VII. Graph Algorithms
Notion of graphs

Basic terminology

- **Graph** $G = (V, E)$:
 - $V = \{v_i\}$ = set of **vertices**
 - $E = \text{set of edges} = \text{a subset of } V \times V = \{(v_i, v_j)\}$
Notion of graphs

Basic terminology

- Graph $G = (V, E)$:
 - $V = \{v_i\}$ = set of vertices
 - $E =$ set of edges = a subset of $\bigcup_{i \neq j} \{(v_i, v_j)\}$
 - $|E| = O(|V|^2)$
 - dense graph: $|E| \approx |V|^2$
 - sparse graph: $|E| \approx |V|$
 - If G is connected, then $|E| \geq |V| - 1$.

Reading: Appendix B.4, pp.1168-1172 of [CLRS,3rd ed.]
Notion of graphs

Basic terminology

- **Graph** $G = (V, E)$:
 - $V = \{v_i\} = \text{set of vertices}$
 - $E = \text{set of edges} = \text{a subset of } V \times V = \{(v_i, v_j)\}$

- $|E| = O(|V|^2)$
 - **dense graph**: $|E| \approx |V|^2$
 - **sparse graph**: $|E| \approx |V|$
 - If G is connected, then $|E| \geq |V| - 1$.

- **Some variants**
 - **undirected**: edge $(u, v) = (v, u)$
Notion of graphs

Basic terminology

- **Graph** $G = (V, E)$:
 - $V = \{v_i\}$ = set of vertices
 - $E =$ set of edges $=$ a subset of $V \times V = \{(v_i, v_j)\}$

- $|E| = O(|V|^2)$
 - **dense graph**: $|E| \approx |V|^2$
 - **sparse graph**: $|E| \approx |V|$
 - If G is connected, then $|E| \geq |V| - 1$.

- **Some variants**
 - **undirected**: edge $(u, v) = (v, u)$
 - **directed**: (u, v) is edge from u to v.

Reading: Appendix B.4, pp.1168-1172 of [CLRS, 3rd ed.]

Notion of graphs

Basic terminology

- **Graph** $G = (V, E)$:
 - $V = \{v_i\} = \text{set of vertices}$
 - $E = \text{set of edges} = \text{a subset of } V \times V = \{(v_i, v_j)\}$

- $|E| = O(|V|^2)$
 - **dense graph**: $|E| \approx |V|^2$
 - **sparse graph**: $|E| \approx |V|$
 - If G is connected, then $|E| \geq |V| - 1$.

Some variants

- **undirected**: edge $(u, v) = (v, u)$
- **directed**: (u, v) is edge from u to v.
- **weighted**: weight on either edge or vertex
Notion of graphs

Basic terminology

Graph $G = (V, E)$:
- $V = \{v_i\}$ = set of vertices
- $E = \text{set of edges} = \text{a subset of } V \times V = \{(v_i, v_j)\}$

- $|E| = O(|V|^2)$
 - dense graph: $|E| \approx |V|^2$
 - sparse graph: $|E| \approx |V|$
 - If G is connected, then $|E| \geq |V| - 1$.

Some variants

- undirected: edge $(u, v) = (v, u)$
- directed: (u, v) is edge from u to v.
- weighted: weight on either edge or vertex
- multigraph: multiple edges between vertices
Notion of graphs

Basic terminology

- **Graph** $G = (V, E)$:
 - $V = \{v_i\}$ = set of vertices
 - E = set of edges = a subset of $V \times V = \{(v_i, v_j)\}$

- $|E| = O(|V|^2)$
 - **dense graph**: $|E| \approx |V|^2$
 - **sparse graph**: $|E| \approx |V|$
 - If G is connected, then $|E| \geq |V| - 1$.

- **Some variants**
 - **undirected**: edge $(u, v) = (v, u)$
 - **directed**: (u, v) is edge from u to v.
 - **weighted**: weight on either edge or vertex
 - **multigraph**: multiple edges between vertices

- **Reading**: Appendix B.4, pp.1168-1172 of [CLRS,3rd ed.]
Notion of graphs

Representing a graph by an Adjacency Matrix

- $A = (a_{ij})$ is a $|V| \times |V|$ matrix, where

\[
a_{ij} = \begin{cases}
1, & \text{if } (v_i, v_j) \in E \\
0, & \text{otherwise}
\end{cases}
\]
Notion of graphs

Representing a graph by an Adjacency Matrix

- $A = (a_{ij})$ is a $|V| \times |V|$ matrix, where

$$a_{ij} = \begin{cases}
1, & \text{if } (v_i, v_j) \in E \\
0, & \text{otherwise}
\end{cases}$$

- If G is undirected, A is symmetric, i.e., $A^T = A$.
Notion of graphs

Representing a graph by an Adjacency Matrix

- $A = (a_{ij})$ is a $|V| \times |V|$ matrix, where

 $a_{ij} = \begin{cases}
 1, & \text{if } (v_i, v_j) \in E \\
 0, & \text{otherwise}
 \end{cases}$

- If G is undirected, A is symmetric, i.e., $A^T = A$.
- A is typically very sparse

 use a sparse storage scheme in practice
Notion of graphs

Representing a graph by an **Incidence Matrix**

$B = (b_{ij})$ is a $|V| \times |E|$ matrix, where

$$
b_{ij} = \begin{cases}
1, & \text{if edge } e_j \text{ enters vertex } v_i \\
-1, & \text{if edge } e_j \text{ leaves vertex } v_i \\
0, & \text{otherwise}
\end{cases}$$
Notion of graphs

Representing a graph by an Adjacency List

- For each vertex v,

$$\text{Adj}[v] = \{ \text{vertices adjacent to } v \}$$
Notion of graphs

Representing a graph by an Adjacency List

- For each vertex v,\
 \[
 \text{Adj}[v] = \{ \text{vertices adjacent to } v \}\\
 \]
- Variation: could also keep second list of edges coming into vertex.

Answer: $\Theta(|V| + |E|)$ ("sparse representation")
Notion of graphs

Representing a graph by an Adjacency List

- For each vertex \(v \),
 \[
 \text{Adj}[v] = \{ \text{vertices adjacent to } v \}
 \]
- Variation: could also keep second list of edges coming into vertex.
- How much storage is needed?

\[
\Theta(|V| + |E|)
\]

("sparse representation")
Notion of graphs

Representing a graph by an Adjacency List

- For each vertex \(v \),
 \[
 \text{Adj}[v] = \{ \text{vertices adjacent to } v \}
 \]

- Variation: could also keep second list of edges coming into vertex.

- How much storage is needed?
 Answer: \(\Theta(|V| + |E|) \) (“sparse representation”)
Notion of graphs

Degree of a vertex

▶ undirected graph:

The degree of a vertex = the number of incident edges

\[\sum_{v \in V} \text{degree}(V) = 2 |E| \]

The handshaking theorem.

▶ directed graph (digraph):

out-degree and in-degree

\[\sum_{v \in V} \text{out-degree}(V) = |E| \]
Notion of graphs

Degree of a vertex

- undirected graph:
 - The degree of a vertex = the number of incident edges

Handshaking theorem.
Notion of graphs

Degree of a vertex

- undirected graph:
 - The degree of a vertex = the number of incident edges
 - total # of items in the adj. list = $\sum_{v \in V} \text{degree}(V) = 2|E|$

The handshaking theorem.
Notion of graphs

Degree of a vertex

▶ undirected graph:
 ▶ The degree of a vertex = the number of incident edges
 ▶ total # of items in the adj. list = \(\sum_{v \in V} \text{degree}(V) = 2|E| \)

The handshaking theorem.

▶ directed graph (digraph):
 ▶ out-degree and in-degree
Notion of graphs

Degree of a vertex

- undirected graph:
 - The degree of a vertex = the number of incident edges
 - total # of items in the adj. list = \(\sum_{v \in V} \text{degree}(V) = 2|E| \)
 - The handshaking theorem.

- directed graph (digraph):
 - out-degree and in-degree
 - total # of items in the adj. list = \(\sum_{v \in V} \text{out-degree}(V) = |E| \)