally not needed.

¨ Global variables, and code to be run on
initialization, should be outside of any function,
usually at the top of the file.

¨ When is initialization for browser code? For server
code?

11

Scope

¨ Variables defined with let are visible throughout the
function; variables defined with let are visible
throughout their block (bounded by {}).

¨ Variables defined with var are visible throughout
their functions; generally not needed.

¨ Global variables, and code to be run on initialization,
should be outside of any function, usually at the top
of the file.

¨ When is initialization for browser code? For server
code?

Scope

¨ Variables defined with let are visible throughout the
function; variables defined with let are visible
throughout their block (bounded by {}).

¨ Variables defined with var are visible throughout
their functions; generally not needed.

¨ Global variables, and code to be run on initialization,
should be outside of any function, usually at the top
of the file.

¨ When is initialization for browser code? For server
code?

loading of script; startup of server

12

Question

let element = document.createElement("button")

document.querySelector("body").appendChild(element);

element.textContent = 0;

let count = 0;

makeButtonFunction();

function makeButtonFunction () {

element.onclick = function () {

count++;
element.textContent = count;

} }

How can we
avoid having
count be global?

Question

var element = document.createElement("button")

document.querySelector("body").appendChild(element);

element.textContent = 0;

makeButtonFunction();

function makeButtonFunction () {

let count = 0;

element.onclick = function () {

count++;
element.textContent = count;

} }

Put it in a closure!

13

Objects

¨ When defined as literals or with assignment to
methods and properties, everything is public

let car = { "make": "Lexus", "price": 38,000 }

car.reportPrice = function () {

console.log(this.price); }

console.log(car.make);

¨ When defined using class and new, allows private
data and methods via the scope of the constructor
function.

JSON

¨ The JSON data format is a Javascript literal

let dataString = ’ {"car": "Toyota"} '; // JSON

yourCar = JSON.parse(dataString);

// yourCar is an object

let anotherString = JSON.stringify(yourCar);

dataString == anotherString; // true!

¨ JSON cannot include methods

14

JSON Objects can be complex

movieData = {"total": 2, "movies": [

{ "id": "770672122”, "title": "Toy Story 3”, "year":
2010, "mpaa_rating": "G”, "runtime": 103,

"critics_consensus": "Deftly blending comedy, adventure, and
honest emotion, Toy Story 3 is a rare second sequel that
really works.",

"release_dates": {

"theater": "2010-06-18",

"dvd": "2010-11-02”

}, …

rating = movieData.movies[0].mpaa_rating;

Same Origin Policy

¨ In general, Web pages can only send queries to the
server they came from.

¨ In an AJAX query, we only give the query part of the
URL, not the server name.

¨ CORS is an exception. The browser sends a CORS
request to the API server it requests.

¨ If the API server labels the response as public, then
the browser passes it back to our Javascript code;
otherwise error!

¨ This deters random Javascript code from trying to get
to other servers we are logged into.

15

AJAX query

event
Submit
button

onclick requests
data using
XMLHttpRequest

request

server
Web page
came from

callback
extracts data,
changes DOM,
etc.

replyalways
OK

CORS API interaction

event
Submit
button

CORS
request

arbitrary
API server

onclick requests
data using
XMLHttpRequest

request

callback
extracts data,
changes DOM,
etc.

replyOK
?

16

Animation

¨ Javascript animations change the display at
intervals, using a timer function such as setInterval();

¨ The timer function calls a callback function after
waiting for some number of milliseconds:

let timer = setInterval(function() {

pos = moveTurtle(pos);

pos = pos+1;}

}, 80);

Closure

¨ A function defined inside another function has access to
all the local variables.

¨ When the outer function exits, it's local variables are
stored in a closure.

¨ If there was more than one inner function created, they
all have access to the same closure.

¨ We often use this to pass information to callback
functions (which get called later!) from the functions in
which they are defined.

¨ This is also how Javascript implements static variables
and private data for objects.

17

Class constructor

class Weather {

constructor (t,w) {
this.fahrenheit = t;

this.wind = w;

this.celsius = function() {

return (t-32)*5/9;

}

}

}

Not a great piece of code

davisWeather = new Weather(77, 22);

davisWeather.celsius() // returns 25

davisWeather.fahrenheit = 86;

davisWeather.celsius() // returns?

18

Tricky problem

class Weather {

constructor (t,w) {
this.fahrenheit = t;

this.wind = w;

this.celsius = function() {

return (t-32)*5/9;

}

}

}

The closure of
this.celsius is the
constructor; it has access
to the private variable
t, which is in the closure
of the constructor.

But t does not change
when this.fahrenheit
does!

Correct!

class Weather {

constructor (t,w) {
this.fahrenheit = t;

this.wind = w;

this.celsius = function() {

return (this.fahrenheit-32)*5/9;

}

}

}

19

Server

¨ A server is a computer, on the internet, running
software that responds to HTTP requests.

¨ The HTTP requests often consist mainly of a URL,
either the name of a file to download (eg.
palindrome.js), or a query that will be answered
with a JSON string.

¨ In express, we configure the server by stringing
together middleware functions to make a pipeline.
Each stage typically either can respond to the HTTP
request or passes it on to the next one.

Server

¨ As an app programmer, we usually spend our time
in the custom middleware functions that respond to
queries.

