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RESTful Web Services 

¨ Name for the interaction model we have been using
¨ REST stands for “representational state transfer”
¨ Resource identification through a URI

¤ E.g., https://twitter.com/stk

¨ Uniform interface via HTTP request-response
¤ HTTP verbs: GET, POST, maybe PUT and DELETE



Efficient approach to stateful interactions

¨ Client (browser) needs to know only a single URL to 
access the resource; further interactions are learned 
as it goes along

¨ Server does not need to know or remember 
anything about state of client



RESTFul applied

¨ Key part, identify your objects
¤ Twitter: users, tweets, DMs
¤ Lyft: drivers, passengers, rides, payment methods
¤ Google drive: users, folders, and documents
¤ HTTP requests to access
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Browser's view

¨ Browser presents coherent narrative to the user.  
¨ It stops and starts, but there is a logical sequence of 

operations, one following another. 
¨ All interactions are simple request-response 

sequences
¨ Server's view is very different. 
¨ It processes HTTP request-response pairs, without 

trying to connect them together in a coherent 
narrative.  

¨ But interactions might be more complex



Server’s view of the world

The world is full of potential clients, 
also potential helpers. 
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Server’s view
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Server’s view

Server sends back response object that is self-
addressed to browser. 
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Server’s view

The server remembers nothing about the transaction. 

ZZZ…
Browser

Database



Server’s view

Server
HTTP request for 

JSON data

Database

Browser



Server’s view
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Server’s view

The server callback remembers response object.  
Many new HTTP requests may come in before this 
database request returns.  
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Server’s view

Callback wakes 
up, gets data 

from DB, puts it 
into response 
object body…
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Server’s view
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Server’s view

Server remembers nothing about transaction
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Production server  

Many requests from different browsers,  possibly 
many (response objects, callback) pairs waiting for 
DB responses at the same time.  
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Server’s view
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Server’s view

Callback wakes 
up, gets data 

from API, puts it 
into response 
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Google Translate API

¨ Send English text, get translation back.
¨ How does it do the translation?  “Deep learning”, or 

perhaps “Magic”….
¨ To use Google Translate, you need a developer 

account on Google, and you’ll need to set that up 
using Jason's directions. 

¨ Instructions on Web site



Lots of ways to use GT API

¨ We’ll use the very simplest
¨ Google issues you an API key (a code that identifies 

us)
¨ You include the API key in the URL of every GET or 

POST request you make:

const url = 
“https://translation.googleapis.com/language/trans
late/v2?key=“+ APIkey;



Using the API

¨ Use it from Server, not Browser!

¨ Follows the usual 4-step plan
¤ Make up request 
¤ Set up callback
¤ Send off request
¤ Handle result in callback

¨ But as usual has it’s quirks



The HTTP request

¨ Use a POST 
request

¨ query in JSON in 
body

¨ Allows API user to 
send big hunks of 
text

{
"source": "en",
"target": "ko",
"q": [

"example phrase"
]

}

HTTP  POST
content-type:  application/json

url:
https://translation.googleapis.com/langua

ge/translate/v2?key=???



Node request function 

¨ To build a server HTTP request using Node, the 
usual way is to use the node request module

npm install request

¨ This gives us the request function
¨ The functionality here is exactly the same as using 

the XMLHttpRequest object in the browser, but 
(because this is the Web) everything looks 
different…



Where are the four parts? 

request( 
// first operand is object describing request

{url: url,
method: "POST", 
headers: {"content-type": "application/json”}
json: requestObject },            

// second operand is callback 
APIcallback );



Callback function

function APIcallback(err, head, body) {    
if ((err) || (head.statusCode != 200)) {

console.log("Got API error");    
} else {        

var newJSON = body.responses[0];        
// do stuff with response here

}}
¨ Expecting a callback function with 3 arguments
¨ Check for error!



Example response JSON

{ "data": {
"translations": [

{
"translatedText": "예시문구"

} ]
}

}


