ECS231

Low-rank approximation – revisited

(Introduction to Randomized Algorithms)

May 23, 2019
Outline

1. Review: low-rank approximation
2. Prototype randomized SVD algorithm
3. Accelerated randomized SVD algorithms
4. CUR decomposition
Review: optimak rank-k approximation

- The SVD of an $m \times n$ matrix A is defined by

$$A = U \Sigma V^T,$$

where U and V are $m \times m$ and $n \times n$ orthogonal matrices, respectively, $\Sigma = \text{diag}(\sigma_1, \sigma_2, \ldots)$ and $\sigma_1 \geq \sigma_2 \geq \cdots \geq 0$.

- Computational cost $O(mn^2)$, assuming $m \geq n$.

- Rank-k truncated SVD of A:

$$A_k = U(:,1:k) \cdot \Sigma(1:k,1:k) \cdot V^T(:,1:k)$$
Review: optimak rank-k approximation

- **Eckart-Young theorem.**

\[
\begin{align*}
\min_{\text{rank}(B) \leq k} \| A - B \|_2 &= \| A - A_k \|_2 = \sigma_{k+1} \\
\min_{\text{rank}(B) \leq k} \| A - B \|_F &= \| A - A_k \|_F = \left(\sum_{j=k+1}^{n} \sigma_{k+1}^2 \right)^{1/2}
\end{align*}
\]

- **Theorem A.**

\[
\min_{\text{rank}(B) \leq k} \| A - QB \|_F^2 = \| A - QB_k \|_F^2,
\]

where \(Q \) is an \(m \times p \) orthogonal matrix, and \(B_k \) is the rank-\(k \) truncated SVD of \(Q^T A \), and \(1 \leq k \leq p \).

Remark: Given \(m \times n \) matrix \(A = (a_{ij}) \), the Frobenius norm of \(A \) is defined by

\[
\| A \|_F = \left(\sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij}^2 \right)^{1/2} = (\text{trace}(A^T A))^{1/2}.
\]
Prototype randomized SVD algorithm

By Theorem A, we immediately have the following a prototype randomized SVD (low-rank approximation) algorithm:

- **Input:** \(m \times n \) matrix \(A \) with \(m \geq n \), integers \(k > 0 \) and \(k < \ell < n \)
- **Steps:**
 1. Draw a random \(n \times \ell \) test matrix \(\Omega \).
 2. Compute \(Y = A\Omega \) – “sketching”.
 3. Compute an orthonormal basis \(Q \) of \(Y \).
 4. Compute \(\ell \times n \) matrix \(B = Q^T A \).
 5. Compute \(B_k \) = the rank-truncated SVD of \(B \).
 6. Compute \(\hat{A}_k = QB_k \).

- **Output:** \(\hat{A}_k \), a rank-\(k \) approximation of \(A \).
Prototype randomized SVD algorithm

MATLAB demo code: randsvd.m

```matlab
>> ...
>> Omega = randn(n,l);
>> C = A*Omega;
>> Q = orth(C);
>> [Ua,Sa,Va] = svd(Q'*A);
>> Ak = (Q*Ua(:,1:k))*Sa(1:k,1:k)*Va(:,1:k)';
>> ...
```
Prototype randomized SVD algorithm

- **Theorem.** With proper choice of an \(m \times O(k/\epsilon) \) sketch \(\Omega \),

\[
\min_{\text{rank}(X) \leq k} \| A - QX \|_F^2 \leq (1 + \epsilon)\| A - A_k \|_2^2
\]

holds with high probability.

Accelerated randomized SVD algorithm 1

The basic subspace iteration

- **Input:** \(m \times n \) matrix \(A \) with \(m \geq n \), \(n \times \ell \) starting matrix \(\Omega \) and positive integers \(k, \ell, q \) and \(n > \ell \geq k \).

- **Steps:**
 1. Compute \(Y = (AA^T)^q A\Omega \).
 2. Compute an orthonormal basis \(Q \) of \(Y \).
 3. Compute \(\ell \times n \) matrix \(B = Q^T A \).
 4. Compute \(B_k = \) the rank-truncated SVD of \(B \).
 5. Compute \(\hat{A}_k =QB_k \).

- **Output:** \(\hat{A}_k \), a rank-\(k \) approximation of \(A \).

Remark: When \(k = \ell = 1 \). This is the classical power method.
Accelerated randomized SVD algorithm 2

Remarks on the basic subspace iteration:

- The orthonormal basis Q of $Y = (AA^T)^q A\Omega$ should be stably computed by the following loop:

 - compute $Y = A\Omega$
 - compute $Y = QR$ (QR decomposition)
 - for $j = 1, 2, \ldots, q$
 - compute $Y = A^T Q$
 - compute $Y = QR$ (QR decomposition)
 - compute $Y = AQ$
 - compute $Y = QR$ (QR decomposition)

- Convergence results:

 Under mild assumption of the starting matrix Ω,

 (a) the basic subspace iteration converges as $q \to \infty$.

 (b) $|\sigma_j - \sigma_j(Q^T B_k)| \leq O \left(\left(\frac{\sigma_{\ell+1}}{\sigma_k} \right)^{2q+1} \right)$

Reading: M. Gu, Subspace iteration randomization and singular value problems, arXiv:1408.2208, 2014
Accelerated randomized SVD algorithm 3

- **Input:** $m \times n$ matrix A with $m \geq n$, positive integers k, ℓ, q and $n > \ell > k$.

- **Steps:**
 1. Draw a random $n \times \ell$ test matrix Ω.
 2. Compute $Y = (AA^T)^q A\Omega$ – “sketching”.
 3. Compute an orthogonal columns basis Q of Y.
 4. Compute $\ell \times n$ matrix $B = Q^T A$.
 5. Compute B_k = the rank-truncated SVD of B.
 6. Compute $\hat{A}_k = QB_k$.

- **Output:** \hat{A}_k, a rank-k approximation of A.
 Accelerated randomized SVD algorithm 4

MATLAB demo code: randsvd2.m

>> ...
>> Omega = randn(n,1);
>> C = A*Omega;
>> Q = orth(C);
>> for i = 1:q
 >> C = A’*Q;
 >> Q = orth(C);
 >> C = A*Q;
 >> Q = orth(C);
>> end
>> [Ua2,Sa2,Va2] = svd(Q’*A);
>> Ak2 = (Q*Ua2(:,1:k))*Sa2(1:k,1:k)*Va2(:,1:k)’;
>> ...
The CUR decomposition

The CUR decomposition: find an optimal intersection U such that

$$A \approx CUR,$$

where C is the selected c columns of A, and R is the selected r rows of A.

The CUR decomposition

Theorem.

(a) \(\| A - CC^+ A \| \leq \| A - CX \| \) for any \(X \)

(b) \(\| A - CC^+ AR^+ R \| \leq \| A - CX R \| \) for any \(X \)

(c) \(U_* = \text{argmin}_U \| A - CUR \|_F^2 = C^+ AR^+ \)

where \(\| \cdot \| \) is a unitarily invariant norm.

Remark: Let \(A = U \Sigma V^T \) is the SVD of an \(m \times n \) matrix \(A \) with \(m \geq n \). Then the pseudo-inverse (also called generalized inverse) \(A^+ \) of \(A \) is given by \(A^+ = V \Sigma^+ U^T \), where \(\Sigma^+ = \text{diag}(\sigma_1^+, \ldots) \) and \(\sigma_j^+ = 1/\sigma_j \) if \(\sigma_j \neq 0 \), otherwise \(\sigma_j^+ = 0 \). If \(A \) is of full column rank, then \(A^+ = (A^T A)^{-1} A^T \). In MATLAB, \texttt{pinv}(\(A \)) is a built-in function of compute the pseudo-inverse of \(A \).
The CUR decomposition

MATLAB demo code: randcur.m

```
>> ...
>> bound = n*log(n)/m;
>> sampled_rows = find(rand(m,1) < bound);
>> R = A(sampled_rows,:);
>> sampled_cols = find(rand(n,1) < bound);
>> C = A(:,sampled_cols);
>> U = pinv(C)*A*pinv(R);
>> ...
```
The CUR decomposition

- **Theorem.** With $c = O(k/\epsilon)$ columns and $r = O(k/\epsilon)$ rows selected by adapative sampling to for C and R,

\[
\min_X \|A - CXR\|_F^2 \leq (1 + \epsilon)\|A - A_k\|_F^2
\]

holds in expectation.

- **Reading:** Boutsidis and Woodruff, *STOC*, pp.353-362, 2014