Minimum Spanning Tree (MST)

- Undirected connected weighted graph $G = (V, E, w)$

Example:

$w(T) = 37$.

MST is not necessarily unique. For simplicity in theory, assume all edge weight distinct, and therefore, has a unique MST.
Minimum Spanning Tree (MST)

- Undirected connected weighted graph \(G = (V, E, w) \)
- Weight function \(w : E \rightarrow \mathbb{R} \)
Minimum Spanning Tree (MST)

▶ Undirected connected weighted graph $G = (V, E, w)$
▶ Weight function $w : E \rightarrow \mathbb{R}$
▶ **Spanning tree**: a tree that connects all vertices

Example:

- $w(T) = 37$.

MST is not necessarily unique. For simplicity in theory, assume all edge weight distinct, and therefore, has a unique MST.
Minimum Spanning Tree (MST)

- Undirected connected weighted graph $G = (V, E, w)$
- Weight function $w : E \rightarrow \mathbb{R}$
- Spanning tree: a tree that connects all vertices

Example

![Graph Image](image.png)
Minimum Spanning Tree (MST)

- Undirected connected weighted graph \(G = (V, E, w) \)
- Weight function \(w : E \rightarrow \mathbb{R} \)
- **Spanning tree**: a tree that connects all vertices

Example

- Minimum Spanning Tree (MST) \(T \)

\[
w(T) = \sum_{(u,v) \in T} w(u, v)
\]

is minimized
Minimum Spanning Tree (MST)

- Undirected connected weighted graph \(G = (V, E, w) \)
- Weight function \(w : E \rightarrow \mathbb{R} \)
- Spanning tree: a tree that connects all vertices

Example

Minimum Spanning Tree (MST) \(T \)

\[
w(T) = \sum_{(u,v) \in T} w(u, v)
\]

is minimized

Example: \(w(T) = 37 \).
Minimum Spanning Tree (MST)

- Undirected connected weighted graph \(G = (V, E, w) \)
- Weight function \(w : E \rightarrow \mathbb{R} \)
- Spanning tree: a tree that connects all vertices
 Example

- Minimum Spanning Tree (MST) \(T \)

\[
w(T) = \sum_{(u,v) \in T} w(u, v) \text{ is minimized}
\]

Example: \(w(T) = 37 \).
- MST is not necessarily unique.

For simplicity in theory, assume all edge weight distinct, and therefore, has a unique MST.
Basic idea of computing ("growing") a MST:

- construct the MST by successively select edges to include in the tree
Basic idea of computing ("growing") a MST:

- construct the MST by successively select edges to include in the tree
- guarantee that after the inclusion of each new selected edge, it forms a subset of some MST.
Basic idea of computing ("growing") a MST:

- construct the MST by successively select edges to include in the tree
- guarantee that after the inclusion of each new selected edge, it forms a subset of some MST.

One of the most famous greedy algorithms, along with Huffman coding
Two basic properties:

1. **Optimal substructure:** optimal tree contains optimal subtrees.

1 The subgraph G_1 is induced by vertices in T_1, i.e., $V_1 = \{\text{vertices in } T_1\}$ and $E_1 = \{(x, y) \in E; x, y \in V_1\}$. Similarly for G_2.
MST

Two basic properties:

1. **Optimal substructure:** optimal tree contains optimal subtrees.

 Let T be a MST of $G = (V, E)$. Removing (u, v) of T partitions T into two trees T_1 and T_2. Then T_1 is a MST of $G_1 = (V_1, E_1)$ and T_2 is a MST of $G_2 = (V_2, E_2)$.

1 The subgraph G_1 is induced by vertices in T_1, i.e., $V_1 = \{\text{vertices in } T_1\}$ and $E_1 = \{(x, y) \in E; x, y \in V_1\}$. Similarly for G_2.
MST

Two basic properties:

1. **Optimal substructure:** optimal tree contains optimal subtrees.

 Let T be a MST of $G = (V, E)$. Removing (u, v) of T partitions T into two trees T_1 and T_2. Then T_1 is a MST of $G_1 = (V_1, E_1)$ and T_2 is a MST of $G_2 = (V_2, E_2)$.\(^1\)

 Proof. Note that

 $$w(T) = w(T_1) + w(u, v) + w(T_2).$$

 There cannot be a better subtree than T_1 or T_2, otherwise T would be suboptimal.

\(^1\)The subgraph G_1 is induced by vertices in T_1, i.e., $V_1 = \{\text{vertices in } T_1\}$ and $E_1 = \{(x, y) \in E; x, y \in V_1\}$. Similarly for G_2.
MST

2. Greedy-choice property:

\[\text{Let } T \text{ be a MST of } G = (V, E), A \subseteq T \text{ be a subtree of } T, \text{ and } (u, v) \text{ be min-weight edge in } G \text{ connecting } A \text{ and } V - A. \text{ Then } (u, v) \in T. \]

Proof. If \((u, v) \not\in T\), then \((u, v) \cup T\) forms a cycle, \((u, v) \cup T\) replace one of edges of \(T\) by \((u, v)\) form a new tree \(T\), this is contradiction to \(T\) is MST.

\(^2\)Note: there is an abuse of notation here that we will view \(A\) as being both edges and vertices.
2. Greedy-choice property:

Let T be a MST of $G = (V, E)$, $A \subseteq T$ be a subtree of T, and (u, v) be min-weight edge in G connecting A and $V - A$. Then $(u, v) \in T$.\(^2\)

\(^2\)Note: there is an abuse of notation here that we will view A as being both edges and vertices.
2. Greedy-choice property:

Let T be a MST of $G = (V, E)$, $A \subseteq T$ be a subtree of T, and (u, v) be min-weight edge in G connecting A and $V - A$. Then $(u, v) \in T$.

Proof. If $(u, v) \notin T$, then

- $(u, v) \cup T$ forms a cycle,
- replace one of edges of T by (u, v) form a new tree T
- this is contradiction to T is MST

\[2\text{ Note: there is an abuse of notation here that we will view } A \text{ as being both edges and vertices.} \]
MST

Prim’s algorithm

- Basic idea:
 - starts from an arbitrary root r
Prim’s algorithm

- Basic idea:
 - starts from an arbitrary root r
 - builds one tree, so that A is always a tree
Prim’s algorithm

Basic idea:

- starts from an arbitrary root r
- builds one tree, so that A is always a tree
- at each step, find the next lightest edge crossing cut $(A, V - A)$ and add this edge to A ("greedy choice")
Prim’s algorithm

Basic idea:
- starts from an arbitrary root r
- builds one tree, so that A is always a tree
- at each step, find the next lightest edge crossing cut $(A, V - A)$ and add this edge to A (*greedy choice*)

How to find the next lightest edge quickly?
Prim’s algorithm

- Basic idea:
 - starts from an arbitrary root r
 - builds one tree, so that A is always a tree
 - at each step, find the next lightest edge crossing cut $(A, V - A)$ and add this edge to A ("greedy choice")

- How to find the next lightest edge quickly?

 Answer: use a priority queue
Review: Priority Queue

A priority queue maintains a set S of elements, each with an associated value called a “key”, and supports the following operations:

- **Search(S, k):**
 returns x in S with $\text{key}[x] = k$

- **Insert(S, x)/Delete(S, x):**
 inserts/deletes the element x into the set S

- **Maximum(S)/Minimum(S):**
 returns x in S with largest/smallest key

- **Extract-max(S)/Extract-min(S):**
 removes and returns x in S with largest/smallest key

- **Increase-key(S, x, k)/Decrease-key(S, x, k):**
 increases/decreases the value of element x’s key to the new value k

Recall that the priority queue has been used in Huffman coding.
MST

MST-Prim(G, w, r)
Q = empty
for each vertex u in V
 key[u] = infty // min. weight of any edge (w,u) and w in A
 pi[u] = nil // parent of u
 Insert(Q, u)
endfor
Decrease-key(Q, r, 0)
while Q not empty
 u = Extract-Min(Q)
 for each v in Adj[u]
 if (v in Q) and (w(u,v) < key[v])
 Decrease-key(Q, v, w(u,v))
 pi[v] = u // parent of v
 endif
 endfor
endwhile
return A = { (v, pi[v]): v in V-{r} } // MST
Run and *illustrate* Prim’s algorithm

MST-Prim(G, w, r)
Q = empty
for each vertex u in V
 key[u] = infty // min. weight of any edge (w,u) and w in A
 pi[u] = nil // parent of u
 Insert(Q, u)
endfor
Decrease-key(Q,r,0)
while Q not empty
 u = Extract-Min(Q)
 for each v in Adj[u]
 if (v in Q) and (w(u,v) < key[v])
 Decrease-key(Q, v, w(u,v))
 pi[v] = u // parent of v
 endif
endfor
endwhile
return A = { (v, pi[v]): v in V-{r} } // MST
Prim’s algorithm

1. Run and *illustrate* Prim’s algorithm
2. Running time:
 - depends on how the priority queue Q is implemented
 - Suppose Q is a binary heap (see Section 6.1)
 - Initialize Q and the first for loop: $O(|V| \log |V|)$
 - Decrease key of root r: $O(|V| \log |V|)$
 - While-loop:
 a) $|V|$ Extract-Min calls: $O(|V| \log |V|)$
 b) $\leq |E|$ Decrease-Key calls: $O(|E| \log |E|)$
 - Total: $O(|E| \log |V|)$
 - *Note:* G is connected, $\log |E| = \Theta(\log |V|)$
MST

Kruskal’s algorithm

- Basic idea:
 - scan edges in increasing of weight
 - put edge in if no loop created

Why does this result in MST?
Answer: min-weight edge is always in MST (the greedy-choice property).

How to make sure “no loop created”?
use “disjoint-set” data structure
Kruskal’s algorithm

- **Basic idea:**
 - scan edges in increasing of weight
 - put edge in if no loop created

- **Why does this result in MST?**
 Answer: min-weight edge is always in MST (the greedy-choice property).
MST

Kruskal’s algorithm

- Basic idea:
 - scan edges in increasing of weight
 - put edge in if no loop created

- Why does this result in MST?
 Answer: min-weight edge is always in MST (the greedy-choice property).

- How to make sure “no loop created”?
 use “disjoint-set” data structure
Disjoint-Set maintains a collection of $S = \{S_1, S_2, ...S_k\}$ of disjoint dynamic sets. Each set is identified by a representative, which is some member of the set.

A disjoint-set data structure supports the following operations:

- **Make-set(x):**
 creates a new set whose only member (and thus representative) is x.

- **Union(x, y):**
 unites the sets that contain x and y, say S_x and S_y, into a new set that is the union of these two sets: $S_x \cup S_y$. The representative is any member of $S_x \cup S_y$.

- **Find-set(x):**
 returns (a pointer to) the representative of the (unique) set containing x.

To learn more about the disjoint-set data structure, see Chapter 21.
MST-Kruskal(G, w)
A = empty
for each vertex v in V
 Make-set(v)
endfor
Sort the edges E in nondecreasing order by w
for each edge (u,v) in E, taken in nondecreasing order by w
 if Find-set(u) \= Find-set(v)
 A = A U {(u,v)}
 Union(u,v)
 endif
endfor
return A
Run and *illustrate* Prim’s algorithm

MST-Kruskal(G, w)
A = empty
for each vertex v in V
 Make-set(v)
endfor
Sort the edges E in nondecreasing order by w
for each edge (u,v) in E, taken in nondecreasing order by w
 if Find-set(u) \= Find-set(v)
 A = A U {(u,v)}
 Union(u,v)
 endif
endfor
return A
Kruskal’s algorithm

1. Run and *illustrate* Prim’s algorithm
2. Running time:
 - depends on the implementation of the disjoint-set
 - Sort: $\Theta(|E| \lg |E|)$
 - $|V|$ Make-Set ops
 - $2|E|$ Find-Set ops
 - $|V| - 1$ Union ops
 - Total: $O(|E| \lg |V|)$
 - Note: G is connected, $\lg |E| = \Theta(\lg |V|)$