- 1. A **proposition** is a statement that is either true (T) or false (F), but not both. Standard notation for a proposition: p, q, r, ...
- 2. New propositions, called **compound proposition**, are formed from existing propositions using logical operations

Four basic compound propositions:

- (a) **Negation** of $p: \neg p =$ "It is not the case that p"
- (b) **Conjunction** of p and $q: p \land q = "p$ and q"
- (c) **Disjunction** of p and $q: p \lor q = "p$ or q" ("inclusive or")
- (d) **Exclusive disconjunction** of p and $q: p \oplus q =$ "this is true either p or q but not both are ture"

Truth tables display the relationships between the true values of propositions:

					$p \wedge q$	p	q	$p \lor q$			$p\oplus q$
p	$\neg p$	_		-	Т	Т	Т	Т	_	Т	-
	$\neg p$ F	-	Т	\mathbf{F}	\mathbf{F}		\mathbf{F}	Т	Т	\mathbf{F}	Т
F	Т		F	Т	\mathbf{F}	F		Т			Т
			F	F	\mathbf{F}	F	\mathbf{F}	F	F	F	\mathbf{F}

3. (a) The **Implication** $p \to q$ is the proposition "if p then q"

p is called *hypothesis*, and q is called the *conclusion*.

Some other common ways of expressing this implications are: "p implies q", "p only if q", "p sufficient for q", and "q necessary for p"

The proposition $q \to p$ is called the **converse** of $p \to q$.

The **contrapostive** of $p \to q$ is the proposition $\neg q \to \neg p$.

- (b) **Biconditional** proposition $p \leftrightarrow q$ is the compound proposition "p if and only if q",
- (c) Truth tables of $p \to q$ and $p \leftrightarrow q$

p	q	$p \rightarrow q$	p	q	$p \leftrightarrow q$
Т	Т	Т	Т	Т	Т
Т	F	F	Т	\mathbf{F}	\mathbf{F}
F	Т	Т	\mathbf{F}	Т	\mathbf{F}
F	F	Т	\mathbf{F}	F	Т

- 4. More terminology
 - (a) A compound proposition is called a **tautology** if that is **always true**, no matter what the truth values of the propositions that occur in it.
 - (b) A compound proposition that is always false is called a contradiction.
 - (c) A proposition that is neither a tautology nor a contradiction is called a **contingency**.
 - (d) The compound propositions p and q are called logically equivalent if p ↔ q is a tautology. Notation: p ≡ q
 A way to determine whether two propositions are equivalent is to use a truth table. Example: Prove De Morgan's law ¬(p ∨ q) ≡ ¬p ∧ ¬q
- 5. (a) **Propositional function** P(x): a statement involving the variables x

The domain of discourse, denoted as U, is the set of values x that x is allowed to take in P(x).

(b) The **universal quantification** of P(x) is the proposition

"P(x) is true for all value of x in U".

Notation: $\forall x P(x), \forall$ is called the universal quantifier.

Truth values of $\forall x P(x)$

" $\forall x P(x)$ " = True, when P(x) is true for every x in U.

" $\forall x P(x)$ " = False, when there is an x in U for which P(x) is false.

(c) The **existential quantification** of P(x) is the proposition

"There exists an element x in U such that P(x) is true"

Notation: $\exists x \ P(x)$. \exists is called the existential quantifier. Truth values of $\exists x \ P(x)$

" $\exists x \ P(x)$ " = True, when there is an x in U for which P(x) is true. " $\exists x \ P(x)$ " = False, when P(x) is false for every x in U.