ECS122A Final Review

Before you begin, find the following material:

- Lecture notes/slides
- 8 problem sets (yes, including #8)
- Solutions of problem sets
- Solution of midterm
ECS122A Final Review

Here is high-level organization of what we have learned:

I. Basics and tools of trade
II. Three algorithm design techniques
III. Graph algorithms
IV. NP-completeness – a brief introduction
I. Basics and tools of trade

1. Order of growth
 - O, Ω, Θ definitions
 - proof by definition

2. Recurrence relations
 - Linear recurrence relations
 - Divide and conquer recurrence relations

3. Solving the recurrence relations
 - Direct substitution
 - The master theorem/method for solving the DC recurrence relations
I. Basics and tools of trade

4. Graph terminology and representations
 - graph, path, connected graph, connected component, cycle, acyclic, tree, spanning tree, sink, ...
 - adjacency list, adjacency matrix, incidence matrix.

5. Data structures
 - FIFO queue:
 - enqueue, dequeue
 - LIFO stack
 - Priority queue:
 - Insert(S,x), Extract-Min(S), Decrease-Key(S,x,k), ...
 - Disjoint-set:
 - Make-set(x), Union(x,y), Find-set(x)
II. Algorithm design techniques

Divide and Conquer algorithms

Divide the problem into a number of independent subproblems; Conquer subproblems by solving them recursively; Combine the solutions to the subproblems into the solution of the original problem.

Examples:
1. Merge sort (vs. Insert sort)
2. The maximum and minimum values
3. The maximum subarray
4. Strassen's algorithm for matrix-matrix multiplication
5. The closest pair of points in one dimension.
6. Searching for index \(i \) such that \(A[i] = i \) in a sorted array
7. Integer multiplication
8. \(k \)-way merge operation

\(^1\)If the subproblem sizes are small enough, however, just solve them in a straightforward manner.
II. Algorithm design techniques

Divide and Conquer algorithms

- Three steps:
 - **Divide** the problem into a number of *independent* subproblems;
 - **Conquer** subproblems by solving them *recursively*;
 - **Combine** the solutions to the subproblems into the solution of the original problem.

1If the subproblem sizes are small enough, however, just solve them in a straightforward manner.
II. Algorithm design techniques

Divide and Conquer algorithms

- Three steps:
 - **Divide** the problem into a number of *independent* subproblems;
 - **Conquer** subproblems by solving them *recursively*,\(^1\)
 - **Combine** the solutions to the subproblems into the solution of the original problem

- Examples:
 1. Merge sort (vs. Insert sort)
 2. The maximum and minimum values
 3. The maximum subarray
 4. Strassen’s algorithm for matrix-matrix multiplication
 5. The closest pair of points in one dimension.
 6. Searching for index \(i\) such that \(A[i] = i\) in a sorted array \(A\)
 7. Integer multiplication
 8. \(k\)-way merge operation

\(^1\)If the subproblem sizes are small enough, however, just solve them in a straightforward manner.
II. Algorithm design techniques

Greedy Algorithms

- Two key elements:
 - The greedy-choice property: a globally optimal solution can be arrived at by making a locally optimal (greedy) choice.
 - The optimal substructure property: an optimal solution to the problem contains within it optimal solution to subproblems.

- Examples (greedy works):
 1. Activity selection
 2. Huffman coding (data compression)
 3. Job scheduling – minimizing the average completion time
 4. MST (a graph algorithm)

- Examples that greedy does not work:
 1. Knapsack problem
 2. Money changing
II. Algorithm design techniques

Greedy Algorithms

- Two key elements:
 - The greedy-choice property: a globally optimal solution can be arrived at by making a locally optimal (greedy) choice.
 - The optimal substructure property: an optimal solution to the problem contains within it optimal solution to subproblems.
II. Algorithm design techniques

Greedy Algorithms

- Two key elements:
 - **The greedy-choice property**: a globally optimal solution can be arrived at by making a locally optimal (greedy) choice.
 - **The optimal substructure property**: an optimal solution to the problem contains within it optimal solution to subproblems.

- Examples (greedy works)
 1. Activity selection
 2. Huffman coding (data compression)
 3. Job scheduling – minimizing the average completion time
 4. MST (a graph algorithm)
II. Algorithm design techniques

Greedy Algorithms

- Two key elements:
 - The greedy-choice property: a globally optimal solution can be arrived at by making a locally optimal (greedy) choice.
 - The optimal substructure property: an optimal solution to the problem contains within it optimal solution to subproblems.

- Examples (greedy works)
 1. Activity selection
 2. Huffman coding (data compression)
 3. Job scheduling – minimizing the average completion time
 4. MST (a graph algorithm)

- Examples that greedy does not works
 1. Knapsack problem
 2. Money changing
II. Algorithm design techniques

Dynamic Programming

Three key elements:

1. The optimal substructure: the optimal solution to the problem contains optimal solutions to subproblems ⇒ "recursion".
2. Overlapping subproblems: There are few subproblems in total, and many recurring instances of each.

Examples:
1. Rod cutting
2. Matrix-chain multiplication
3. Longest common subsequence/substring
4. Edit distance
5. Knapsack problem
6. Change-making problem

Unlike divide-and-conquer, where subproblems are independent.
II. Algorithm design techniques

Dynamic Programming

- Three key elements:
 - **The optimal substructure:** the optimal solution to the problem contains optimal solutions to subproblems ⇒ “recursion”.
 - **Overlapping subproblems:** There are few subproblems in total, and many recurring instances of each.\(^2\)
 - **Memoization:** after computing solutions to subproblems, store in table, subsequent calls do table lookup.

\(^2\)Unlike divide-and-conquer, where subproblems are independent.
II. Algorithm design techniques

Dynamic Programming

▶ Three key elements:
 ▶ **The optimal substructure:** the optimal solution to the problem contains optimal solutions to subproblems ⇒ “recursion”.
 ▶ **Overlapping subproblems:** There are few subproblems in total, and many recurring instances of each.²
 ▶ **Memoization:** after computing solutions to subproblems, store in table, subsequent calls do table lookup.

▶ Examples:
 1. Rod cutting
 2. Matrix-chain multiplication
 3. Longest common subsequence/substring
 4. Edit distance
 5. Knapsack problem
 6. Change-making problem

²Unlike divide-and-conquer, where subproblems are independent.
III. Graph algorithms

- Elementary graph algorithms
III. Graph algorithms

- Elementary graph algorithms
 - Breadth-first search (BFS):
 I/O, FIFO queue, complexity
 - Depth-first search (DFS):
 I/O, LIFO stack, complexity

Applications of BFS and DFS
1. sorting a dag
2. determining cycle
3. finding a sink
4. finding connected components

Make sure to know how to precisely (correctly) illustrate BFS and DFS
III. Graph algorithms

- Elementary graph algorithms
 - Breadth-first search (BFS):
 I/O, FIFO queue, complexity
 - Depth-first search (DFS):
 I/O, LIFO stack, complexity

- Applications of BFS and DFS
 1. sorting a dag
 2. determining cycle
 3. finding a sink
 4. finding connected components

Make sure to know how to precisely (correctly) illustrate BFS and DFS
III Graph algorithms

- Minimum Spanning Tree (MST)
 - Prim’s algorithm: priority queue, complexity
 - Kruskal’s algorithm: disjoint-set, complexity priority queue, complexity

Make sure to know how to precisely (correctly) illustrate Prim and Kruskal algorithms.
III Graph algorithms

- Shortest paths (single-source)
 - Bellman-Ford algorithm
 dynamic programming-like, multiple passes
 - Dijkstra’s algorithm
 greedy, priority queue
 - Bellman-Ford algorithm for DAG
 only need a single pass after TS

Make sure to know how to precisely (correctly) illustrate these algorithms.
IV. NP-completeness – a brief introduction

1. Tractable and intractable problems
2. Optimization problem versus decision problem
3. Polynomial transformation and reduction
4. Formal definitions: P, NP, NP-complete, NP-hard

5. Examples of NPC problems:
 5.1 Circuit-satisfiability (SAT),
 5.2 Graph-coloring,
 5.3 Hamiltonian-cycle (HC),
 5.4 Traveling-salesperson-problem (TSP),
 5.5 Knapsack-problem,
 5.6 Prime-testing,
 5.7 Subset-sum,
 5.8 Set-partition,
 5.9 Bin-packing,
 5.10 Vertex-cover,
 5.11 Clique problem.
IV. NP-completeness – a brief introduction

1. Tractable and intractable problems
2. Optimization problem versus decision problem
3. Polynomial transformation and reduction
4. Formal definitions: P, NP, NP-complete, NP-hard

5. Examples of NPC problems:
 5.1 Circuit-satisfiability (SAT),
 5.2 Graph-coloring,
 5.3 Hamiltonian-cycle (HC),
 5.4 Traveling-salesperson-problem (TSP),
 5.5 Knapsack-problem,
 5.6 Prime-testing,
 5.7 Subset-sum,
 5.8 Set-partition,
 5.9 Bin-packing,
 5.10 Vertex-cover,
 5.11 Clique problem.
IV. NP-completeness – brief introduction

6. How to prove a problem is NP-completeness
 ▶ Proof structure and logic
 (1) ...
 (2) Step A: ...
 Step B: ...
IV. NP-completeness – brief introduction

6. How to prove a problem is NP-completeness
 ▶ Proof structure and logic
 (1) ...
 (2) Step A: ...
 Step B: ...
 ▶ Examples:
 6.1 Directed HC \leq_T Undirected HC
 6.2 3-Color \leq_T 4-Color
Good luck. Finish Strong