2. P and NP

- An algorithm is said to be *polynomial bounded* if its worst-case complexity $T(n)$ is bounded by a polynomial function of the input size n:

 $$T(n) = O(n^k).$$

Examples:
- algorithms for LCS, shortest path, MST, ...

- **P** = the class of decision problems that can be *solved* in polynomial time, i.e., they are polynomial bounded
2. P and NP

- **NP** = the class of decision problems that are **verifiable** in polynomial time.

 i.e., if we were given a "certificate" (= a solution), then we could **verify** that whether the certificate (the solution) is correct in polynomial time.

- Examples:
 - Circuit-SAT
 - Hamiltonian cycle
 - Graph coloring

- NP stands for “Nondeterministic Polynomial time”.
2. P and NP

- P ⊆ NP

 since if a problem is in P, then we can solve it in polynomial time without even being given a certificate.

- Open problem:\(^1\)

 Does P ⊆ NP or P = NP??
2. P and NP

▶ The size of the input can change the classification of P or NP.

\(^2\)CNF = Conjunctive Normal Form: a sequence of clauses separated by AND (\(\land\)) operator. A clause is a sequence of Boolean variables separated by the Boolean OR (\(\lor\)) operator.
2. P and NP

- The size of the input can change the classification of P or NP.
- Examples:
 - Prime-testing problem:
 \[O(n) \xrightarrow{n=10^m} O(10^m) \]
 - Knapsack problem
 \[O(nW) \xrightarrow{W=10^m} O(n \cdot 10^m) \]

2CNF = Conjunctive Normal Form: a sequence of clauses separated by AND (\(\wedge\)) operator. A clause is a sequence of Boolean variables separated by the Boolean OR (\(\vee\)) operator.
2. P and NP

- The size of the input can change the classification of P or NP.
- Examples:
 - Prime-testing problem:

 $O(n) \xrightarrow{n=10^m} O(10^m)$
 - Knapsack problem

 $O(nW) \xrightarrow{W=10^m} O(n \cdot 10^m)$

- Knowing the effect on complexity of the size of the input is important.

2CNF = Conjunctive Normal Form: a sequence of clauses separated by AND (\land) operator. A *clause* is a sequence of Boolean variables separated by the Boolean OR (\lor) operator.
2. P and NP

- The size of the input can change the classification of P or NP.
- Examples:
 - Prime-testing problem:
 \[O(n) \quad \overset{n=10^m}{\rightarrow} \quad O(10^m) \]
 - Knapsack problem
 \[O(nW) \quad \overset{W=10^m}{\rightarrow} \quad O(n \cdot 10^m) \]
- Knowing the effect on complexity of the size of the input is important.
- Unfortunately, even with strong restrictions on the inputs, many NPC problems are still NPC.
- Example: 3-CNF SAT problem\(^2\)

\(^2\)CNF = Conjunctive Normal Form: a sequence of clauses separated by AND (\(\wedge\)) operator. A \textit{clause} is a sequence of Boolean variables separated by the Boolean OR (\(\lor\)) operator.
2. P and NP – recap

1. P and NP: formal definitions
2. Open problem: whether or not P is a proper subset of NP
3. The size of the input can change the classification of P or NP
 However, even with strong restrictions on the inputs, many NPC problems are still NPC.
3. NP-complete

NP-complete (NPC) is the term used to describe decision problems that are the *hardest ones* in \textbf{NP} in the following sense

If there were a polynomial-bounded algorithm for an NPC problem, then there would be a polynomial-bounded time for each problem in NP.
3. NP-complete

Formal definition:

- A decision problem \(A \) is **NP-complete (NPC)** if

Note: “NP-hard” does not mean “in NP and hard”. It means “at least as hard as any problem in NP”. Thus a problem can be NP-hard and not be in NP.
3. NP-complete

Formal definition:

- A decision problem \(A \) is NP-complete (NPC) if

(1) \(A \in NP \) and

\(^3\text{Note: “NP-hard” does not mean “in NP and hard”. It means “at least as hard as any problem in NP”. Thus a problem can be NP-hard and not be in NP.}\)
3. NP-complete

Formal definition:

A decision problem \(A \) is **NP-complete (NPC)** if

1. \(A \in \text{NP} \) and
2. every other problems \(B \) in \(\text{NP} \) is *polynomially reducible* to \(A \), denoted as

\[
B \leq_T A
\]

3 Note: “NP-hard” does not mean “in \(\text{NP} \) and hard”. It means “at least as hard as any problem in \(\text{NP} \)”. Thus a problem can be NP-hard and not be in \(\text{NP} \).
3. NP-complete

Formal definition:

- A decision problem A is **NP-complete (NPC)** if

 1. $A \in \text{NP}$ and
 2. every other problem B in NP is *polynomially reducible* to A, denoted as $B \leq_T A$

If a problem satisfies the property (2), but not necessarily the property (1), we say the problem is **NP-hard**.\(^3\)

\(^3\)Note: “NP-hard” does not mean “in NP and hard”. It means “at least as hard as any problem in NP”. Thus a problem can be NP-hard and not be in \text{NP}.\(\)
3. NP-complete

Polynomial reduction

- Let A and B be two decision problems, B is polynomially reducible to A, if there is a poly-time computable transformation T such that

 \[\text{Yes-instance of } A \iff \text{Yes-instance of } B \]

- Notation: $B \leq_T A$
3. NP-complete

- Cook’s theorem (1971):\(^4\)
 Circuit-SAT is NPC.

- Known NPC problems:
 - Graph coloring
 - Hamiltonian cycle
 - TSP
 - Knapsack
 - ... see next page for more.

\(^4\)First result demonstrating that a specific problem is NPC.
3. NP-complete

- Known NPC problems — more
 - Subset sum:
 Given a positive integer \(c \), and a set \(S = \{s_1, s_2, \ldots, s_n\} \) of positive integers \(s_i \) for \(i = 1, 2, \ldots, n \). Assume that \(\sum_{i=1}^{n} s_i \geq c \). Is there a subset \(J \subseteq \{1, 2, \ldots, n\} \) such that \(\sum_{i \in J} s_i = c \).
 - Bin packing problem:
 Suppose we have an unlimited number of bins, each of capacity 1, and \(n \) objects with sizes \(s_1, s_2, \ldots, s_n \), where \(0 < s_i \leq 1 \). Determine the smallest number of bins into which objects can be packed.
 - Vertex cover problem:
 A vertex-cover of an undirected graph \(G = (V, E) \) is a subset \(V' \subseteq V \) such that if \((u, v) \in E \), then \(u \in V' \) or \(v \in V' \). The vertex-cover optimization problem is to find a vertex cover of minimum size.
 - Clique problem:
 A clique in an undirected graph \(G = (V, E) \) is a subset \(V' \subseteq V \) such that each pair of \(V' \) is connected by an edge in \(E \). The clique optimization problem is to find a clique of maximum size.
3. NP-complete

P, NP and NPC:

- How most theoretical computer scientists view the relationships among P, NP and NPC:
 - Both P and NPC are wholly contained within NP
 - $P \cap NPC = \emptyset$
3. NP-complete – Recap

1. NP-complete (NPC): formal definition
2. Polynomial reduction
3. Cook’s theorem
4. Examples of known NPC problems