III. 1 Re-design of Higher level Matrix Algorithms

 for Multicore and Heterogeneous ArchitecturesBased on the presentation at UC Berkeley, October 7, 2009

Background and motivation
Running time of an algorithm is the sum of three items:

1. \# flops \times time-per-flop
2. \# words moved/bandwith (memory communication)
3. \# messages \times latency (network communication)

Hardward trend: exponentially growing gaps

- Time-per-flop $\ll 1 /$ Memory BW \ll Memory Latency improving 59\%/year vs $23 \% /$ year vs $5.5 \% /$ year
- Time-per-flop $\ll 1 /$ Network BW \ll Network Latency
improving $59 \% /$ year vs $26 \% /$ year vs $15 \% /$ year
Goal: re-design matrix algorithms to reduce communication and optimize the performance

Recent work by Dongarra, Demmel, et al, ...

Background and motivation - Experts' benchmark
Matrix multiplication of MKL library on Intel Xeon EMT64:

matrix size and Gflops

Matrix multiplication of ESSL library on an IBM Power 6:

matrix size and Gflops

PLASMA_DGETRF on Intel Xeon EMT64

matrix size and Gflops Courtesy of Innovative Computing Laboratory at the University of Tennessee (J. Dongarra et al)

PLASMA_DGEQRF on Intel Xeon EMT64

matrix size and Gflops
Courtesy of Innovative Computing Laboratory at the University of Tennessee (J. Dongarra et al)

PLASMA_DGETRF on IBM Power 6:

matrix size and Gflops Courtesy of Innovative Computing Laboratory at the University of Tennessee (J. Dongarra et al)

PLASMA DGEQRF on IBM Power 6:

matrix size and Gflops
Innovative Computing Laboratory at the University of Tennessee (J. Dongarra et al)

Background and motivation - Poor man's benchmark data

DGEMM, DGEQRF and DGEQP 3 of MKL 10.2 on Intel Core ${ }^{\text {TM }}$ i7 Quad 2.66GHz

Speed (Gflop/s) (quad-core)

scalability ($n=12,000$)

Message: pivoting is expensive!

Background and motivation - Poor man's benchmark data

PDGEMM, PDGEQRF and PDGEQPF (pivoted QR) of PBLAS and ScaLAPACK on Cray XT4 (Franklin of NERSC):

GFlop/s ($n=12000$)

N. Proc.	PDGEMM	PDGEQRF	PDGEQPF
2×2	18.55	13.40	1.25
4×4	67.51	48.23	4.89
6×6	153.39	106.86	10.38
8×8	265.40	184.52	17.93
12×12	626.06	365.80	36.76
16×16	1072.93	566.41	59.97

Message: pivoting is even more expensive on hybrid systems!

Question and the rest of my talk
Question:

- How to re-design higher-level matrix algorithms using fastest matrix opertions?

Two Case Studies:

1. Communication-reducing algorithm for Green's function calculation and application in Quantum Monte Carlo (QMC) simulations
2. Optimizing Halley's iteration for computing matrix polar decomposition and application in First Principal Molecular Dynamics (FPMD)

Communication reducing algorithm for Green's function calculation

joint with
Roger Lee National Tsinghua Univ. Taiwan
Wenbin Chen Fudan University, China
Richard Scalettar Physics, UC Davis

Computational Material Science

- Simulation and understanding properties of solid-state materials: magnetism, metal-insulator transition, high temperature superconductivity, ...
- Many body simulation on multi-layer lattice using Hubbard model and quantum Monte Carlo simulation
- QUEST (QUantum Electron Simulation Toolbox): Fortran 90 package for determinant (and hybrid) Monte Carlo simulations

QUEST kernel: Green's function (matrix) calcuation

$$
G=\left(I+B_{L} B_{L-1} \cdots B_{2} B_{1}\right)^{-1}
$$

where

$$
B_{i}=B \cdot V_{i}=e^{\Delta \tau K} \cdot \operatorname{diag}\left(e^{ \pm \lambda}\right)
$$

- K is the hopping matrix, an adjance matrix of the lattice
- $\Delta \tau$ is the time discretization parameter.
- L is the time slice
- $\lambda=\cosh ^{-1}\left(e^{U \Delta \tau / 2}\right)$.
- U is a potential energy parameter for local repulsion between electrons

Challenge: $B_{L} B_{L-1} \cdots B_{2} B_{1}$ is extremely ill-conditioned!

Physicist's method [Loh et al '89, ...'05]

1. Compute an "UDT decomposition" of the product

$$
B_{L} B_{L-1} \cdots B_{2} B_{1}=U_{L} D_{L} T_{L}
$$

where D is stratified (graded)

$$
D=\left[\begin{array}{llll}
\mathrm{X} & & & \\
& \mathrm{X} & & \\
& & \ddots & \\
& & & \mathrm{x}
\end{array}\right]
$$

2. Compute

$$
G=T_{L}^{-1}\left(U_{L}^{T} T_{L}^{-1}+D_{L}\right)^{-1} U_{L}^{T}
$$

The pivoted QR decomposition is used for the stratification.
There are a number of work on the product of matrices by numerical linear algebraists [Stewart, ...]

Physicist's method [Loh et al]

1. Compute pivoted QR decomposition: $B_{1}=Q_{1} R_{1} P_{1}^{T}$
2. Set
$U_{1}=Q_{1}$
$D_{1}=\operatorname{diag}\left(R_{1}\right)$
$T_{1}=D_{1}^{-1} R_{1} P_{1}^{T}$
3. For $i=2,3, \cdots, L$.

- Compute $C_{i}=\left(B_{i} U_{i-1}\right) D_{i-1}$. (culumn scaling)
- Compute pivoted QR decomposition: $C_{i}=Q_{i} R_{i} P_{i}^{T}$.
- Set

$$
\begin{aligned}
& U_{i}=Q_{i} \\
& D_{i}=\operatorname{diag}\left(R_{i}\right) \\
& T_{i}=\left(D_{i}^{-1} R_{i}\right)\left(P_{i}^{T} T_{i-1}\right)
\end{aligned}
$$

4. Compute $G=T_{L}^{-1}\left(U_{L}^{T} T_{L}^{-1}+D_{L}\right)^{-1} U_{L}^{T}$.

However, pivoting is very expensive on multicore

Intel Core ${ }^{\mathrm{TM}}$ Quad 2.4GHz,

- DGEMM: matrix-matrix multiplication
- DGEQRF: QR decomposition
- DGEQP 3: pivoted QR decomposition

Speed (Gflop/s)

scalability

Pivoting is even more expensive on distributed systems
Cray XT4 (Franklin of NERSC)

SOF algorithm - without the pivoting
Structured orthogonal factorization (SOF) algorithm

1. Set $M_{2}=I, A_{2}=B_{1}$
2. For $i=2,3, \cdots, L$
(a) compute QR decomposition:

$$
\left[\begin{array}{c}
M_{i} \\
-B_{i}
\end{array}\right]=\left[\begin{array}{ll}
Q_{11}^{(i)} & Q_{12}^{(i)} \\
Q_{21}^{(i)} & Q_{22}^{(i)}
\end{array}\right]\left[\begin{array}{c}
R_{i} \\
0
\end{array}\right]
$$

(b) update

$$
\left[\begin{array}{ll}
A_{i+1} & M_{i+1}
\end{array}\right]=\left[\begin{array}{ll}
\left(Q_{12}^{(i)}\right)^{T} & \left(Q_{22}^{(i)}\right)^{T}
\end{array}\right]\left[\begin{array}{c}
A^{(i)} \\
I
\end{array}\right]
$$

3. Compute $G=\left(M_{L}+A_{L}\right)^{-1} M_{L}$

Computational kernel: QR decomposition without pivoting.
Price: SOF takes about $3 \times$ more flops than Physicist' method.

SOF algorithm - motiviation and correctness

- Motiviation: Connection betweenthe Green's function and the inverse of the following block p-cyclic matrix:

$$
\begin{aligned}
G & =\left(I+B_{L} B_{L-1} \cdots B_{2} B_{1}\right)^{-1} \\
& =(L, L) \text {-subblock of } M^{-1}
\end{aligned}
$$

where

$$
M=\left[\begin{array}{ccccc}
I & & & & B_{1} \\
-B_{2} & I & & & \\
& -B_{3} & I & & \\
& & \ddots & \ddots & \\
& & & -B_{L} & I
\end{array}\right]
$$

- Correctness: by direct verification

SOF algorithm - correctness
By the QR decomposition, we have

$$
\left(Q_{12}^{(i)}\right)^{T} M_{i}-\left(Q_{22}^{(i)}\right)^{T} B_{i}=0
$$

Since $M_{2}=I$ and $M_{i}=\left(Q_{22}^{(i-1)}\right)^{T}$ for $i>2$, the above equations can be rewritten as

$$
\left\{\begin{aligned}
\left(Q_{12}^{(2)}\right)^{T} & =\left(Q_{22}^{(2)}\right)^{T} B_{2} \\
\left(Q_{12}^{(i)}\right)^{T}\left(Q_{22}^{(i-1)}\right)^{T} & =\left(Q_{22}^{(i)}\right)^{T} B_{i} \text { for } i \geq 3
\end{aligned}\right.
$$

Note that $Q_{22}^{(i)}$ are invertible,

$$
\left\{\begin{array}{l}
\left(Q_{12}^{(2)}\right)^{T}=\left(Q_{22}^{(2)}\right)^{T} B_{2} \\
\left(Q_{12}^{(i)}\right)^{T}=\left(Q_{22}^{(i)}\right)^{T} B_{i}\left(Q_{22}^{(i-1)}\right)^{-T} \quad \text { for } \quad i \geq 3
\end{array}\right.
$$

Hence

$$
\left(Q_{12}^{(L)}\right)^{T} \cdots\left(Q_{12}^{(3)}\right)^{T}\left(Q_{12}^{(2)}\right)^{T}=\left(Q_{22}^{(L)}\right)^{T} B_{L} \cdots B_{3} B_{2}
$$

By steps 1 and 2(b) of SOF,

$$
A_{L}=\left(Q_{12}^{(L)}\right)^{T} \cdots\left(Q_{12}^{(3)}\right)^{T}\left(Q_{12}^{(2)}\right)^{T} B_{1}
$$

Hence

$$
A_{L}=\left(Q_{22}^{(L)}\right)^{T} B_{L} \cdots B_{3} B_{2} B_{1}
$$

In summary,

$$
\begin{aligned}
\left(M_{L}+A_{L}\right)^{-1} M_{L} & =\left[\left(Q_{22}^{(L)}\right)^{T}+\left(Q_{22}^{(L)}\right)^{T} B_{L} \cdots B_{2} B_{1}\right]^{-1}\left(Q_{22}^{(L)}\right)^{T} \\
& =\left(I+B_{L} \cdots B_{2} B_{1}\right)^{-1}=G
\end{aligned}
$$

SOF algorithm - Implementation

- QR decomposition in LAPACK:

1. DGEQRF: compute the QR decomposition, Q is stored implicitly
2. DORGQR : forming the full Q -factor explicitly

$$
Q=I-V T V^{T}
$$

T is an $n \times n$ upper triangular, and V is $2 n \times n$ (DLARFT).

SOF algorithm - Implementation 1

- Call DGEQRF for QR decomposition
- explicitly form the full Q-factor by DORGQR.

SOF algorithm - Implementation 2

Modify DORGQR to compute $Q_{12}^{(i)}$ and $Q_{22}^{(i)}$ directly:

- Let V be comformally partitioned

$$
V=\left[\begin{array}{l}
V_{u} \tag{1}\\
V_{d}
\end{array}\right]
$$

- Then the right half of the Q -factor can be computed by

$$
\begin{aligned}
Q_{12}^{(i)} & =-V_{u} T V_{d}^{T} \\
Q_{22}^{(i)} & =I-V_{d} T V_{d}^{T}
\end{aligned}
$$

- Note that V_{u} is a lower triangular matrix, used to reduce the cost of matrix multiplication.

SOF algorithm - Implementation 3
Modify DGEQRF to compute the T matrix recursively.

- If

$$
T=\left[\begin{array}{cccc}
T_{11} & T_{12} & \cdots & T_{1 b} \\
& T_{22} & & T_{2 b} \\
& & \ddots & \vdots \\
& & & T_{b b}
\end{array}\right]
$$

DGEQRF produces diagonal blocks $T_{i i}$ in order explicitly.

- Consider two consecutive block Householder transformations H_{1} and H_{2}. Then

$$
\begin{aligned}
H_{1} H_{2} & =\left(I-V_{1} T_{1} V_{1}^{T}\right)\left(I-V_{2} T_{2} V_{2}^{T}\right) \\
& =I-\left(V_{1} V_{2}\right)\left[\begin{array}{cc}
T_{1} & -T_{1} V_{1}^{T} V_{2} T_{2} \\
0 & T_{2}
\end{array}\right]\left[\begin{array}{c}
V_{1}^{T} \\
V_{2}^{T}
\end{array}\right]
\end{aligned}
$$

- The " T " matrix of the merged Householder transformation can be computed with additional computation of $-T_{1} V_{1}^{T} V_{2} T_{2}$.

Performance - I
Green's matrix

$$
G=\left(I+B_{96} B_{95} \cdots B_{2} B_{1}\right)^{-1}
$$

on a 32×32 lattice $(n=1024)$ CPU elapsed time

	1 core	2 cores	4 cores
Loh's	95.93	65.56	51.23
Impl 1	195.96	110.91	69.66
Impl 2	139.68	74.34	43.94

	1 core	2 cores	4 cores
Loh's	5.76	8.42	10.78
Impl 1	7.65	13.51	21.52
Impl 2	7.59	14.25	24.12

Intel Core ${ }^{\text {TM }}$ i7 Quad 2.66 GHz , ifort Fortran and MKL

Performance - II
Green's matrix

$$
G=\left(I+B_{12} B_{11} \cdots B_{2} B_{1}\right)^{-1}
$$

on a 64×64 lattice $(n=4096)$ CPU elapsed time

No. of Proc.	16 (4×4)	64 (8×8)	256 (16×16)	1024 (32×32)
Loh's	354.36	127.13	41.12	53.23
Impl 4	249.29	79.36	29.21	21.29
Impl 5	158.35	57.75	28.55	26.79

GFlop/s rate:

No. of Proc.	16 (4×4)	64 (8×8)	256 (16×16)	1024 (32×32)
Loh's	12.64	35.23	108.92	84.14
Impl 4	61.20	192.26	522.34	716.65
Impl 5	70.68	193.80	392.02	417.77

Intel Core ${ }^{\mathrm{TM}}$ i7 Quad 2.66 GHz , ifort Fortran and MKL

Further reading - I

Green's function calculation, may appear in different form, is one of fundamental problems in nano-scale simulations. The physical background and related numerical linear algebra problems are discussed in detail in the following reference

- Z. Bai, W. Chen, R. Scalettar, I. Yamazaki, Numerical Methods for Quantum Monte Carlo Simulations of the Hubbard Model In "Multi-Scale Phenomena in Complex Fluids" edited by T. Y. Hou et al, Higher Education Press, 2009 (114 pages)

A pre-print of the reference is available at

- http://www.cs.ucdavis.edu/~bai/bcsy09.pdf

Optimized Halley's iteration for computing matrix polar decomposition

joint with
Yuji Nakatsukasa Applied Math, UC Davis
Francois Gygi Applied Science/CS, UC Davis

Electronic structure calculations

- Investigate the properties of solids, liquids, biomolecules, and nanoparticles
- First-principles molecular dynamics (FPMD) based on the plane-wave, pseudopotential formalism
- Qbox: a C++/MPI implementation of FPMD for massively parallel computers (F. Gygi et al)

Subspace alignment in Self-consistent iteration

Given wave functions $Y(t-1)$ and $Y(t)$ at time steps $t-1$ and t :

- Compute QR decomposition $Y(t)=\widehat{Y}(t) R$ (tall and skinny QR)
- Solve the Procrustes problem

$$
\min _{Q}\|Y(t-1)-Y(t) Q\|_{F}
$$

- Compute $\widetilde{Y}=2 \widehat{Y}(t) Q-Y(t-1)$
- Obtain trial wavefunction $\widehat{Y}(t+1)$ for the time step $t+1$ by QR: $\widetilde{Y}(t)=\widehat{Y}(t+1) R$.

Ref: [Arias et al'92, Edelman et al'99, Fattebert and Gygi'04]

Matrix polar decomposition

- Given $A \in \mathbb{C}^{n \times n}$, compute the polar decomposition

$$
A=U H
$$

where

$$
U^{H} U=I \quad \text { and } \quad H^{H}=H \geq 0
$$

- Application: orthogonal procrustes problem in subspace alignment of SCF iteration for solving Kohn-Sham equation in electronic structure calculation:

$$
\min _{U}\left\|X_{i}-\widehat{X}_{i} U\right\|
$$

Newton's iteration

- Newton's iteration:

$$
X_{k+1}=\frac{1}{2}\left(X_{k}+X_{k}^{-H}\right), \quad X_{0}=A
$$

- $X_{k} \rightarrow U$ as $k \rightarrow \infty$

Singular values $\sigma_{i}\left(X_{k}\right) \rightarrow 1$ as $k \rightarrow \infty$

- The convergence is slow when A is ill-conditioned.
- Scaled Newton's iteration

$$
X_{k+1}=\frac{1}{2}\left(\zeta_{k} X_{k}+\left(\zeta_{k} X_{k}\right)^{-H}\right), \quad X_{0}=A
$$

- The inverse X_{k}^{-1} has to be computed explicitly.

Newton's iteration variant

- Scaled Newton's iteration variant (SNV):

$$
X_{k+1}=2 \eta_{k} X_{k}\left(I+\eta_{k}^{2} X_{k}^{H} X_{k}\right)^{-1}, \quad Y_{0}=\eta_{0} A
$$

- Inverse-free implementation: SNV can be implemented using an QR decomposition (discussed later).
- Unfortunately, even the inverse-free implementation is not numerical stability?
discovered by [Crudge '98] and [Byers and Xu '01], independently

Halley's iteration

- Halley's iteration

$$
X_{k+1}=X_{k}\left(3 I+X_{k}^{H} X_{k}\right)\left(I+3 X_{k}^{H} X_{k}\right)^{-1}, \quad X_{0}=A
$$

- There is a family of iterations based on rational function approximation
- Theorem. $X_{k} \rightarrow U$ and the asymptotic rate is cubic.
- The initial steps could be still slow

Consider the 2×2 matrix: $X_{0}=A=\left[\begin{array}{ll}1 & \\ & 10^{-10}\end{array}\right]$.
The k th Halley's iterate is given by

$$
X_{k}=\left[\begin{array}{ll}
1 & \\
& x_{k}
\end{array}\right], \quad x_{k}=\frac{x_{k-1}\left(3+x_{k-1}^{2}\right)}{1+3 x_{k-1}^{2}} .
$$

It takes 24 iterations to satisfy $\left\|1-X_{24}\right\|<10^{-16}$.

Dynamically weighted Halley's iteration

- Dynamically weighted Halley's (DWH) iteration

$$
X_{k+1}=X_{k}\left(a_{k} I+b_{k} X_{k}^{H} X_{k}\right)\left(I+c_{k} X_{k}^{H} X_{k}\right)^{-1}
$$

where $X_{0}=A / \alpha$ and $\alpha \geq\|A\|_{2}$.

- Question: how to dynamically choose a_{k}, b_{k} and c_{k} to optimize the convergence rate?

How to dynamically determine a_{k}, b_{k} and c_{k} ? - first step

- Let l_{0} be chosen such that

$$
\left[\sigma_{\min }\left(X_{0}\right), \sigma_{\max }\left(X_{0}\right)\right] \subseteq\left[l_{0}, 1\right] \subset(0,1]
$$

- $\sigma_{i}\left(X_{1}\right)=g_{0}\left(\sigma_{i}\left(X_{0}\right)\right)$, and

$$
\left[\sigma_{\min }\left(X_{1}\right), \sigma_{\max }\left(X_{1}\right)\right] \subseteq\left[\min g_{0}(x), \max g_{0}(x)\right]
$$

where

$$
g_{0}(x)=x \frac{a_{0}+b_{0} x^{2}}{1+c_{0} x^{2}}
$$

- Rational optimization problem: find a_{0}, b_{0}, c_{0} such that
(1) $0<g_{0}(x) \leq 1$ for $l_{0}<x \leq 1$.
(2) the max-min property $\max _{a_{0}, b_{0}, c_{0}}\left\{\min _{l_{0} \leq x \leq 1} g_{0}(x)\right\}$.
- Update $l_{1}=\min _{l_{0} \leq x \leq 1} g_{0}(x)$, such that

$$
\left[\sigma_{\min }\left(X_{1}\right), \sigma_{\max }\left(X_{1}\right)\right] \subseteq\left[l_{1}, 1\right] \subset(0,1]
$$

How to dynamically determine a_{k}, b_{k} and c_{k} ? - general case

- At the $(k+1)$ st iteration, we have

$$
\left[\sigma_{\min }\left(X_{k}\right), \sigma_{\max }\left(X_{k}\right)\right] \subseteq\left[l_{k}, 1\right] \subset(0,1]
$$

and

$$
\left[\sigma_{\min }\left(X_{k+1}\right), \sigma_{\max }\left(X_{k+1}\right)\right] \subseteq\left[\min _{l_{k} \leq x \leq 1} g_{k}(x), \max _{l_{k} \leq x \leq 1} g_{k}(x)\right]
$$

where

$$
g_{k}(x)=x \frac{a_{k}+b_{k} x^{2}}{1+c_{k} x^{2}} .
$$

- Rational optimization problem: find a_{k}, b_{k} and c_{k} such that:
(1) $0<g_{k}(x) \leq 1 \quad$ for $\quad l_{k}<x \leq 1$.
(2) the max-min property $\max _{a_{k}, b_{k}, c_{k}}\left\{\min _{l_{k} \leq x \leq 1} g_{k}(x)\right\}$.
- Update $l_{k+1}=\min _{l_{k} \leq x \leq 1} g_{k}(x)$

Solving rational optimization problem

- For the special three-parameter case, we have developed a direct method to obtain analytic expressions for a_{k}, b_{k} and c_{k}

> - tedious, but doable

- In general, for high-order Halley's iteration we can first reformulate the problem, and then use a SDP solver, say SeDuMi or YALMIP
- Applications of rational optimization problem in shape optimization of transfer functions
- [Nie et al '09]

Convergence theorem and number of of iterations

- Theorem. $X_{k} \rightarrow U$ and the asymptotic rate is cubic.
- For the 2×2 example, 5 itertions such that $\left\|1-X_{5}\right\|<10^{-16}$.
- In general, we have the following theoretical prediction for the number of iterations

$\kappa(A)$	10^{1}	10^{2}	10^{5}	10^{8}	10^{10}	10^{12}	10^{16}
SN	5	6	7	8	8	9	9
DWH	3	4	5	5	5	5	6

Inverse-free implementation

- Theorem. Given the QR decomposition

$$
\left[\begin{array}{c}
\eta A \\
I
\end{array}\right]=\left[\begin{array}{l}
Q_{1} \\
Q_{2}
\end{array}\right] R .
$$

Then

$$
\begin{aligned}
& Q_{1} Q_{2}^{H}=\eta A\left(I+\eta^{2} A^{H} A\right)^{-1} \\
& \quad[\text { Zha \& Zhang'96, Higham'07] }
\end{aligned}
$$

Inverse-free implementation - DWH

- Dynamically weighted Halley's (DWH) iteration

$$
\begin{aligned}
X_{k+1} & =X_{k}\left(a_{k} I+b_{k} X_{k}^{H} X_{k}\right)\left(I+c_{k} X_{k}^{H} X_{k}\right)^{-1} \\
& =\frac{b_{k}}{c_{k}} X_{k}+\left(a_{k}-\frac{b_{k}}{c_{k}}\right) \underbrace{X_{k}\left(I+c_{k} X_{k}^{H} X_{k}\right)^{-1}}
\end{aligned}
$$

- QR based implementation of DHW:

$$
\left\{\begin{aligned}
{\left[\begin{array}{c}
\sqrt{c_{k}} X_{k} \\
I
\end{array}\right] } & =\left[\begin{array}{l}
Q_{1} \\
Q_{2}
\end{array}\right] R \\
X_{k+1} & =\frac{b_{k}}{c_{k}} X_{k}+\frac{1}{\sqrt{c_{k}}}\left(a_{k}-\frac{b_{k}}{c_{k}}\right) Q_{1} Q_{2}^{H}
\end{aligned}\right.
$$

Example: verification of theoretical iteration count

Diagonal matrices A Iter numbers and $\left\|X_{k}-I\right\|_{F}$

$\kappa(A)$	10	10^{2}	10^{5}	10^{10}	10^{15}	10^{20}
Halley	5	7	14	24	35	45
Gander	6	7	9	14	18	24
DWH	4	4	5	5	6	6
Halley	$4.7 \mathrm{e}-16$	$5.4 \mathrm{e}-16$	$2.4 \mathrm{e}-16$	$1.1 \mathrm{e}-16$	$1.0 \mathrm{e}-16$	$1.1 \mathrm{e}-16$
Gander	$7.6 \mathrm{e}-16$	$7.5 \mathrm{e}-16$	$8.0 \mathrm{e}-16$	$7.4 \mathrm{e}-16$	$8.0 \mathrm{e}-16$	$6.4 \mathrm{e}-16$
DWH	$4.9 \mathrm{e}-16$	$3.8 \mathrm{e}-16$	$3.1 \mathrm{e}-16$	$5.7 \mathrm{e}-16$	$6.6 \mathrm{e}-16$	$5.4 \mathrm{e}-16$

Example: Q-DWH and scaled Newton's iteration
Random matrices with varying condition numbers:

kappa		10^{2}		10^{8}		10^{15}	
		\min	\max	\min	\max	\min	\max
iter	Q-DWH	4	4	5	5	5	6
	SN	6	6	8	8	8	9
res	Q-DWH	$5.3 \mathrm{e}-16$	$7.3 \mathrm{e}-16$	$4.7 \mathrm{e}-16$	$8.7 \mathrm{e}-16$	$4.7 \mathrm{e}-16$	$8.4 \mathrm{e}-16$
	SN	$7.4 \mathrm{e}-16$	$9.8 \mathrm{e}-16$	$7.2 \mathrm{e}-16$	$1.0 \mathrm{e}-15$	$6.0 \mathrm{e}-16$	$1.1 \mathrm{e}-15$

Multicore implementation is progress.

Further reading - II
The inverse-free implementation of the Halley's iteration is described in the following paper

- Y. Nakatsukasa, Z. Bai and F. Gygi, Optimizing Halley's iteration for computing the matrix polar decomposition, submitted, 2009

It is available on our class website.

Concluding remarks

1. Our case studies illustrate the ideas of designing communication-reducing numerical linear algebra algorithms to balance flops, communication, flops, stability and optimize the performance on modern computer architecture.
2. Hardware trend means the time has come to do!
3. Lots of prior work in numerical linear algebra community, but more open problems
4. Why stops at numerical linear algebra?
