VII. Graph Algorithms
Notion of graphs

Basic terminology

- Graph \(G = (V, E) \):
 - \(V = \{v_i\} = \) set of vertices
 - \(E = \) set of edges = a subset of \(V \times V = \{(v_i, v_j)\} \)

- Dense graph: \(|E| \approx |V|^2 \)
- Sparse graph: \(|E| \approx |V| \)

- If \(G \) is connected, then \(|E| \geq |V| - 1 \).

- Some variants:
 - Undirected: edge \((u, v) = (v, u)\)
 - Directed: \((u, v)\) is edge from \(u \) to \(v \).
 - Weighted: weight on either edge or vertex
 - Multigraph: multiple edges between vertices

Reading: Appendix B.4, pp.1168-1172 of [CLRS, 3rd ed.]
Notion of graphs

Basic terminology

- **Graph** $G = (V, E)$:
 - $V = \{v_i\}$ = set of **vertices**
 - E = set of **edges** = a subset of $V \times V = \{(v_i, v_j)\}$

- $|E| = O(|V|^2)$
 - **dense** graph: $|E| \approx |V|^2$
 - **sparse** graph: $|E| \approx |V|$
 - If G is connected, then $|E| \geq |V| - 1$.

阅读：Appendix B.4, pp.1168-1172 of [CLRS, 3rd ed.]
Notion of graphs

Basic terminology

- **Graph** $G = (V, E)$:
 - $V = \{v_i\} =$ set of vertices
 - $E =$ set of edges = a subset of $V \times V = \{(v_i, v_j)\}$

- $|E| = O(|V|^2)$
 - **dense graph**: $|E| \approx |V|^2$
 - **sparse graph**: $|E| \approx |V|$
 - If G is connected, then $|E| \geq |V| - 1$.

- **Some variants**
 - **undirected**: edge $(u, v) = (v, u)$
Notion of graphs

Basic terminology

▶ Graph \(G = (V, E) \):
 ▶ \(V = \{v_i\} \) = set of vertices
 ▶ \(E \) = set of edges = a subset of \(V \times V = \{(v_i, v_j)\} \)

▶ \(|E| = O(|V|^2) \)
 ▶ dense graph: \(|E| \approx |V|^2 \)
 ▶ sparse graph: \(|E| \approx |V| \)
 ▶ If \(G \) is connected, then \(|E| \geq |V| - 1 \).

▶ Some variants
 ▶ undirected: edge \((u, v) = (v, u)\)
 ▶ directed: \((u, v)\) is edge from \(u\) to \(v\).
Notion of graphs

Basic terminology

- **Graph** $G = (V, E)$:
 - $V = \{v_i\} =$ set of vertices
 - $E =$ set of edges = a subset of $V \times V = \{(v_i, v_j)\}$

- $|E| = O(|V|^2)$
 - dense graph: $|E| \approx |V|^2$
 - sparse graph: $|E| \approx |V|$
 - If G is connected, then $|E| \geq |V| - 1$

Some variants

- **undirected**: edge $(u, v) = (v, u)$
- **directed**: (u, v) is edge from u to v
- **weighted**: weight on either edge or vertex
Notion of graphs

Basic terminology

- **Graph** $G = (V, E)$:
 - $V = \{v_i\}$ = set of vertices
 - E = set of edges = a subset of $V \times V = \{(v_i, v_j)\}$

- $|E| = O(|V|^2)$
 - **dense graph**: $|E| \approx |V|^2$
 - **sparse graph**: $|E| \approx |V|$
 - If G is connected, then $|E| \geq |V| - 1$.

- Some variants
 - **undirected**: edge $(u, v) = (v, u)$
 - **directed**: (u, v) is edge from u to v.
 - **weighted**: weight on either edge or vertex
 - **multigraph**: multiple edges between vertices
Notion of graphs

Basic terminology

- **Graph** $G = (V, E)$:
 - $V = \{v_i\} =$ set of **vertices**
 - $E = $ set of **edges** = a subset of $V \times V = \{(v_i, v_j)\}$

- $|E| = O(|V|^2)$
 - **dense** graph: $|E| \approx |V|^2$
 - **sparse** graph: $|E| \approx |V|$
 - If G is connected, then $|E| \geq |V| - 1$.

Some variants

- **undirected**: edge $(u, v) = (v, u)$
- **directed**: (u, v) is edge from u to v.
- **weighted**: weight on either edge or vertex
- **multigraph**: multiple edges between vertices

- Reading: Appendix B.4, pp.1168-1172 of [CLRS,3rd ed.]
Notion of graphs

Representing a graph by an **Adjacency Matrix** A

- $A = (a_{ij})$ is a $|V| \times |V|$ matrix, where

$$a_{ij} = \begin{cases}
1, & \text{if } (v_i, v_j) \in E \\
0, & \text{otherwise}
\end{cases}$$
Notion of graphs

Representing a graph by an Adjacency Matrix A

$A = (a_{ij})$ is a $|V| \times |V|$ matrix, where

$$a_{ij} = \begin{cases}
1, & \text{if } (v_i, v_j) \in E \\
0, & \text{otherwise}
\end{cases}$$

If G is undirected, A is symmetric, i.e., $A^T = A$.
Notion of graphs

Representing a graph by an Adjacency Matrix A

- $A = (a_{ij})$ is a $|V| \times |V|$ matrix, where

$$a_{ij} = \begin{cases}
1, & \text{if } (v_i, v_j) \in E \\
0, & \text{otherwise}
\end{cases}$$

- If G is undirected, A is symmetric, i.e., $A^T = A$.

- A is typically very sparse

 use a sparse storage scheme in practice
Notion of graphs

Representing a graph by an **Incidence Matrix** B

- $B = (b_{ij})$ is a $|V| \times |E|$ matrix, where

$$b_{ij} = \begin{cases}
1, & \text{if edge } e_j \text{ enters vertex } v_i \\
-1, & \text{if edge } e_j \text{ leaves vertex } v_i \\
0, & \text{otherwise}
\end{cases}$$
Notion of graphs

Representing a graph by an **Adjacency List**

- For each vertex \(v \),

\[
\text{Adj}[v] = \{ \text{vertices adjacent to } v \}
\]
Notion of graphs

Representing a graph by an Adjacency List

- For each vertex v,
 \[\text{Adj}[v] = \{ \text{vertices adjacent to } v \} \]
- Variation: could also keep second list of edges coming into vertex.

Answer: $\Theta(|V| + |E|)$ ("sparse representation")
Notion of graphs

Representing a graph by an Adjacency List

- For each vertex v,
 \[\text{Adj}[v] = \{ \text{vertices adjacent to } v \} \]
- Variation: could also keep second list of edges coming into vertex.
- How much storage is needed?

Answer: $\Theta(|V| + |E|)$ ("sparse representation")
Notion of graphs

Representing a graph by an Adjacency List

- For each vertex \(v \),
 \[
 \text{Adj}[v] = \{ \text{vertices adjacent to } v \}
 \]
- Variation: could also keep second list of edges coming into vertex.
- How much storage is needed?
 Answer: \(\Theta(|V| + |E|) \) ("sparse representation")
Notion of graphs

Degree of a vertex
Notion of graphs

Degree of a vertex

▶ undirected graph:
 ▶ The degree of a vertex = the number of incident edges

▶ directed graph (digraph):
 ▶ out-degree and in-degree
 ▶ \(\sum_{v \in V} \text{out-degree}(v) = \sum_{v \in V} \text{in-degree}(v) = |E| = \) total number of items in the adjacency list
Notion of graphs

Degree of a vertex

▶ undirected graph:
 ▶ The degree of a vertex = the number of incident edges
 ▶ The handshaking theorem:

\[\sum_{v \in V} \text{degree}(V) = 2|E| \]

= total number of items in the adjacency list
Notion of graphs

Degree of a vertex

▶ undirected graph:
 ▶ The **degree** of a vertex = the number of incident edges
 ▶ The handshaking theorem:
 \[
 \sum_{v \in V} \text{degree}(V) = 2|E|
 \]
 = total number of items in the adjacency list

▶ directed graph (digraph):
 ▶ out-degree and in-degree
Notion of graphs

Degree of a vertex

▶ undirected graph:
 ▶ The degree of a vertex = the number of incident edges
 ▶ The handshaking theorem:

\[
\sum_{v \in V} \text{degree}(V) = 2|E|
\]

= total number of items in the adjacency list

▶ directed graph (digraph):
 ▶ out-degree and in-degree

\[
\sum_{v \in V} \text{out-degree}(V) = \sum_{v \in V} \text{in-degree}(V) = |E|
\]