Shortest paths

- Generalization of BFS to handle weighted graphs
- Directed weighted graph $G = (V, E, w)$
- Weight function $w : E \rightarrow \mathbb{R}$
- Weight of path $p = v_0 \rightarrow v_1 \rightarrow \cdots \rightarrow v_k$

$$w(p) = \sum_{i=1}^{k} w(v_{i-1}, v_i)$$

- Shortest-path weight $u \leadsto v$

$$\delta(u, v) = \begin{cases}
\min\{w(p) : u \leadsto v\} & \text{if there exists a path } p = u \leadsto v \\
\infty & \text{otherwise}
\end{cases}$$

- Shortest-path $u \leadsto v$

any path p such that $w(p) = \delta(u, v)$
Shortest paths

- **Single-source shortest path problem (SSSP):**

 \[\text{find shortest-paths from a given source vertex } s \in V \text{ to every vertex } v \in V \]

- Most basic SSSP algorithm: **Bellman-Ford algorithm** *(discussed next)*

- **Variants:**
 - **Single-destination:** find shortest-paths to a given destination vertex
 (reverse the direction of each edge to become the single-source problem)
 - **Single-pair:** find shortest-path from \(u \) to \(v \)
 (no way know that’s better in worst case than solving single-source)
 - **All-pairs:** find shortest-paths from \(u \) to \(v \) for all \(u, v \in V \).
 (By running Bellman-Ford once for each vertex, cost \(O(V^2 E) = O(V^4) \) on dense graph. Can do better, see Chapter 25 of CLRS, 3ed)
Shortest paths

Well-definedness

- Negative-weight edges are OK, as long as no negative-weight cycles reachable from the source. Otherwise, can always get a shorter path by going around the cycle again.

- The shortest path problem is ill-posed in graph with negative-weight cycle

- Bellman-Ford algorithm can detect and report the existence of negative-weight cycle
Shortest paths

- Optimal substructure property of SSSP:

 subpaths of shortest-paths are shortest-paths.

 \[\text{Proof.} \text{ If some subpath were not a shortest path, could substitute it and create a shorter total path.} \]

- Thus, will see greedy and dynamical programming algorithms.
Shortest paths

- **Notation:**
 - \(d[v] \): shortest-path estimate
 - \(\pi[v] \): predecessor of \(v \)

- **Output of SSSP algorithms**
 \[
 d[v] = \delta(s, v) = \text{shortest-path weight } s \leadsto v \\
 \pi[v] = \text{predecessor of } v \text{ on a shortest path from } s.
 \]
Shortest paths

Two key components of shortest-path algorithms:

▶ Initialization

for every vertex v in V
 d[v] = inf
 pi[v] = nil
endfor

d[s] = 0 // s = source vertex

▶ Relaxing an edge \((u, v)\)

Can we improve the shortest-path estimate \(d[v]\) by going through \(u\) and taking the edge \((u, v)\)?

if \(d[v] > d[u] + w(u,v)\)
 \(d[v] = d[u] + w(u,v)\)
 \(pi[v] = u\)
endif
Shortest paths

Basic properties:

1. **Triangular inequality**

 for all \((u, v) \in E\), \(\delta(u, v) \leq \delta(u, x) + \delta(x, v)\)

2. **Upper-bound property**

 Always have \(d[v] \geq \delta(s, v)\) for all \(v\).

 Once \(d[v] = \delta(s, v)\), it never changes

3. **No-path property**

 If \(\delta(s, v) = \infty\), then \(d[v] = \infty\) always

4. **Convergence property**

 If \(s \leadsto u \rightarrow v\) is a shortest-path, and \(d[u] = \delta(s, u)\). Then after “Relax \(u \rightarrow v\)”, \(d[v] = \delta(s, v)\)

5. **Path relaxation property**

 Let \(p = v_0 \rightarrow v_1 \rightarrow \cdots \rightarrow v_k\) be a shortest-path. If we relax in order, \((v_0, v_1), (v_1, v_2), \ldots, (v_{k-1}, v_k)\), even intermixed with other relaxations, then \(d[v_k] = \delta(v_0, v_k)\)