
I.1.(c) CG-type Methods

1 Introduction

Let us recall that for given symmetric A, B ∈ R
n×n and B positive definite, the Rayleigh

Quotient for the matrix pencil A − λB is defined by

ρ(x) =
xT Ax

xT Bx
. (1.1)

Denote the eigenvalues of A − λB by λ1, λ2, . . . , λn in ascending order, i.e.,

λ1 ≤ λ2 ≤ · · · ≤ λn,

and their associated eigenvectors by

u1, u2, . . . , un, respectively, and ‖ui‖B = 1 for i = 1, 2, . . . , n,

where ‖ · ‖B is defined through the B-inner product

〈x, y〉B def
= 〈Bx, y〉 ≡ yT Bx.

It is known that
λ1 = min

x
ρ(x), u1 = argmin

x
ρ(x), (1.2)

and in general for i > 1,

λi = min
x⊥Buj , 1≤j<i

ρ(x), ui = argmin
x⊥Buj , 1≤j<i

ρ(x), (1.3)

where by x⊥By we mean that x and y are B-orthogonal, i.e., 〈x, y〉B = 0. Therefore naturally
various optimization techniques can be and have been employed to compute λ1 or the first few
λi and their associated eigenvectors.

By replacing A by −A, expressions similar to (1.2) and (1.3) can be obtained for λn and
the last few eigenvalues. These expressions enable the use of optimization techniques for the
computation of λn or the last few λi and their associated eigenvectors. Therefore in what
follows, we shall simply focus on the first few eigenvalues and their associated eigenvectors.

Methods in this lecture are based on minimizing the Rayleigh Quotient ρ(x). Two useful
quantities for this purpose are the gradient g(x) = ∇ρ(x) and Hessian H(x) of ρ(x):

g(x) =
2

xT Bx
[Ax − ρ(x)Bx], (1.4)

H(x) =
2

xT Bx
[A − ρ(x)B − g(x)(Bx)T − (Bx)g(x)T]. (1.5)

In minimizing the Rayleigh quotient along the direction of g(x), the scalar 2/xT Bx does not
matter, that is that the minimization is equivalently to seek optimal solution along the residual
vector

r(x) = Ax − ρ(x)Bx. (1.6)

Observe that xT r(x) = 0.
Much of the development in this lecture evolves around inft ρ(x + tp) to seek a better

approximation x + tp to the desired eigenvector and correspondingly a better approximation
ρ(x+tp) to the desired eigenvalue, where p is a search direction. So we single it out by devoting
an entire section to inft ρ(x + tp) first. In the classical steepest descent method, p is simply
taken to be r(x).

Throughout this lecture, all notation assignments in this introduction remain valid. In
particular, we emphasize that A, B ∈ R

n×n are symmetric and B is positive definite.

1

2 The problem inft ρ(x + tp)

In the rest of this lecture,
inf
t∈R

ρ(x + tp) (2.1)

has to be frequently solved, where p is the searching direction, selected in hoping that inft ρ(x+
tp) is strictly less than ρ(x). When it does, some progress is made towards approximating the
smallest eigenvalues of A − λB. In the case of the steepest decent method, p is simply taken
to be the residual vector (1.6), but it may not be, as in the conjugate gradient methods.

Conventionally in the literature, min is used in (2.1), instead of inf. Rigorously speaking,
the conventional use of min is not technically correct because there is a possibility that inft ρ(x+
tp) may not be attained for any t ∈ R.

First if p is unfortunately chosen to be collinear to x, then ρ(x+tp) ≡ ρ(x). No improvement
is possible as to approximating the smallest eigenvalues of A− λB. In the rest of this section,
we assume x and p are linearly independent.

Suppose x and p are linearly independent. We have

ρ(x + tp) ≡ (x + tp)T A(x + tp)

(x + tp)T B(x + tp)
=

xT Ax + 2t xT Ap + t2 pT Ap

xT Bx + 2t xT Bp + t2 pT Bp
. (2.2)

Since x+ tp 6= 0 for all t ∈ R and B is positive definite, ρ(x+ tp) is well-defined over the entire
R. Therefore inft ρ(x + tp) is equal to the minimum of the values of ρ(x + tp) evaluated at its
critical points (where the derivative of ρ(x + tp) with respect to t vanishes) and

lim
t→∞

ρ(x + tp) = ρ(p). (2.3)

Through sketching the graph of ρ(x + tp), one can easily conclude

Lemma 2.1.

1. If ρ(x) 6= ρ(p), then ρ(x + tp) has at least one critical point;

2. If ρ(x) = ρ(p), then either ρ(x + tp) ≡ ρ(x) or it has at least two critical points with at
least one positive and at least one negative.

The derivative of ρ(x + tp) is

d

dt
ρ(x + tp) =

a t2 + b t + c

[(x + tp)T B(x + tp)]2
, (2.4)

where

a =(pT Ap)(xT Bp) − (xT Ap)(pT Bp), (2.5a)

b =(pT Ap)(xT Bx) − (xT Ax)(pT Bp), (2.5b)

c =(xT Ap)(xT Bx) − (xT Ax)(xT Bp), (2.5c)

more usefully

a = [xT r(p)](pT Bp) (2.5a′)

=
(
pT [Ax − ρ(p)Bx]

)
(pT Bp), (2.5a′′)

b = [ρ(p) − ρ(x)](pT Bp)(xT Bx), (2.5b′)

c = [r(x)T p](xT Bx). (2.5c′)

2

a=0, b>0, c>0

ρ(x)

ρ(p)

a=0, b>0, c<0

ρ(x)

ρ(p)

a=0, b>0, c=0

ρ(x)

ρ(p)

a=0, b<0, c>0

ρ(x)

ρ(p)

Figure 2.1: ρ(x + tp) for the case a = 0 with four subcases: two horizonal lines are for ρ(x) and ρ(p),
respectively, as marked, the vertical line is for t = 0, and the curved one is for ρ(x + tp). The points
marked by ⋄ are the optimal points for each subcases, except the last plot where no point is marked
because the optimal values are not attainable but arbitrarily approached as t → ±∞.

Now set
d

dt
ρ(x + tp) to 0 to get

a t2 + b t + c = 0 (2.6)

whose solutions are the critical points of ρ(x + tp). There are at most two critical points for
ρ(x + tp). They, if any, must be real by Lemma 2.1 because complex roots come in pair.

Lemma 2.2.

1. Either a = b = c = 0 which implies ρ(x + tp) ≡ ρ(x) (the converse is also true), or (2.6)
has only real solutions.

2. If c 6= 0, then a2 + b2 > 0. Namely the case a = b = 0 but c 6= 0 cannot occur.

Proof. If a2 + b2 + c2 > 0, then for t sufficiently large

d

dt
ρ(x + tp) ∼ a t2 + b t + c

t4(pT Bp)

which says d
dtρ(x + tp) 6≡ 0. So ρ(x + tp) is not a constant function, and (2.6) has only real

solutions by Lemma 2.1.
Suppose a = b = 0 but c 6= 0. Then d

dtρ(x + tp) has the same sign as c for all t, which
implies ρ(x + tp) moves further and further away from ρ(x) as t moves away from 0. This
contradicts (2.3) since b = 0 and (2.5b′) imply ρ(p) = ρ(x).

If a 6= 0, there are two finite real roots to the quadratic equation (2.6):

t± =
−b ±

√
b2 − 4ac

2a
. (2.7)

Notice that
d

dt
ρ(x + tp)

∣∣∣∣
t=0

=
2

xT Bx
[r(x)T p] (2.8)

3

which has the same sign as c by (2.5c′). We now dissect all possible cases in solving the
optimization problem (2.1).

1. Suppose a = 0.

(a) If b = 0, then c = 0 by Lemma 2.2. ρ(x + tp) ≡ ρ(x).

(b) If b 6= 0, there is only one solution to (2.6): t = −c/b. d
dtρ(x + tp) changes its sign

at this point.

i. If b > 0, i.e., ρ(p) > ρ(x), d
dtρ(x + tp) changes from negative to positive. So

mint ρ(x+tp) is attained at t = −c/b, and mint ρ(x+tp) ≤ ρ(x) and the equality
holds if and only if c = 0, i.e., r(x)T p = 0.

ii. If b < 0, i.e., ρ(p) < ρ(x), d
dtρ(x + tp) changes from positive to negative. So

inft ρ(x + tp) = ρ(p), and it cannot be attained by any finite t.

According to the signs of b 6= 0, and c, there are all together 6 subcases. Figure 2.1
presents subplots that shows how ρ(x+ tp) behaves for 4 of the 6 subcases. The two
missing cases are 1) a = 0, b < 0, and c < 0, and 2) a = 0, b < 0, and c = 0. The
curves of ρ(x + tp) for these two cases have the same shape as in the last subplot in
Figure 2.1, except the tops are to the left of t = 0 and on t = 0, respectively.

2. Suppose a > 0. d
dtρ(x + tp) is positive for |t| sufficiently large, which means ρ(x + tp)

increases from ρ(p) as t moves away from −∞, and ρ(x+ tp) increases to ρ(p) as t moves
towards +∞. Therefore both supt ρ(x + tp) and inft ρ(x + tp) are attainable and

max
t

ρ(x + tp) > ρ(p) > min
t

ρ(x + tp).

Thus ρ(x+ tp) has at least two critical points, and in consideration of (2.6) it has exactly
two distinct critical points which are t± as given in (2.7). As t goes from −∞ to ∞,
ρ(x + tp) increases from ρ(p) until t = min t± and then decreases until t = max t± and
then increases again towards ρ(p). Therefore the optimal t for (2.1) is max t± = t+.

When t+ = 0 which happens when b > 0 and c = 0, mint ρ(x + tp) = ρ(x) and thus no
improvement upon ρ(x) can be made.

3. Suppose a < 0. Similar arguments leads to that as t goes from −∞ to ∞, ρ(x + tp)
decreases from ρ(p) until t = min t± and then increases until t = max t± and then
decreases again towards ρ(p). Therefore the optimal t for (2.1) is again min t± = t+.

Again when t+ = 0 which happens when b > 0 and c = 0, mint ρ(x + tp) = ρ(x).

Figure 2.2 presents representative plots about the behaviors of ρ(x+ tp) according to the signs
of a and c for the case a 6= 0. The sign of b is not distinguished in the subplots, and its effect
on the plot determines the positions of the two horizontal lines for ρ(x) and ρ(p) because b has
the same sign as ρ(p)− ρ(x) due to (2.5b′), but not the shape of the curves for ρ(x + tp). The
case c = 0 differs from the case c 6= 0 in that whether one of the extreme points marked by ⋄
and △ is on the vertical line: t = 0.

The above analysis enables us to conclude Lemma 2.3 which is not at all obvious and
Theorem 2.1.

Lemma 2.3. If a 6= 0, then b2 − 4ac > 0.

Theorem 2.1. inft ρ(x + tp) = ρ(x) if and only if one of the following occurs

1. a = b = 0 (which necessarily implies c = 0);

2. b > 0 and c = 0;

4

a>0, c>0

ρ(p)

ρ(x)

a>0, c<0

ρ(p)

ρ(x)

a<0, c>0

ρ(p)

ρ(x)

a<0, c<0

ρ(p)

ρ(x)

Figure 2.2: ρ(x + tp) for the case a 6= 0 with four subcases: two horizonal lines are for ρ(x) and ρ(p),
respectively, as marked, the vertical line is for t = 0, and the curved one is for ρ(x + tp). The points
marked by ⋄ are for mint ρ(x + tp) while the ones marked by △ are for maxt ρ(x + tp).

If none of the two cases occur, then inft ρ(x + tp) < ρ(x). Furthermore

inf
t

ρ(x + tp) = ρ(x + toptp) at topt =





any value, if a = b = 0,

−c/b, if a = 0, b > 0,

∞, if a = 0 and b < 0,

t+, if a 6= 0,

(2.9)

where ρ(x + toptp) at topt = ∞ is understood as limt→∞ ρ(x + tp) = ρ(p).

Proof. It can be seen that inft ρ(x+tp) = ρ(x) if and only if either a = b = 0 (which necessarily
implies c = 0, or a = 0, b > 0, and c = 0, or t+ = 0 in the case a 6= 0. But t+ = 0 in the case
a 6= 0 is equivalent to b > 0 and c = 0.

Corollary 2.1. inft ρ(x + tp) = ρ(x) implies c = 0, i.e., r(x)T p = 0.

Define, according to (2.9),

y =

{
x + topt p, if topt 6= ∞,

p, otherwise.
(2.10)

Similar situations occur later for us to assign a vector x+tp to another vector y with a possibility
that t might be infinite. For the ease of presentation, it is understood that y = x+ tp is treated
differently for t = ±∞, i.e., simply y = p as in (2.10).

It is hope that y is closer to an eigenvector ui of A− λB than x is. Typically the closeness
of two vectors is measured by the acute angle between them. We see that inft ρ(x + tp) is not
always attainable by a finite topt, for example topt = ∞ when a = 0 and b < 0. This is caused
by not treating x and p equally as far as the minimization problem is concerned. An equivalent
statement of the problem is given in Exercise 2.3.

5

Exercises

2.1. Prove Lemma 2.1.

2.2. Find an example for which a = b = c = 0 and yet x and p are linearly independent, or
prove such an example cannot be found.

2.3. Establish the equivalence of the minimization problem (2.1) and the problem

y = ξoptx + ζoptp, (ξopt, ζopt) = argmin
ξ2+ζ2>0

s, t∈R

ρ(ξx + ζp) (2.11)

by constructing a solution of one from a solution of the other. Rigorously, y by (2.11) is not
well-defined because (ξopt, ζopt) is not unique, but all ξoptx + ζoptp are collinear, however. So
from the point of view of approximating an eigenvector, any one of them is just as good as
others.

2.4. Let X = [x, p] ∈ R
n×2 and suppose x and p are linearly independent. Let (µi, zi), i = 1, 2

be the two eigenpairs of matrix pencil (XT AX) − λ(XT BX) and µ1 ≤ µ2.

(a) Express y in (2.11) in terms of X and zi;

(b) Give an alternative algorithm to solve (2.1).

2.5. Let a, b, and c be defined by (2.5a) – (2.5c). Show that

a
‖x‖B

‖p‖B
+ c

‖p‖B

‖x‖B
= b

〈x, p〉B
‖x‖B‖p‖B

. (2.12)

Is it necessary to require that x and p be linearly independent for this equality to hold? Use
(2.12) to prove that b2 − 4ac ≥ 0. Investigate the conditions under which b2 − 4ac = 0.

3 Steepest decent method

3.1 Computing one eigenpair

Given an approximation xxx to u1 and ‖xxx‖B = 1, one step of the steepest decent method is
simply a line search along the (opposite) direction of the gradient ∇ρ(xxx), i.e., solve (2.1) with
x = xxx and p = rrr ≡ r(xxx):

inf
t

ρ(xxx + trrr). (3.1)

Every development in the previous section holds, because of the choice p = rrr, we now always
have

c = (rrrTrrr)(xxxT Bxxx) > 0. (3.2)

So a2 + b2 > 0 always, too. The optimal topt, according to (2.9) is

topt =





−c/b, if a = 0 and b > 0,

∞, if a = 0 and b < 0,

− b−
√

b2−4ac
2a , if a 6= 0 and b ≤ 0,

− 2c
b+

√
b2−4ac

, if a 6= 0 and b > 0.

(3.3)

The next approximation to u1, according to (2.10), is given by yyy = xxx + topt rrr with an under-
standing that yyy = rrr when topt = ∞, and the next approximation ρ(yyy) to λ1 is less than ρ(xxx)
by Theorem 2.1 and by the fact that c > 0.

6

Once yyy is determined, in actual implementation yyy is rescaled by, e.g., ‖yyy‖B and overwrites
xxx and the process is repeated until convergence. A common practice to detect convergence is
through checking

if
‖r(xxx)‖

‖Axxx‖2 + |ρ(xxx)| ‖Bxxx‖2
< rtol, (3.4)

where rtol is a given relative tolerance. We now summarize the steepest decent method as
follows.

Algorithm 3.1 (Steepest Decent Method). Given an initial approximation x0 to u1, and a
relative tolerance rtol, the algorithm attempts to compute an approximate pair to (λ1, u1)
with the prescribed rtol.

1 x0 = x0/‖x0‖B, ρ0 = xT
0 Ax0, r0 = Ax0 − ρ0Bx0;

2 for i = 0, 1, . . ., do
3 if ‖ri‖/(‖Axi‖2 + |ρi| ‖Bxi‖2) ≤ rtol, BREAK;
4 Compute a, b, c as in (2.5) with x = xi and p = ri;
5 Compute topt by (3.3);
6 x̂ = xi + topt ri, xi+1 = x̂/‖x̂‖B;
7 ρi+1 = xT

i+1Axi+1, ri+1 = Axi+1 − ρi+1Bxi+1;
8 end
9 Return (ρi, xi) as an approximate eigenpair to (λ1, u1).

A detailed convergence analysis for the case B = I can be found in Faddeev and Faddeeva [3,
p.430]. For the case B 6= I, it is in [18]. Also for B = I, The results of Knyazev and
Skorokhodov [11] implies that locally

ρi+1 − λ1

ρi − λ1
∼

(
1 − ξ

1 + ξ

)2

, ξ =
λ2 − λ1

λn − λ1
.

3.2 Computing several eigenpairs

A natural way to compute the first few eigenpairs for the generalized eigenproblem A − λB
is through deflating out the converged eigenpairs and applying Algorithm 3.1. Suppose we
already have approximate eigenpairs

(λλλi,uuui), ‖uuui‖B = 1, i = 1, 2, . . . , j − 1

to (λi, ui), i = 1, 2, . . . , j − 1. It is reasonable to expect uuuT
i Buuuℓ = 0 approximately for i 6= ℓ.

Given an approximation xxx to uj , we now explain how to compute the next approximation yyy
to uj . First, we B-orthogonalize xxx against uuui, i = 1, 2, . . . , j − 1. This can be done by the
Modified Gram-Schmidt process:

for i = 1, 2, . . . , j − 1, set s = uuuT
i Bxxx and overwrite xxx = xxx − suuui.

Evidently, we still refer to it by the same notation xxx as doing so will not cause any confusion.
Next we B-orthogonalize rrr = Axxx−ρ(xxx)Bxxx against uuui, i = 1, 2, . . . , j−1, again, by the Modified
Gram-Schmidt process:

r̂rr = rrr; and for i = 1, 2, . . . , j − 1, set s = uuuT
i Br̂rr and overwrite r̂rr = r̂rr − suuui.

Note, unlike xxx, the assignment of rrr stays the same before and after this process. Lastly, we
solve

inf
t

ρ(xxx + tr̂rr). (3.5)

7

This is the line search problem (2.1) with p = r̂rr. Upon its solving, the next approximation
is given by yyy = xxx + topt r̂rr. Again in actual implementation yyy is rescaled by, e.g., ‖yyy‖B and
overwrites xxx and the process is repeated until convergence. We summarize the algorithm as
follows.

Algorithm 3.2 (Deflated Steepest Decent Method). Suppose accurate approximations to the
first j − 1 eigenpairs of (λi, ui) are known as (λλλi,uuui), and suppose that uuui for i = 1, 2, . . . , j − 1
are B-orthonormal. Given an initial approximation x0 to uj , and a relative tolerance rtol, the
algorithm attempts to compute an approximation pair to (λj , uj) with the prescribed rtol.

1 B-orthogonalize x0 against uuui, i = 1, 2, . . . , j − 1, and
denote the orthogonalized vector still by x0;

2 x0 = x0/‖x0‖B, ρ0 = xT
0 Ax0, r0 = Ax0 − ρ0Bx0;

3 for i = 0, 1, . . ., do
4 if ‖ri‖/(‖Axi‖2 + |ρi| ‖Bxi‖2) ≤ rtol, BREAK;
5 B-orthogonalize ri against uuui, i = 1, 2, . . . , j − 1, and

denote the orthogonalized vector by r̂;
6 Compute a, b, c as in (2.5) with x = xi and p = r̂;
7 Compute topt by (2.9);
8 x̂ = xi + topt r̂;
9 B-orthogonalize x̂ against uuui, i = 1, 2, . . . , j − 1, and

denote the orthogonalized vector still by x̂;
10 xi+1 = x̂/‖x̂‖B, ρi+1 = xT

i+1Axi+1, ri+1 = Axi+1 − ρi+1Bxi+1;
11 end
12 Return (ρi, xi) as an approximate eigenpair to (λj , uj).

Another method for computing several eigenpairs as a variation to the steepest descent
method is the so-called Simultaneous Rayleigh Quotient Minimization Method (SIRQIT)
due to Longsine and McCormick [12]. The idea is to start with k linearly independent vectors
whose span is intended to approximate the deflating subspace spanned by ui, i = 1, 2, . . . , k
and then compute another k linearly independent vectors whose span hopefully approximate
the deflating subspace (much) better. This is in contrast to the method we just explained
which compute one approximate eigenpair at time in the sequential order. This difference
is reminiscent of the difference between the power method and the simultaneous subspace
iteration.

Let XXX ∈ R
n×k whose columns are B orthonormal, i.e., XXXT BXXX = Ik. The goal is to compute

another YYY ∈ R
n×k whose columns span a subspace that are hopefully closer to the the deflating

subspace spanned by ui, i = 1, 2, . . . , k than XXX’s columns do. This is done as follows.

1. Project the eigenproblem for A− λB onto the subspace span(XXX) to get XXXT AXXX − λIk, a
much smaller problem. Compute its eigendecomposition:

QQQT (XXXT AXXX)QQQ = Ω, QQQTQQQ = Ik, Ω = diag(ω1, . . . , ωk)

with ω1 ≤ . . . ≤ ωk. Set ZZZ = XXXQQQ. Naturally we would pair (ωi,ZZZ(:,i)) to (λi, ui) as its
approximation for each i. Set RRR = AZZZ − BZZZΩ.

2. We seek a better approximation to ui than ZZZ(:,i) does: solve

inf
t

ρ(ZZZ(:,1) + tRRR(:,1))

8

and set y1 = ZZZ(:,1) + topt RRR(:,1); and for i = 2, . . . , k, B-orthogonalize RRR(:,i) against
y1, . . . , yi−1 already computed and solve1

inf
t

ρ(ZZZ(:,i) + t R̂RR(:,i)),

where R̂RR(:,i) is the B-orthogonalized RRR(:,i), and then set ŷ = ZZZ(:,i) + topt R̂RR(:,i) and B-
orthogonlize ŷ against y1, . . . , yi−1 to get yi.

3. YYY = [y1, y2, . . . , yk].

This is just one step of SIRQIT-G [12]. The complete process overwrites XXX by YYY and repeats.
It must also include testing for convergence.

An alternative to SIRQIT-G is SIRQIT-G2, also mentioned in [12]. It is theoretically more
powerful, but arguably have the same (or similar) asymptotical speed of convergence. The
idea, simply put, is to project the original eigenproblem onto span(ZZZ,RRR) to lead to a 2k × 2k
eigenproblem. Solve the projected problem and select its k smallest eigenpairs. Specifically:

1. Same as Item 1 for SIRQIT-G;

2. B-orthogonalize RRR against ZZZ, calling the resulting matrix R̂RR. The columns of ZZZ and R̂RR
together form a B-orthonormal basis of span(ZZZ,RRR).

3. Project A − λB onto span(ZZZ,RRR) to get

[
ZZZT

R̂RR
T

]
A

[
ZZZ R̂RR

T
]
− λ

[
ZZZT

R̂RR
T

]
B

[
ZZZ R̂RR

T
]

=

[
Ω RRRTR̂RR

R̂RR
T
RRR R̂RR

T
AR̂RR

]
− λI. (3.6)

This is because R̂RR
T
AZZZ = R̂RR

T
(RRR + BZZZΩ) = R̂RR

T
RRR.

4. Let WWW be the eigenvector matrix corresponding to the k smallest eigenvalues of the

projected problem (3.6), and set YYY =
[
ZZZ R̂RR

]
WWW .

Numerical experiments suggest that SIRQIT-G and SIRQIT-G2 exhibit similar asymptotic
behavior. This can also be seen heuristically from (3.6) because at the convergence, RRR is
nearly 0. It is conceivable that at the beginning of calculations, SIRQIT-G2 should perform
better. But it is at a cost of solving 2k × 2k eigenproblems, whereas SIRQIT-G always solves
k × k eigenproblems.

3.3 Pre-conditioned steepest decent method

The steepest decent method, while always makes progress in driving the Rayleigh quotient
towards a minimum, can be very slow in practice. The pre-conditioned steepest decent method
is designed to overcome its slow convergence by modified its search direction r(x). The method
can be simply viewed as an application of the vanilla steepest decent method after a linear
transformation to the Rayleigh quotient.

The kernel of the steepest decent method for A − λB is

topt = argmin
t

ρ(x + tr(x)), y = x + toptr(x), (3.7)

1A possible variation is to B-orthogonaliz ZZZ(:,i) against y1, . . . , yi−1, too, to get ẐZZ(:,i), and then to solve

inf
t

ρ(ẐZZ(:,i) + t R̂RR(:,i)).

9

where r(x) = Ax−ρ(x)Bx. Consider transformation x̃ = Lx, where L is n×n and nonsingular.
For the Rayleigh quotient ρ(x),

ρ(x) =
xT Ax

xT Bx
=

x̃T L−T AL−1x̃

x̃T L−T BL−1x̃
(3.8)

which corresponding to the eigenproblem L−T AL−1 − λL−T BL−1. Adopt the notational con-
vention that the same symbol with and without a tilde is for A − λB and for L−T AL−1 −
λL−T BL−1, respectively. For example,

ρ̃(x̃) =
x̃T L−T AL−1x̃

x̃T L−T BL−1x̃
≡ ρ(x), r̃(x̃) = L−T AL−1x̃ − ρ̃(x̃)L−T BL−1x̃ ≡ L−T r(x). (3.9)

The kernel of the steepest decent method for L−T AL−1 − λL−T BL−1 is

t̃opt = argmin
et

ρ̃(x̃ + t̃ r̃(x̃)), ỹ = x̃ + t̃optr̃(x̃).

Eliminating the tilde variables to get back to the original variables, we have

y = x + t̃opt(L
T L)−1 r(x) ≡ x + t̃optK r(x),

where K = (LT L)−1 is the so-called pre-conditioner. Notice that

ρ̃(x̃ + t̃r̃(x̃)) = ρ̃(L(x + t̃Kr(x))) = ρ(x + t̃Kr(x)).

Therefore in terms of variable x and y, the steepest decent method for the transformed eigen-
problem can be stated as, after dropping the tildes on the t-parameters,

topt = argmin
t

ρ(x + tKr(x)), y = x + toptKr(x). (3.10)

Comparing (3.7) and (3.10), we see the difference is the modification of the search direction
from r(x) to Kr(x) by the selected pre-conditioner K. In view of this, there are pre-conditioned
versions of all algorithms previously discussed in this section:

1. For Algorithm 3.1, replace all ri in Lines 4 and 6 by Kri;

2. For Algorithm 3.2, replace all ri in Line 5 by Kri;

3. For SIRQIT-G and SIRQIT-G2, overwrite RRR by KRRR immediately after the end of Item
1.

The pre-conditioned SIRQIT-G and SIRQIT-G2 as stated here are rather straightforward
once the idea of pre-conditioning is explained, but they were not included in Longsine and
McCormick [12].

There are some estimates on convergence rates for the pre-conditioned steepest decent
method. These estimates do indeed show that the rates are dramatically improved with suit-
able pre-conditioners. We present one easily proven estimate here which is essentially due to
Samokish [16] who studied the case when B = I. The reader is referred to [10, 14] for further
reading.

Theorem 3.1 (Samokish). Let topt = argmint ρ(x+ tKr(x)) and y = x+ tKr(x), and denote2

the smallest positive and largest eigenvalue of K(A − λ1B) by γ and Γ. If

τ
(√

Γ + ǫ
)

ǫ < 1,

2It is worth emphasizing that A−λ1B is singular and hence its smallest eigenvalue is 0, and γ is its smallest
positive nonzero eigenvalue.

10

where

ǫ =
√
‖B1/2KB1/2‖2 [ρ(x) − λ1], τ =

2

γ + Γ
,

then

ρ(y) − λ1 ≤
[

∆ + τ
√

Γ ǫ

1 − τ(
√

Γ + ǫ)ǫ

]2

[ρ(x) − λ1], (3.11)

where κ = Γ/γ, ∆ = (κ − 1)/(κ + 1).

Proof. Let z = x − τKr(x). Then λ1 ≤ ρ(y) ≤ ρ(z) and thus ρ(y) − λ1 ≤ ρ(z) − λ1. So it
suffices to show that ρ(z) − λ1 is no bigger than the right-hand side of (3.11).

Note that A−λ1B is symmetric positive semi-definite. For any vector w (see Exercise 3.3),
we have

‖w‖2
A−λ1B = (ρ(w) − λ1)‖w‖2

B, (3.12)

‖[I − τK(A − λ1B)]w‖A−λ1B ≤ ∆‖w‖A−λ1B. (3.13)

Write z = [I − τK(A−λ1B)]x+ τ [ρ(x)−λ1]KBx. Without loss of generality, we may assume
‖x‖B = 1. We have

‖z‖A−λ1B =
√

ρ(z) − λ1‖z‖B,

‖z‖A−λ1B ≤ ‖[I − τK(A − λ1B)]x‖A−λ1B + τ [ρ(x) − λ1]‖KBx‖A−λ1B

≤ ∆‖x‖A−λ1B + τ [ρ(x) − λ1]
√

Γ‖Bx‖K

≤ ∆
√

ρ(x) − λ1 + τ [ρ(x) − λ1]
√

Γ ‖B1/2KB1/2‖2

= (∆ + τ
√

Γ ǫ)
√

ρ(x) − λ1,

‖z‖B ≥ ‖x‖B − τ‖Kr(x)‖B

= 1 − τ‖Kr(x)‖B,

‖Kr(x)‖B = ‖K(A − λ1B)x − [ρ(x) − λ1]KBx‖B

≤ ‖K(A − λ1B)x‖B + [ρ(x) − λ1]‖KBx‖B

≤
√
‖K1/2BK1/2‖2Γ‖x‖A−λ1B + [ρ(x) − λ1]‖B1/2KB1/2‖2‖x‖B

=
√

Γǫ + ǫ2.

Finally use

ρ(z) − λ1 =
‖z‖2

A−λ1B

‖z‖2
B

≤
‖z‖2

A−λ1B

[1 − τ‖Kr(x)‖B]2

to complete the proof.

3.4 Discussions on selecting good pre-conditioners

One quick conclusion that can be drawn from Theorem 3.1 is that asymptotically ρ(y)− λ1 is
reduced by a factor of at least ∆2 which depends on the conditioning of K(A− λ1B), after its
zero eigenvalues discarded, but not the eigenvalues of A − λ1B.

One important aspect of Theorem 3.1 lies as to what constitutes a good pre-conditioner,
namely those making Γ/γ as close to 1 as possible. Since Γ/γ = 1 for K = (A − λ1B)†, the
Moore-Penrose inverse, K ≈ (A−λ1B)† would be a good pre-conditioner, and K = (A−λ1B)†

is the best one could hope for although albeit impractical. Naturally this suggests that, for
example, to let K = (LT L)−1 where A− λ1B ≈ LT L, an incomplete Cholesky decomposition.

11

In practice, however, λ1 is not available to begin with. A remedy would be to estimate a lower
bound µ of λ1 and compute LT L ≈ A − µB, instead.

In some practical situations, A is also positive definite. In such cases, often simply µ = 0
is chosen [4].

Exercises

3.1. Research Question. The quantitative estimates by Knyazev and Skorokhodov [11] are
for B = I. Try to obtain some estimates when B is a general symmetric and positive definite
matrix.

3.2. Conceivably some of the first k eigenpairs got converged faster by (ωi,ZZZ(:,i)) than others in
SIRQIT-G, SIRQIT-G2 and their pre-conditioned versions. For better efficiency, any converged
eigenpairs should not be carried inside XXX until all k eigenpairs are accurately computed. Design
a deflation scheme for the purpose.

3.3. Verify (3.12) and (3.13).

3.4. Prove that the eigenvalues of K(A−λ1B) are real and nonnegative, where K is symmetric
positive definite.

4 Conjugate gradient method

The Conjugate Gradient (CG) method was originally proposed in 1950s by Hestenes and
Stiefel [7] for solving linear system Hx = b with symmetric and positive definite H, as an al-
ternative to the Gaussian elimination method, and later was interpreted as an efficient iterative
method for large scale linear systems. In the 1960s, it was extended by Fletcher and Reeves [5]
as an iterative method for nonlinear optimization problems. The extension is almost verbatim.
Because of the optimality properties (1.2) and (1.3) of Rayleigh quotients, it is natural to apply
the CG method to compute a few eigenpairs of A − λB. For a better understanding of the
application, the reader is strongly recommended to carefully study the CG method for linear
systems. In [6], an illuminating step-by-step derivation of the method is presented. A different
derivation is given in [13]. The connection between the CG method and the Lanczos procedure
is presented in [2].

4.1 CG for linear systems

Let H be n × n, symmetric, and positive definite. Define

φ(x) =
1

2
xT Hx − xT b. (4.1)

It is a quadratic functional in x. It is convex and has a unique local and global minimum at
x = H−1b. In fact,

φ(x) =
1

2
(Hx − b)T H−1(Hx − b) − 1

2
bT H−1b

=
1

2
(x − H−1b)T H(x − H−1b) − 1

2
bT H−1b.

It can be computed that the gradient ∇φ(x) = Hx − b, and its Hessian matrix is H itself.
Define the residual vector

r(x) = Hx − b.

12

Given an initial guess x0 to H−1b, the CG method iteratively produces a sequence of approx-
imations xi and conjugate searching directions pi, i.e., pT

i Hpj = 0 for i 6= j, with p0 = r(x0)
such that

φ(xi+1) = min
t

φ(xi + αpi).

The complete algorithm can be described as follows.

1. Give an initial guess x0, compute r0 = Ax0 − b, and set p0 = r0;

2. For i = 0, 1, . . ., do

αi = argmin
α

φ(xi + αpi), xi+1 = xi + αipi,

ri+1 = ri + αiHpi, pi+1 = ri+1 + βipi,

where βi is chosen so that pT
i+1Hpi = 0.

There are various mathematically equivalent expressions for αi and βi:

αi = − pT
i ri

pT
i Hpi

(4.2a)

= − rT
i ri

pT
i Hpi

(4.2b)

and

βi = −pT
i Hri+1

pT
i Hpi

(4.3a)

=
rT
i+1ri+1

rT
i ri

(4.3b)

=
rT
i+1(ri+1 − ri)

rT
i ri

. (4.3c)

Commonly used ones are (4.2b), (4.3b), and (4.3c). Their numerical behaviors can be quite
different sometimes.

In the absence of roundoff errors, it can be proved that if rℓ 6= 0, then p0, p1, . . . , pℓ are
linearly independent, and

rT
i rj = 0, for 0 ≤ i, j ≤ ℓ and i 6= j, (4.4a)

span{r0, r1, . . . , rℓ} = span{p0, p1, . . . , pℓ} (4.4b)

= span{r0, Hr0, . . . , H
ℓr0}, (4.4c)

pT
i Hpj = 0, for 0 ≤ i, j ≤ ℓ and i 6= j, (4.4d)

φ(xℓ) = min
t0,...,tℓ

φ(x0 + t0p0 + t1p1 + · · · + tℓpℓ). (4.4e)

That the CG method converges in at most n steps is a consequence of these properties.

4.2 Computing one eigenpair

In extending the CG method, the key is to recognize that the residual r(x) in the linear system
case plays the role of the gradient direction for φ(x), the objective function, in (4.1). For the
eigenproblem of A − λB, the objective function is the Rayleigh quotient

ρ(x) =
xT Ax

xT Bx
(1.1)

13

whose gradient is collinear to
r(x) = Ax − ρ(x)Bx. (1.6)

This observation naturally leads to the following CG method for computing (λ1, u1).

Algorithm 4.1 (Conjugate Gradient Method). Given an initial approximation x0 to u1, and
a relative tolerance rtol, the algorithm attempts to compute an approximate pair to (λ1, u1)
with the prescribed rtol.

1 x0 = x0/‖x0‖B, ρ0 = xT
0 Ax0, r0 = Ax0 − ρ0Bx0, p0 = r0;

2 for i = 0, 1, . . ., do
3 if ‖ri‖/(‖Axi‖2 + |ρi| ‖Bxi‖2) ≤ rtol, BREAK;
4 Compute a, b, c as in (2.5) with x = xi and p = pi;
5 Compute αi = topt by (2.9);
6 x̂ = xi + αi pi, xi+1 = x̂/‖x̂‖B;
7 ρi+1 = xT

i+1Axi+1, ri+1 = Axi+1 − ρi+1Bxi+1, pi+1 = ri+1 + βipi,
where βi is commonly chosen by either (4.3b) or (4.3c);

8 end
9 Return (ρi, xi) as an approximate eigenpair to (λ1, u1).

No longer the properties listed in (4.4) hold because ρ(x) is not quadratic. But still pT
i ri+1 =

0. See Exercise 4.2. No longer the choice of βi by either (4.3b) or (4.3c) ensures any conjugate
relation even among adjacent pi and pi+1. Other choices have been made to rectify that, for
example

βi = −
〈pi, ri+1〉H(xi+1)

〈pi, pi〉H(xi+1)
, (4.3c)

βi = −〈pi, ri+1〉M
〈pi, pi〉M

, (4.3d)

where H(xi+1) is the Hessian of ρ(x) at x = xi+1, and M is some positive definite matrix. We
have 〈pi, pi+1〉H(xi+1) = 0 in the case of (4.3c) and 〈pi, pi+1〉M = 0 in the case of (4.3d).

Takahashi [17] suggested another choice for βi: it, together with αi+1, minimizes the ob-
jective function at xi+2 = xi+1 + αi+1(ri+1 + βipi). This is equivalent to minimize, for the
present case, the Rayleigh quotient in span{xi+1, ri+1, pi} = span{xi+1, ri+1, xi}. Hence it is
known as being locally optimal [15, 8].

Since p0 = r0, x1 is simply the steepest decent solution; so is xi+2 if βi = 0. In the nonlinear
optimization, it is suggested to reset βi to 0 every n CG steps, i.e., i = 0 (mod n), so-called
restarting to “periodically refresh the algorithm, erasing old information that may not be
beneficial” [13]. In the context of large scale eigenvalue computations as we have here, it is
hoped that convergence would occur much sooner than i reaches n, for otherwise it is not
practical.

An convergence analysis for the CG methods is given by Yang [18]. Feng and Owen [4] pre-
sented a very enlightening asymptotic convergence analysis. However no quantitative estimate
on the convergence rate of the CG method is available yet.

Exercises

4.1. Establish the properties (4.4). Use the fact that
d

dα
φ(xi + αpi) = 0 at α = αi to obtain

(4.2a) and pT
i ri+1 = 0, and the fact that pT

i Hpi+1 = 0 and pi+1 = ri+1 + βipi to obtain (4.3a).

4.2. Use the fact that
d

dα
ρ(xi + αpi) = 0 at α = αi to show that pT

i ri+1 = 0.

14

4.3 Computing several eigenpairs

Now that we know how to use the CG method to compute one eigenpair of A − λB. The
idea to modify it to compute several eigenpairs is much the same as we did to the steepest
decent method, i.e., through deflation to compute the left most eigenpairs one at a time, or
establishing some kind of simultaneous approximations to the k left most eigenpairs at the
same time.

Through deflation, we have

Algorithm 4.2 (Deflated Conjugate Gradient Method). Suppose accurate approximations to
the first j − 1 eigenpairs of (λi, ui) are known as (λλλi,uuui) for i = 1, 2, . . . , j − 1 with ‖uuui‖B = 1 ,
and suppose that uuui for i = 1, 2, . . . , j − 1 are B-orthonormal. Given an initial approximation
x0 to uj , and a relative tolerance rtol, the algorithm attempts to compute an approximation
pair to (λj , uj) with the prescribed rtol.

1 B-orthogonalize x0 against uuui, i = 1, 2, . . . , j − 1, and
denote the orthogonalized vector still by x0;

2 x0 = x0/‖x0‖B, ρ0 = xT
0 Ax0, r0 = Ax0 − ρ0Bx0, p0 = r0;

3 for i = 0, 1, . . ., do
4 if ‖ri‖/(‖Axi‖2 + |ρi| ‖Bxi‖2) ≤ rtol, BREAK;
5 B-orthogonalize pi against uuui, i = 1, 2, . . . , j − 1, and

denote the orthogonalized vector still by pi;
6 Compute a, b, c as in (2.5) with x = xi and p = pi;
7 Compute αi = topt by (2.9);
8 x̂ = xi + αi pi;
9 B-orthogonalize x̂ against uuui, i = 1, 2, . . . , j − 1, and

denote the orthogonalized vector still by x̂;
10 xi+1 = x̂/‖x̂‖B, ρi+1 = xT

i+1Axi+1, ri+1 = Axi+1 − ρi+1Bxi+1;
11 pi+1 = ri+1 + βipi, where βi is commonly chosen by either (4.3b) or (4.3c);
12 end
13 Return (ρi, xi) as an approximate eigenpair to (λj , uj).

In Line 11, βi could also be chosen to achieve local optimality, i.e., through minimizing the
Rayleigh quotient in span{xi+1, xi, r̂i+1}, where r̂i+1 is the B-orthogonalized ri+1 against uuui,
i = 1, 2, . . . , j − 1.

Similar to SIRQIT-G, Longsine and McCormick [12] proposed SIRQIT-CG. The difference
is in the selection of searching directions, much like that between the steepest decent method
and the CG method. SIRQIT-CG is outlined as follows:

1. Given X0 ∈ R
n×k whose columns are B-orthonormal, i.e., XT

0 BX0 = Ik, and span an
approximate deflating subspace span{uj , 1 ≤ j ≤ k}.

2. Compute eigendecomposition:

QT (XT
0 AX0)Q = Ω, QT Q = Ik, Ω = diag(ω1, . . . , ωk)

with ω1 ≤ · · · ≤ ωk.

3. Set Z0 = X0Q, R0 = AZ0 − BZ0Ω, and P0 = R0.

4. For i=0,1,. . . ,

(a) X̂ = Zi + PiDi, where Di is diagonal and

(Di)(j,j) = argmin
t

ρ((Zi)(:,j) + t (Pi)(:,j)), 1 ≤ j ≤ k. (4.5)

15

(b) B-orthogonalize the columns of X̂ to get Xi+1.

(c) Compute eigendecomposition:

QT (XT
i+1AXi+1)Q = Ω, QT Q = Ik, Ω = diag(ω1, . . . , ωk).

with ω1 ≤ · · · ≤ ωk.

(d) Set Zi+1 = Xi+1Q, Ri+1 = AZi+1 − BZi+1Ω, and Pi+1 = Ri+1 + PiEi, where Ei is
diagonal and

(Ei)(j,j) =
(Ri+1)

T
(:,j)(Ri+1)(:,j)

(Ri)T
(:,j)(Ri)(:,j)

, 1 ≤ j ≤ k. (4.6)

The roles of the diagonal entries of Di and Ei are the same as those of αi and βi, respectively,
in the CG method. Obviously (4.6) only lists one possible choice. Other choices for βi can be
suitable ones, too, for (Ei)(j,j).

This version of SIRQIT-CG is given in [12]. There are other conceivable variations. For
example, we may replace Items 2 and 4(a,b,c) by projecting A−λB onto span{Xi, Pi}, taking
Q to be the eigenvector matrix corresponding to the k smallest eigenvalues of the projected
problem, much like in SIRQIT-G2. We call this variation SIRQIT-CG2. We may also deter-
mine Ei by projecting A − λB onto span{Xi+1, Xi, Pi}, much as the locally optimal way to
determine βi for the CG method, to obtain another variation. We call this SIRQIT-LOCG.
Yet another possible modification is for Item 4(a,b): compute the columns of Xi+1 one at a
time sequentially with the present search direction being the B-orthogonalized (Pi)(:,j) against
the already computed columns of Xi+1.

4.4 Pre-conditioned conjugate gradient method

The preconditioned version of the CG method can be similarly viewed as the application of
the vanilla CG method after a linear transformation x̃ = Lx done on the Rayleigh quotient
ρ(x), as we did in Subsection 3.3. Again set x̃ = Lx, and then (3.8) and (3.9) hold. Ignoring
the (theoretically nonessential) scaling operation on x̂i+1, we conclude the main part of the
CG method applied to minimize ρ̃(x̃) is

α̃i = argmin
eα

ρ̃(x̃i + α̃p̃i), x̃i+1 = x̃i + α̃ip̃i,

r̃i+1 = L−T AL−1x̃i+1 − ρ̃(x̃i+1)L
−T BV −1x̃i+1, p̃i+1 = r̃i+1 + β̃ip̃i.

Perform substitutions x̃j = Lxj and r̃j = L−T rj , and incorporate (3.8) and (3.9) to get

α̃i = argmin
eα

ρ(xi + α̃L−1p̃i), xi+1 = xi + α̃iL
−1p̃i,

ri+1 = Axi+1 − ρ(xi+1)Bxi+1, L−1p̃i+1 = (LT L)−1ri+1 + β̃iL
−1p̃i.

Finally rename L−1p̃j by pj , and (LT L)−1 by K, the pre-conditioner, to arrive at the following
pre-conditioned Conjugate Gradient Method.

1. Give an initial guess x0 and a preconditioner K, compute r0 = Ax0 − ρ(x0)Bx0, and set
p0 = Kr0;

2. For i = 0, 1, . . ., do

αi = argmin
α

ρ(xi + αpi), x̂i+1 = xi + αipi, xi+1 = x̂i+1/‖x̂i+1‖B,

ri+1 = Axi+1 − ρ(xi+1)Bxi+1, pi+1 = Kri+1 + βipi,

16

where βi is commonly chosen by one of

βi =
rT
i+1Kri+1

rT
i Kri

, (4.7a)

βi =
rT
i+1K(ri+1 − ri)

rT
i Kri

. (4.7b)

Other choices, as counterparts to (4.3c) and (4.3d), for βi have also been used:

βi = −
〈pi, Kri+1〉H(xi+1)

〈pi, pi〉H(xi+1)
, (4.7c)

βi = −〈pi, Kri+1〉M
〈pi, pi〉M

, (4.7d)

Comparing the CG method and its pre-conditioned version, we see the difference is the modi-
fication of the residual from ri to Kri by the selected pre-conditioner K. In view of this, there
are pre-conditioned versions of all algorithms previously discussed in this section — simply
by multiplying all residual vectors by K. In particular SIRQIT-LOCG combined with a pre-
conditioner become the so-called Locally Optimal Block Preconditioned Conjugate Gradient
Method (LOBPCG) [9].

Our discussions on selecting a good pre-conditioner in Subsection 3.4 are often followed
for the pre-conditioned CG method and its many variations. Numerical tests support this
practice.

There are various heuristics on the convergence rates of the pre-conditioned CG method
[1], but none is rigorously proved. Even less can be said about the theoretical analysis of block
(or subspace) versions of the pre-conditioned CG method.

References

[1] L. Bergamaschi, G. Gambolati, and G. Pini, Asymptotic convergence of conjugate
gradient methods for the partial symmetric eigenproblem, Numer. Linear Algebra Appl.,
4 (1997), pp. 69–84.

[2] J. W. Demmel, Applied Numerical Linear Algebra, SIAM, Philadelphia, PA, 1997.

[3] D. K. Faddeev and V. N. Faddeeva, Computational Methods of Linear Algebra, Un-
dergraduate Mathematics Books, W.H.Freeman & Co Ltd, San Francisco, 1963. Trans-
lated by R. C. Williams.

[4] Y. T. Feng and D. R. J. Owen, Conjugate gradient methods for solving the smallest
eigenpair of large symmetric eigenvalue problems, Internat. J. Numer. Methods Eng., 39
(1996), pp. 2209–2229.

[5] R. Fletcher and C. M.Reeves, Function minimization by conjugate gradients, Com-
put. J., 7 (1964), pp. 149–154.

[6] G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins University
Press, Baltimore, Maryland, 3rd ed., 1996.

[7] M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear
systems, J. Res. Nat. Bur. Standards, 49 (1952), pp. 409–436.

17

[8] A. V. Knyazev, A preconditioned conjugate gradient method for eigenvalue problems and
its implementation in a subspace, Internat Series Numer. Math., 96 (1991), pp. 143–154.

[9] A. V. Knyazev, Toward the optimal preconditioned eigensolver: Locally optimal block
preconditioned conjugate gradient method, SIAM J. Sci. Comput., 23 (2001), pp. 517–541.

[10] A. V. Knyazev and K. Neymeyr, A geometric theory for preconditioned inverse it-
eration III: A short and sharp convergence estimate for generalized eigenvalue problems,
Linear Algebra Appl., 358 (2003), pp. 95–114.

[11] A. V. Knyazev and A. L. Skorokhodov, On exact estimates of the convergence rate
of the steepest ascent method in the symmetric eigenvalue problem, Linear Algebra Appl.,
154-156 (1991), pp. 245–257.

[12] D. E. Longsine and S. F. McCormick, Simultaneous Rayleigh-quotient minimization
methods for Ax = λBx, Linear Algebra Appl., 34 (1980), pp. 195–234.

[13] J. Nocedal and S. Wright, Numerical Optimization, Springer, 2nd ed., 2006.

[14] E. E. Ovtchinnikov, Sharp convergence estimates for the preconditioned steepest descent
method for Hermitian eigenvalue problems, SIAM J. Numer. Anal., 43 (2006), pp. 2668–
2689.

[15] B. T. Polyak, Introduction to optimization, Optimization Software, New York, 1987.

[16] B. Samokish, The steepest descent method for an eigenvalue problem with semi-bounded
operators, Izv. Vyssh. Uchebn. Zaved. Mat., 5 (1958), pp. 105–114. in Russian.

[17] I. Takahashi, A note on the conjugate gradient method, Inform. Process. Japan, 5 (1965),
pp. 45–49.

[18] H. Yang, Conjugate gradient methods for the rayleigh quotient minimization of general-
ized eigenvalue problems, Computing, 51 (1993), pp. 79–94.

18

