
ECS 162
WEB PROGRAMMING

5/8

RESTful Web Services

¨ Name for the interaction model we have been using
¨ REST stands for “representational state transfer”
¨ Resource identification through a URI

¤ E.g., https://twitter.com/stk

¨ Uniform interface via HTTP request-response
¤ HTTP verbs: GET, POST, maybe PUT and DELETE

Efficient approach to stateful interactions

¨ Client (browser) needs to know only a single URL to
access the resource; further interactions are learned
as it goes along

¨ Server does not need to know or remember
anything about state of client

RESTFul applied

¨ Key part, identify your objects
¤ Twitter: users, tweets, DMs
¤ Lyft: drivers, passengers, rides, payment methods
¤ Google drive: users, folders, and documents
¤ HTTP requests to access

Browser’s view of the world

Browser

Server

Server

Server

Server

Server

Many servers

Browser’s view

Browser

Server

Server

Server

Server

Server

Browser's view

¨ Browser presents coherent narrative to the user.
¨ It stops and starts, but there is a logical sequence of

operations, one following another.
¨ All interactions are simple request-response

sequences
¨ Server's view is very different.
¨ It processes HTTP request-response pairs, without

trying to connect them together in a coherent
narrative.

¨ But interactions might be more complex

Server’s view of the world

The world is full of potential clients,
also potential helpers.

Server

Browser
Browser

Browser

Browser

Database

API
Server

Server’s view

Server

Browser

HTTP request
for Web page

Database

Server’s view

Static server
gets file from
/public, puts
together Browser

Database

Response

Server’s view

Server sends back response object that is self-
addressed to browser.

Server

Browser response with
Web page

Database

Server’s view

The server remembers nothing about the transaction.

ZZZ…
Browser

Database

Server’s view

Server
HTTP request for

JSON data

Database

Browser

Server’s view

Puts together
DB request, sets
up callback and

calls db.all()Browser

Database

DB call

Response

DB
callback

Server’s view

The server callback remembers response object.
Many new HTTP requests may come in before this
database request returns.

ZZZ…
Browser

Database

Response

DB
callback

Server’s view

Callback wakes
up, gets data

from DB, puts it
into response
object body…

Browser

Database

DB response

Response

Server’s view

Sends off AJAX
response

Browser

Database

response with
JSON

Server’s view

Server remembers nothing about transaction

ZZZ…
Browser

Database

Production server

Many requests from different browsers, possibly
many (response objects, callback) pairs waiting for
DB responses at the same time.

Database

Response
DB

callback

Response
DB

callback

Response
DB

callback

Server’s view

Server
HTTP request for

JSON dataBrowser

API
Server

Server’s view

Puts together
API request, sets

up callbackBrowser

API call

Response

API
callback

API
Server

Server’s view

ZZZ…
Browser

Response

DB
callback

API
Server

Server’s view

Callback wakes
up, gets data

from API, puts it
into response
object body…

Browser

API response

Response API
Server

Server’s view

Sends off AJAX
response

Browser response with
JSON

API
Server

Google Translate API

¨ Send English text, get translation back.
¨ How does it do the translation? “Deep learning”, or

perhaps “Magic”….
¨ To use Google Translate, you need a developer

account on Google, and you’ll need to set that up
using Jason's directions.

¨ Instructions on Web site

Lots of ways to use GT API

¨ We’ll use the very simplest
¨ Google issues you an API key (a code that identifies

us)
¨ You include the API key in the URL of every GET or

POST request you make:

const url =
“https://translation.googleapis.com/language/trans
late/v2?key=“+ APIkey;

Using the API

¨ Use it from Server, not Browser!

¨ Follows the usual 4-step plan
¤ Make up request
¤ Set up callback
¤ Send off request
¤ Handle result in callback

¨ But as usual has it’s quirks

The HTTP request

¨ Use a POST
request

¨ query in JSON in
body

¨ Allows API user to
send big hunks of
text

{
"source": "en",
"target": "ko",
"q": [

"example phrase"
]

}

HTTP POST
content-type: application/json

url:
https://translation.googleapis.com/langua

ge/translate/v2?key=???

Node request function

¨ To build a server HTTP request using Node, the
usual way is to use the node request module

npm install request

¨ This gives us the request function
¨ The functionality here is exactly the same as using

the XMLHttpRequest object in the browser, but
(because this is the Web) everything looks
different…

Where are the four parts?

request(
// first operand is object describing request

{url: url,
method: "POST",
headers: {"content-type": "application/json”}
json: requestObject },

// second operand is callback
APIcallback);

Callback function

function APIcallback(err, head, body) {
if ((err) || (head.statusCode != 200)) {

console.log("Got API error");
} else {

var newJSON = body.responses[0];
// do stuff with response here

}}
¨ Expecting a callback function with 3 arguments
¨ Check for error!

Example response JSON

{ "data": {
"translations": [

{
"translatedText": "예시문구"

}]
}

}

