Basic Theory of Algebraic Eigenvalue Problems:
a quick review

Essentials: definitions

Let $A \in \mathcal{C}^{n \times n}$.

1. A scalar λ is an eigenvalue of an $n \times n$ matrix A and a nonzero vector $x \in \mathcal{C}^{n}$ is a corresponding (right) eigenvector if

$$
A x=\lambda x .
$$

$$
\mathcal{L}_{A, \lambda}=\{x: A x=\lambda x\} \text { is an eigenspace of } A .
$$

2. A nonzero vector y such that

$$
y^{H} A=\lambda y^{H}
$$

is a left eigenvector.
3. The set of all eigenvalues of A is called the spectrum of A.
4. $p_{A}(\lambda)=\operatorname{det}(\lambda I-A)$, a polynomial of degree n, is called the characteristic polynomial of A.

Essentials: properties

1. λ is A 's eigenvalue $\Leftrightarrow \lambda I-A$ is singular $\Leftrightarrow \operatorname{det}(\lambda I-A)=0$ $\Leftrightarrow p_{A}(\lambda)=0$.
2. There is at least one eigenvector x associated with A 's eigenvalue λ; in the other word, the dimension $\operatorname{dim}\left(\mathcal{L}_{A, \lambda}\right) \geq 1$.
3. $\mathcal{L}_{A, \lambda}$ is a linear subspace, i.e., it has the following two properties:
(a) $x \in \mathcal{L}_{A, \lambda} \Rightarrow \alpha x \in \mathcal{L}_{A, \lambda}$ for all $\alpha \in \mathcal{C}$.
(b) $x_{1}, x_{2} \in \mathcal{L}_{A, \lambda} \Rightarrow x_{1}+x_{2} \in \mathcal{L}_{A, \lambda}$.
4. Suppose A is real. λ is A 's eigenvalue \Leftrightarrow conjugate $\bar{\lambda}$ is also A 's eigenvalue.
5. A is singular $\Leftrightarrow 0$ is A 's eigenvalue.
6. If A is upper (or lower) triangular, then its eigenvalues consist of its diagonal entries.

Invariant subspace

Definition. An invariant subspace of A is a subspace \mathcal{V} of \mathcal{R}^{n}, with the property: $A \mathcal{V} \subseteq \mathcal{V}$

Examples

1. If x is an eigenvector, then $\operatorname{span}\{x\}$ is an one-dimensional invariant subspace.
2. Let $x_{1}, x_{2}, \ldots, x_{m}$ be a set of independent eigenvectors associated with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}$. Then $\mathcal{X}=\operatorname{span}\left(\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}\right)$ is an invariant subspace.

Invariant subspace in matrix form Let $V=\left[v_{1}, v_{2}, \ldots, v_{m}\right]$ be any n-by- m matrix with linearly independent columns, and let $\mathcal{V}=\operatorname{span}\{V\}$, Then \mathcal{V} is an invariant subspace if and only if there is an m-by- m matrix B such that

$$
A V=V B
$$

Similarity transformation

Definitions.

- $n \times n$ matrices A and B are similar if there is an $n \times n$ non-singular matrix X such that $B=X^{-1} A X$.
- A is unitarily similar to B if X is unitary.

Properties: Suppose that A and B are similar: $B=X^{-1} A X$. Then

1. A and B have the same eigenvalues. In fact $p_{A}(\lambda) \equiv p_{B}(\lambda)$.
2. $A x=\lambda x \Rightarrow B\left(X^{-1} x\right)=\lambda\left(X^{-1} x\right)$.
3. $B w=\lambda w \Rightarrow A(X w)=\lambda(X w)$.

Basic task of eigenvalue computation

Let $X_{1} \in \mathcal{C}^{n \times k}, k<n$, be a matrix with linearly independent columns that represents a nontrivial invariant subspace of A, i.e.,

$$
A X_{1}=X_{1} B_{11}
$$

for some $k \times k$ matrix B_{11}. Then let X_{2} be a matrix such that $X=\left(X_{1}, X_{2}\right)$ is nonsingular, then it's easy to verify that

$$
B=X^{-1} A X=\left[\begin{array}{cc}
B_{11} & B_{12} \\
0 & B_{22}
\end{array}\right]
$$

In other words, we can use X_{1} to build a similarity transformation to block trianguarlize A.
\Longrightarrow the basic task of eigenvalue computations is to find a nontrivial invariant subspace!

Eigenvalue sensitivity

Let $A x=\lambda x, y^{H} A=\lambda y^{H}$, and λ be the simple eigenvalue. Suppose A is perturbed to $\bar{A} \equiv A+\delta A$, and consequently λ is perturbed to $\widetilde{\lambda} \equiv \lambda+\delta \lambda$. If $\|\delta A\|_{2}=\epsilon$ is sufficiently small, then

$$
\delta \lambda=\frac{y^{H}(\delta A) x}{y^{H} x}+\mathcal{O}\left(\epsilon^{2}\right)
$$

This implies

$$
|\delta \lambda| \leq \underbrace{\frac{\|y\|_{2}\|x\|_{2}}{\left|y^{H} x\right|}}_{\operatorname{cond}(\lambda)}\|\delta A\|_{2}+\mathcal{O}\left(\epsilon^{2}\right) .
$$

