4. How to prove a problem is NPC

- The reducibility relation “≤ₜ” is transitive, i.e,

\[A \leqₜ B \quad \text{and} \quad B \leqₜ C \quad \text{imply} \quad A \leqₜ C \]

- Therefore, to prove that a problem \(A \) is NPC, we need to
 1. show that \(A \in \text{NP} \)
 2. choose some known NPC problem \(B \), i.e., \(B \in \text{NPC} \), define a polynomial transformation \(T \) from \(B \) to \(A \)
 show that \(B \leqₜ A \)
4. How to prove a problem is NPC

- Why sufficient? the logic is as follows:

 Since B is NPC, all problems in NP is reducible to B. Show B is reducible to A. Then all problems in NP is reducible to A. Therefore, A is NPC
4. How to prove a problem is NPC

Example 1.

The directed HC is known to be NPC. Use this fact to prove that Undirected HC is NPC.

Proof:

1. *By direct verification, we know that undirected HC is in NP.*
2. *Step A:* Define a transformation T
 Step B: Show that $\text{directed HC} \leq_T \text{undirected HC}$

 By (1) and (2), we conclude that the undirected HC is NPC.
4. How to prove a problem is NP-complete

Example 1, cont’d:

We now show that

\[
\text{directed } HC \leq_T \text{ undirected } HC
\]

Step A

- Define transformation \(T \):

Let \(G = (V, E) \) be a directed graph. Define \(G \) to the undirected graph \(G' = (V', E') \) by the following transformation \(T \):

- \(v \in V \rightarrow v^1, v^2, v^3 \in V' \) and \((v^1, v^2), (v^2, v^3) \in E'\)

- \((u, v) \in E \rightarrow (u^3, v^1) \in E' \)

- \(T \) is polynomial-time computable.
4. How to **prove** a problem is NP-complete

Example 1, cont’d:

An illustration of such transformation T:
4. How to prove a problem is NPC

Example 1, cont’d

Step B: We show that

\[G \text{ has a HC } \iff G' \text{ has a HC.} \]

“⇒” Suppose that \(G \) has a directed HC: \(v_1, v_2, \ldots, v_n, v_1 \) Then

\[v_1^1, v_2^1, v_3^1, v_2^1, v_2^3, v_1^1, \ldots, v_n^1, v_n^2, v_n^3, v_1^1 \]

is an undirected HC for \(G' \).
4. How to prove a problem is NPC

Example 1, cont’d

Step B: We show that

\[G \text{ has a HC } \iff G' \text{ has a HC.} \]

⇒” Suppose that \(G \) has a directed HC: \(v_1, v_2, \ldots, v_n, v_1 \)

Then

\[v_1^1, v_1^2, v_1^3, v_2^1, v_2^2, v_2^3, \ldots, v_n^1, v_n^2, v_n^3, v_1^1 \]

is an undirected HC for \(G' \).

⇐”

1. Suppose that \(G' \) has an undirected HC, the three vertices \(v^1, v^2, v^3 \) that correspond to one vertex from \(G \) must be traversed consecutively in the order \(v^1, v^2, v^3 \) or \(v^3, v^2, v^1 \), since \(v^2 \) cannot be reached from any other vertex in \(G' \).

2. Since the other edges in \(G' \) connect vertices with superscripts 1 or 3, if for any one triple the order of the superscripts is 1, 2, 3, then the order is 1, 2, 3 for all triples. Otherwise, it is 3, 2, 1 for all triples.

3. Therefore, we may assume that the undirected HC of \(G' \) is

\[v_i^1, v_i^2, v_i^3, v_i^2, v_i^2, v_i^3, \ldots, v_i^1, v_i^2, v_i^3, v_i^1, v_i^1. \]

Then \(v_{i_1}, v_{i_2}, \ldots, v_{i_n}, v_{i_1} \) is a directed HC for \(G \).
4. How to prove a problem is NPC

Example 2: Show that

\[\text{Subset-Sum} \leq_T \text{Set-Partition} \]

Since Subset-Sum is known to be NPC, the above reduction implies that Set-Partition is also NPC.

Subset-Sum decision problem:

Given a positive integer \(c \), and a set \(S = \{s_1, s_2, \ldots, s_n\} \) of positive integers \(s_i \) for \(i = 1, 2, \ldots, n \). Is there a \(J \subseteq \{1, 2, \ldots, n\} \) such that \(\sum_{i \in J} s_i = c \)? Assume that \(w = \sum_{i=1}^{n} s_i \geq c \).

Set-Partition decision problem:

Given a set \(S \) of numbers. Can \(S \) be partitioned into two sets \(A \) and \(\bar{A} = S - A \) such that \(\sum_{x \in A} x = \sum_{x \in \bar{A}} x \)?
4. How to prove a problem is NPC

Example 2, cont’d

- Let S be an instance of Subset-Sum with $w = \sum_{s_i \in S} s_i$ and the target c.
- Define the set S' (i.e., the transformation T from S to S') as follows:
 \[S' = S \cup \{u, v\}, \text{ where } u = 2w - c, \quad v = w + c. \]
- Next to show that
 \[\text{Yes of Subset-Sum of } S \iff \text{Yes of Set-Partition of } S'. \]
4. How to prove a problem is NPC

Example 2, cont’d

⇒ Let \(J \subseteq S \) and the elements in \(J \) sum to \(c \). Then \(J \cup \{u\} \) sum to \(2w \). Note that the elements in \(\overline{J} = S - J \) sum to \(w - c \). Hence, \(\overline{J} \cup \{v\} \) also sums to \(2w \). Therefore, \(S' \) can be partitioned into \(J \cup \{u\} \) and \(\overline{J} \cup \{v\} \) where both partitions sum to \(2w \). Thus, Yes of Subset-Sum transforms to a Yes of Set-Partition.
4. How to prove a problem is NPC

Example 2, cont’d

Assume S' can be partitioned into two sets, T and $\overline{T} = S' - T$, such that

$$\sum_{x \in T} x = \sum_{x \in \overline{T}} x. \quad (1)$$

Since $w + u + v = 4w$, the sum of the elements in both sets must be equal to $2w$. Therefore, u must be in one set and v must be in the other because $u + v = 3w$. Without loss of generality, let $u \in T$. Then

$$2w = \sum_{x \in T} x = u + \sum_{x \in T - u} x = 2w - c + \sum_{x \in T - u} x.$$

It implies that

$$\sum_{x \in T - u} x = c$$

Thus, Yes of Set-Partition transforms to Yes of Subset-Sum.

□
5. How to solve a NPC problem

Example 1: Bin Packing problem

Suppose we have an unlimited number of bins, each of capacity 1, and \(n \) objects with sizes \(s_1, s_2, \ldots, s_n \), where \(0 < s_i \leq 1 \).

- **Optimization problem**: Determine the smallest number of bins into which objects can be packed and find an optimal packing.

- **Decision problem**: Do the objects fit in \(k \) bins?

Theorem. Bin Packing problem is NPC

Proof. reduced from the subset sum.
5. How to solve a NP-complete problem

Approximate algorithm for the Bin Packing

- **First-fit strategy (greedy):**
 places an object in the first bin into which it fits.

- Example: Objects = \{0.8, 0.5, 0.4, 0.4, 0.3, 0.2, 0.2, 0.2\}

- **First-fit strategy** solution:

 \[
 \begin{array}{cccc}
 B_1 & B_2 & B_3 & B_4 \\
 0.2 & 0.4 & 0.3 & 0.2 \\
 0.8 & 0.5 & 0.4 & 0.2 \\
 \end{array}
 \]

- **Optimal packing:**

 \[
 \begin{array}{ccc}
 B_1 & B_2 & B_3 \\
 0.2 & 0.2 & 0.2 \\
 0.2 & 0.3 & 0.4 \\
 0.8 & 0.5 & 0.4 \\
 \end{array}
 \]
5. How to solve a NP-complete problem

Theorem. Let $S = \sum_{i=1}^{n} s_i$.

1. The optimal number of bins required is at least $\lceil S \rceil$
2. The number of bins used by the first-fit strategy is never more than $\lceil 2S \rceil$.
5. How to solve a NP-complete problem

The vertex-cover problem:

- A vertex-cover of an undirected graph $G = (V, E)$ is a subset set of $V' \subseteq V$ such that if $(u, v) \in E$, then $u \in V'$ (inclusive) or $v \in V'$.
- In other words, each vertex “covers” its incident edges, and a vertex cover for G is a set of vertices that covers all edges in E.
- The size of a vertex cover is the number of vertices in it.
- **Decision problem**: determine whether a graph has a vertex cover of a given size k
- **Optimization problem**: find a vertex cover of minimum size.
- **Theorem.** The vertex-cover problem is NPC.
5. How to solve a NP-complete problem

The vertex-cover problem:

- An approximate algorithm

 \[C' = \emptyset \]
 \[E' = E \]

 while \(E' \neq \emptyset \)

 - let \((u, v)\) be an arbitrary edge of \(E' \)

 \[C = C \cup \{u, v\} \]

 remove from \(E' \) every edge incident on either \(u \) or \(v \).

endwhile

return \(C \)

- **Theorem.** The size of the vertex-cover is no more than twice the size of an optimal vertex cover.