
Basic Theory of Algebraic Eigenvalue Problems: a quick review

1 Introduction

This lecture covers basic theory of the algebraic eigenvalue problem and a brief invitation to the
first order asymptotic error expansion of eigenvalues and eigenvectors for sensitivity analysis.

2 Essentials

Definition 2.1. Let A ∈ C
n×n.

1. A scalar λ is an eigenvalue of an n × n matrix A and a nonzero vector x ∈ Cn is a
corresponding (right) eigenvector if

Ax = λx.

LA,λ
def
= {x : Ax = λx} is an eigenspace of A.

2. A nonzero vector y such that
yHA = λyH

is a left eigenvector.

3. The set of all eigenvalues of A is called the spectrum of A.

4. pA(λ)
def
= det(λI−A), a polynomial of degree n, is called the characteristic polynomial

of A.

The following is a list of properties straightforwardly from Definition 2.1.

1. λ is A’s eigenvalue ⇔ λI − A is singular ⇔ det(λI − A) = 0 ⇔ pA(λ) = 0.

2. There is at least one eigenvector x associated with A’s eigenvalue λ; in the other word,
the dimension dim(LA,λ) ≥ 1.

3. LA,λ is a linear subspace, i.e., it has the following two properties:

(a) x ∈ LA,λ ⇒ αx ∈ LA,λ for all α ∈ C.

(b) x1, x2 ∈ LA,λ ⇒ x1 + x2 ∈ LA,λ.

4. Suppose A is real. λ is A’s eigenvalue ⇔ conjugate λ̄ is also A’s eigenvalue.

5. A is singular ⇔ 0 is A’s eigenvalue.

6. If A is upper (or lower) triangular, then its eigenvalues consist of its diagonal entries.

Theorem 2.1. Let Axi = λixi, xi 6= 0 for i = 1, 2, . . . k, and λi 6= λj for i 6= j. Then
x1, x2, . . . , xk are linearly independent.

Proof. By induction.

Definition 2.2. A ∈ C
n×n is simple if it has n linearly independent eigenvectors; otherwise

it is defective.

1



When A is simple, there is a basis of C
n consisting of eigenvectors of A.

Example 2.1. Simple and defective matrices.

1. I and any diagonal matrices is simple. e1, e2, . . . , en are n linearly independent eigenvec-
tors.

2.

(
1 2
4 3

)
is simple. It has two different eigenvalues −1 and 5. By Theorem 2.1 and

by the fact that each eigenvalue corresponds to at least one eigenvector, it must have 2
linearly independent eigenvectors.

3. If A ∈ C
n×n has n different eigenvalues, then A is simple.

4.

(
2 1
0 2

)
is defective. It has two repeated eigenvalues 2, but only one eigenvector e1 =

(1, 0)T .

Definition 2.3. An invariant subspace of A is a subspace V of R
n, with the property that

v ∈ V implies that Av ∈ V. We also write this as AV ⊆ V.

Example 2.2.

(1) The simplest, one-dimensional invariant subspace is the set span(x) of all scalar multi-
ples of an eigenvector x.

(2) Let x1, x2, . . . , xm be any set of independent eigenvectors associated with eigenvalues
λ1, λ2, . . . , λm. Then X = span({x1, x2, . . . , xm}) is an invariant subspace.

Proposition 2.1. Let A be n-by-n, V = [v1, v2, . . . , vm] any n-by-m matrix with linearly
independent columns, and let V = span(V ), the m-dimensional space spanned by the columns
of V . Then V is an invariant subspace if and only if there is an m-by-m matrix B such that

AV = V B.

In this case the m eigenvalues of B are also eigenvalues of A.

Definition 2.4. n×n matrices A and B are similar if there is an n×n non-singular matrix
X such that B = X−1AX. We also say A is similar to B, and likewise B is similar to A; X
is a similarity transformation. A is unitarily similar to B if X is unitary.

Proposition 2.2. Suppose that A and B are similar: B = X−1AX. Then

1. A and B have the same eigenvalues. In fact pA(λ) ≡ pB(λ).

2. Ax = λx ⇒ B(X−1x) = λ(X−1x).

3. Bw = λw ⇒ A(Xw) = λ(Xw).

Let X1 ∈ C
n×k, k < n, be a matrix with linearly independent columns that represents a

nontrivial invariant subspace of A, i.e., AX1 = X1B11 for some k× k matrix B11. Then let X2

be a matrix such that X = (X1,X2) is nonsingular, then it’s easy to verify that

B = X−1AX =

(
B11 B12

0 B22

)
.

In other words, we can use X1 to build a similarity transformation to block trianguarlize A.
Therefore, the basic task of eigenvalue computations is to find a nontrivial invariant subspace.

The following theorem shows that we can use a unitary similarity transformation to trian-
guarlize A.
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Theorem 2.2 (Schur decomposition or Schur canonical form). For any A ∈ C
n×n,

there is an n × n unitary matrix U (UHU = I) such that

A = UTUH ,

where T is upper triangular. By appropriate choice of U , the eigenvalues of A, which are the
diagonal elements of T , can be made to appear in any given order.

Proof. We prove it by induction. The conclusion is true for n = 1. Suppose it is true for n = k.
Consider n = k + 1. Let (µ, x) be an eigenpair of A and xHx = 1. Extend x to a unitary
matrix Q = (x Q2). Then

QHAQ =

(
xHAx xHAQ2

QH
2 Ax QH

2 AQ2

)
=

(
µ xHAQ2

0 QH
2 AQ2

)
,

and eig(A) = {µ}∪ eig(QH
2 AQ2). Since QH

2 AQ2 is k× k, by the induction assumption there is
a k × k unitary matrix Û such that ÛH(QH

2 AQ2)Û = T2 and the eigenvalues of QH
2 AQ2 can

be made to appear in any given order as the diagonal entries of T1. Finally, we have

U = Q

(
1

Û

)
, UHAU = T ≡

(
µ xHAQ2Û

T2

)
.

It is clear the eigenvalues of A can be made to appear in any given order as the diagonal entries
of T . This completes the proof.

The Schur decomposition is one of the most important tools in theoretical and computa-
tional linear algebra! A real square matrix A may have complex eigenvalues. Which means U
and T in its Schur canonical form may have to be complex. From the computational point of
view, this is bad news because it takes twice as much space to store a complex number as to
store a real number and 6 flops to multiply two complex numbers vs 1 flop to multiply two
real numbers. Fortunately with a little compromise on the shape of T , there is an analogue of
the real Schur canonical form of a real matrix. See Exercise 2.2.

If A is simple, then there exists an invertible matrix X such that

A = XΛX−1, Λ = diag(λ1, λ2, . . . , λn) (2.1)

where Λ is diagonal. It can be seen that the columns of X are the n linear independent
eigenvectors of A. The process of computing such a decomposition is also called diagonalizing
A.

If A is a n × n real symmetric matrix, AT = A, then it can be transformed into diagonal
form by means of an orthogonal transformation, namely X in (2.1) can be chosen to be an
orthogonal matrix Q, where QT Q = In.

An eigen-decomposition of a square matrix A often refers to any one of the diagonaliza-
tion form (2.1), Schur decomposition, and Jordan canonical decomposition.

Lemma 2.1. A real symmetric matrix A is positive definite if and only if all of its eigenvalues
of A are positive.

Exercises

2.1. Prove Theorem 2.1.

2.2. This exercise leads to an analogue of the Schur decomposition for a real matrix.
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1. Let the columns of X form an orthonormal basis for an invariant subspace of A. Let
AX = XL, and let (X,Y ) be unitary. Show that

(
XH

Y H

)
A( X Y ) =

(
L H
0 M

)

2. Let A be real, and let λ be a complex eigenvalue of A with eigenvector x+ iy. Show that
the space spanned by x and y is a 2-dimensional invariant subspace of A.

3. Real Schur Decomposition. Show that if A is real, there is an orthogonal matrix Q such
that QT AQ is block triangular with 1 × 1 and 2 × 2 blocks on its diagonal. The 1 × 1
blocks contain the real eigenvalues of A, and the eigenvalues of the 2 × 2 blocks are the
complex eigenvalues of A.

2.3. Prove Lemma 2.1. Find a necessary and sufficient condition in terms of eigenvalues for a
real symmetric matrix A being positive semidefinite.

3 Sensitivity of eigenvalue problems

3.1 Preliminaries

An eigenvalue λi of A is called simple if it is a simple root of A’s characteristic polynomial,
i.e.,

pA(λ) ≡ (λ − λi) × q(λ),

where q(λ) is a polynomial of degree n − 1 and q(λi) 6= 0.

Theorem 3.1. Let A be an n × n matrix, and let λ be A’s eigenvalue with corresponding
(right) eigenvector x and left eigenvector y.

1. Let µ be another eigenvalue of A and w the corresponding (right) eigenvector (i.e., Aw =
µw). If λ 6= µ, then yHw = 0.

2. If λ is simple, then yHx 6= 0.

Proof. We prove 1 first. Notice that

Aw = µw ⇒ yHAw = µyHw and yHA = λyH ⇒ yHAw = λyHw,

which lead to µyHw = λyHw, and thus (λ−µ)yHw = 0. Since µ 6= λ, we must have yHw = 0.
Now we prove 2 . By the Schur decomposition theorem, there is a unitary matrix U such

that

UHAU = T ≡
( 1 n−1

1 λ tH

n−1 0 T1

)
.

Since λ is simple, λ is not T1’s eigenvalue. This means λI − T1 is nonsingular. Let zH =
−tH(λI − T1)

−1, and set

Z =

( 1 n−1

1 1 zH

n−1 0 I

)
, and then Z−1 =

( 1 n−1

1 1 −zH

n−1 0 I

)
.

It can be verified that

Z−1UHAUZ =

(
1 −zH

0 I

)(
λ tH

0 T1

)(
1 zH

0 I

)
=

(
λ λzH + tH − zHT1

0 T1

)
.

4



By the definition of z, λzH + tH − zHT1 = tH + zH(λI − T1) = 0. So we have

AUZ = UZ

(
λ 0
0 T1

)
and Z−1UHA =

(
λ 0
0 T1

)
Z−1UH .

Write X = UZ and Y H = Z−1UH . We see that Xe1 is A’s (right) eigenvector corresponding
to λ and that Y e1 is A’s left eigenvector corresponding to λ. Now since λ is simple, A’s (left
and right) eigenspace corresponding to λ is 1-dimensional (Why?). So

αx = Xe1 = Ue1 and βy = Y e1 = U

(
1
z

)
,

where α 6= 0 6= β; therefore

yHx =
1

β̄α
(U

(
1
z

)
)H(Ue1) =

1

β̄α
6= 0,

as required.

Example 3.1 (repeated eigenvalue case). A =

(
1 1
0 1

)
has a repeated eigenvalue 1 with

corresponding (right) eigenvector x =

(
1
0

)
and left eigenvector y =

(
0
1

)
. It can be verified

that yHx = 0.

Example 3.2 (distinct eigenvalue case). A =

(
1 1
0 2

)
whose eigenvalues and eigenvectors

are

λ1 = 1, x1 =

(
1
0

)
, y1 =

(
1

−1

)
, and λ2 = 2, x2 =

(
1
1

)
, y2 =

(
0
1

)
.

It can be verified that

yH
1 x1 = 1 6= 0, yH

1 x2 = 0, yH
2 x2 = 1 6= 0, yH

2 x1 = 0.

Theorem 3.2 (Gershgorin Circle Theorem). Let A = (aij) be an n × n matrix. Then the
eigenvalues of A are located in the union of the n disks:

{λ : |λ − akk| ≤
∑

j 6=k

|akj|}, for k = 1, 2, . . . , n,

so-called Gershgorin disks.

Proof. For any λ ∈ eig(A), let x 6= 0 be the associated eigenvector, i.e., Ax = λx. Let
1 = ‖x‖∞ = xk for some k by scaling x if necessary. (It also means that |xj | ≤ 1 for

j 6= k.) Then from the kth row of the equation Ax = λx, we have
∑N

j=1 akjxj = λxk = λ, so
λ − akk =

∑
j 6=k akjxj. Hence

|λ − akk| ≤
∑

j 6=k

|akjxj| ≤
∑

j 6=k

|akj |.

That is λ is in the kth disk. Since λ ∈ eig(A) is arbitrary, the theorem is proved.

Furthermore, it can also be shown that if the ith Gershgorin disk is isolated from the other
disks, then it contains precisely one of A’s eigenvalue. Its proof uses the fact that an eigenvalue
of a matrix is continuous a function of the elements of the matrix.
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3.2 Eigenvalue sensitivity

Theorem 3.3. Let A be an n×n matrix, and let λ be A’s simple eigenvalue with corresponding
(right) eigenvector x and left eigenvector y. Suppose A is perturbed to Ã ≡ A + δA, and
consequently λ is perturbed to λ̃ ≡ λ + δλ. If ‖δA‖2 = ǫ is sufficiently small, then

δλ =
yH(δA)x

yHx
+ O(ǫ2).

This implies

|δλ| ≤ ‖y‖2‖x‖2

|yHx| ‖δA‖2 + O(ǫ2).

Proof. Let x̃ ≡ x + δx be Ã’s eigenvector corresponding to λ̃. We have

Ãx̃ = λ̃x̃ ⇒ (A + δA)(x + δx) = (λ + δλ)(x + δx),

expanding which leads to

Ax + Aδx + δAx + δA δx = λx + λ δx + δλ x + δλ δx.

Ignoring second order terms – δA δx and δλ δx – and noticing that Ax = λx, we have

Aδx + δAx = λ δx + δλ x + O(ǫ2),

pre-multiplying the equation by yH and noticing yHA = yHλ to get

yHδAx = δλ yHx + O(ǫ2),

as required.

Definition 3.1. In Theorem 3.3, define

sλ
def
=

|yHx|
‖x‖2‖y‖2

and cond(λ)
def
=

1

sλ

.

cond(λ) is called λ’s individual condition number.

Example 3.3. Consider

A =




1 2 3
0 4 5
0 0 4.001


 is perturbed by δA =




0 0 0
0 0 0

0.001 0 0


 .

A’s eigenvalues are easily read and its eigenvectors can be computed:

λ1 = 1, x1 =




1
0
0


 , y1 =




0.8285
−0.5523

0.0920


 ,

λ2 = 4, x2 =




0.5547
0.8321

0


 , y2 =




0
0.0002

−1.0000


 ,

λ3 = 4.001, x3 =




0.5547
0.8321
0.0002


 , y3 =




0
0
1


 .

On the other hand, eigenvalues of Ã = A + δA computed by MATLAB’s eig are

λ̃1 = 1.0001, λ̃2 = 3.9427, λ̃3 = 4.0582.

The following table compares |λ̃i − λi| with its first order upper bound cond(λi)‖δA‖2.
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i sλi
cond(λi) cond(λi)‖δA‖2 |λ̃i − λi|

1 0.8285 1.2070 0.0012 0.0001

2 1.7 · 10−4 6.0 · 103 6.0 0.057

3 1.7 · 10−4 6.0 · 103 6.0 0.057

Theorem 3.3 is useful only for sufficiently small ‖δA‖. Such kind of error bound is called
an asymptotic error bound. Sometimes we can remove the O(ǫ2) term and get an error
bound which can be applied for any size perturbation ‖δA‖. It is called a global error bound.
Under the condition that A is diagonalizable, we have

Theorem 3.4 (Bauer-Fike). Suppose A is n× n and diagonalizable, i.e., it has n linearly in-
dependent eigenvectors. Its eigentriplets are denoted by (λi, xi, yi), normalized so that ‖xi‖2 =
‖yi‖2 = 1 and yH

i xj = 0 for i 6= j. Then eigenvalues of A + δA lie in the union of the disk Di

for 1 ≤ i ≤ n, where Di has center λi and radius n ‖δA‖2

|yH
i xi|

.

Proof. It can be verified that

X−1 =




yH
1 /(yH

1 x1)
yH
2 /(yH

2 x2)
...

yH
n /(yH

n xn)


 , A = XΛX−1, Λ = diag(λ1, λ2, . . . , λn).

Since A + δA = X[Λ + X−1(δA)X]X−1, the eigenvalues of A + δA are the same as those of
Λ + X−1(δA)X. The ith Gerschgorin disk for the latter is specified by

|λ − [λi + (X−1(δA)X)(i,i)]| ≤
∑

j 6=i

|(X−1(δA)X)(i,j)|

which implies

|λ − λi| ≤ ‖eT
i (X−1(δA)X)‖∞

≤
√

n‖eT
i X−1(δA)X‖2

≤
√

n‖yH
i /(yH

i xi)‖2‖δA‖2‖X‖F

= n
‖δA‖2

|yH
i xi|

,

as expected.

3.3 Eigenvector sensitivity

Eigenvectors may not be uniquely determined in the case of a repeated eigenvalue. Let us start
with a couple of examples.

Example 3.4. Consider

A =

(
1 0
0 1

)
is perturbed to Ã = A + δA =

(
1 + ǫ 0

0 1 − ǫ

)
,

where ǫ 6= 0 and small. Any vector is A’s eigenvector; while Ã’s eigenvectors are e1 = (1, 0)T

and e2 = (0, 1)T . (Why?) If we unfortunately choose an eigenvector of A, say x = (1, 1)T , we
would find it has nothing to do with any of Ã’s eigenvector even though Ã and A could be
made arbitrarily close.

This example alerts us that care must be taken when talking about changes in eigenvectors
of a repeated eigenvalue.

7



Example 3.5 (Watkins). Consider

A =

(
1 + ǫ 0

0 1 − ǫ

)
is perturbed to Ã = A + δA =

(
1 + ǫ

√
3ǫ√

3ǫ 1 − ǫ

)
,

where ǫ 6= 0 and small.

A eigenvalues A eigenvectors Ã eigenvalues Ã eigenvectors

1 + ǫ, 1 − ǫ e1, e2 1 + 2ǫ, 1 − 2ǫ
√

3
2 e1 + 1

2e2,
√

3
2 e1 − 1

2e2

What we see here is that the perturbation δA makes small changes to A’s eigenvalues
but its eigenvectors suffer enormous changes. This is due to the closeness of A’s eigenvalues
as will be clear from the next theorem which roughly says the changes in an eigenvector is
proportional to the reciprocal of the distance between the corresponding eigenvalue and the rest
of A’s eigenvalues. Note this theorem assumes that A has distinct eigenvalues. It does get
more complicated otherwise.

Theorem 3.5. Suppose n×n matrix A has n distinct eigenvalues with corresponding (left and
right) eigenvectors:

eigenvalues: λ1, λ2, · · · , λn,
(right) eigenvalues: x1, x2, · · · , xn,

left eigenvalues: y1, y2, · · · , yn.

Normalize xi and yi such that ‖xi‖2 = 1 = ‖yi‖2 for all i. Suppose A is perturbed to Ã = A+δA.
If ‖δA‖2 = ǫ is sufficiently small, then for k = 1, 2, · · · , n

x̃k = xk +
∑

j 6=k

yH
j (δA)xk

(λk − λj)yH
j xj

+ O(ǫ2).

These equations imply that for k = 1, 2, · · · , n

‖x̃k − xk‖2 ≤




∑

j 6=k

cond(λj)

|λk − λj|


 ǫ + O(ǫ2).

Proof. The conditions of this theorem imply that each λj is a simple eigenvalue of A. Thus by
Theorem 3.1,

yH
j xk = 0 if k 6= j, and yH

k xk 6= 0. (3.2)

Notice also that A’s eigenvectors x1, x2, · · · , xn form a basis of the n-dimensional space since
A’s eigenvalues are pairwise distinct. (Why?)

Denote that under the perturbation δA, λk is changed to λ̃k ≡ λk + δλk and xk to x̃k ≡
xk + δxk. Write

δxk =

n∑

i=1

cixi,

where c1, c2, · · · , cn are small coefficients. Thus xk + δxk = (1 + ck)xk +
∑

i6=k cixi. We may
normalize xk + δxk by setting ck = 0, since eigenvectors are determined only up to a scalar
multiple and if ck 6= 0 we can always consider

(1 + ck)xk +
∑

i6=k cixi

1 + ck

= xk +
∑

i6=k

ck

1 + ck

xi
def
= xk +

∑

i6=k

c′k xi
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instead. Thus
δxk =

∑

i6=k

cixi. (3.3)

The task is to find those ci’s. To this end, we expand

(A + δA)(xk + δxk) = (λk + δλk)(xk + δxk)

as before to get
Aδxk + δAxk = λk δxk + δλk xk + O(ǫ2),

substituting (3.3) into which gives

∑

i6=k

ciλixi + δAxk = λk

∑

i6=k

cixi + δλk xk + O(ǫ2),

since Axi = λixi. We have

∑

i6=k

ci(λk − λi)xi = δAxk − δλk xk + O(ǫ2).

Pre-multiplying the equation by yH
j (j 6= k), together with (3.2), yield

cj(λk − λj)y
H
j xj = yH

j δAxk − 0 + O(ǫ2),

i.e.,

cj =
yH

j δAxk

(λk − λj)y
H
j xj

+ O(ǫ2),

as required.

This theorem suggests that the sensitivity of xk depends upon eigenvalue sensitivity and
the separation of λk from the other eigenvalues.

Exercises

3.1. Another version of the Bauer-Fike theorem reads as follows. Suppose A is n × n and
diagonalizable and its eigendecomposition is given by (2.1). Then the eigenvalues of A + δA
are in the union of disks

{λ : |λ − λi| ≤ ‖X−1 · δA · X‖2}.
Prove this version of the Bauer-Fike theorem. Find out what other matrix norms can be used
in the place of ‖ · ‖2 here.

4 Symmetric eigenvalue problems

Throughout this section A is a real symmetric matrix.
First, it’s easy to see that the eigen-decomposition (the Schur Decomposition) of a real

symmetric matrix A is given by
A = QΛQT ,

where Q = [q1, q2, . . . , qn] is orthogonal, and Λ = diag(λ1, λ2, . . . , λn). Furthermore, all λi are
real, and without loss of generality, assume that λ1 ≥ λ2 ≥ · · · ≥ λn. Eigenpairs are denoted
as {λi, qi} and ‖A‖2 = |λ1|.
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Definition 4.1. The inertia of a symmetric matrix A is the triplet of integers:

Inertia(A) ≡ (ν, ζ, π),

where

ν = the number of negative eigenvalues of A,

ζ = the number of zero eigenvalues of A,

π = the number of positive eigenvalues of A.

Recall that XT AX is called the congruence transformation of A.

Theorem 4.1 (Sylvester’s Law of Inertia). Let A be symmetric and X be nonsingular. Then
A and XT AX have the same inertia.

Definition 4.2. The Rayleigh Quotient of a symmetric matrix A and a nonzero vector u is

ρ(u,A) =
uT Au

uT u

Sometimes ρ(u,A) is also written as ρ(u), if the matrix A is understood from the context.

Basic properties of Rayleigh quotient (verify!):

• If q is an eigenvalue of A, then ρ(q) is the corresponding eigenvalue.

• Given any vector u 6= 0, then

min
σ

‖Au − σu‖2 = ‖Au − ρ(u)u‖2

• λn ≤ ρ(u) ≤ λ1 for any u 6= 0

• λ1 = maxu ρ(u) and λn = minu ρ(u).

More generally, we have

Theorem 4.2 (Courant-Fischer Minimax/Maximin Theorem).

max
Sj

min
06=u∈Sj

ρ(u,A) = λj = min
Sn−j+1

max
06=u∈Sn−j+1

ρ(u,A)

where S
j denotes a j-dimensional subspace of R

n.

Remark 4.1.

1. The maximum in the first expression for λj is over all j-dimensional subspaces S
j of R

n,
and the subsequent minimum is over all nonzero vector u in the subspace. The maximum
is attained for S

j = span(q1, q2, . . . , qj), and a minimizing u is u = qj.

2. The minimum in the second expression for λj is over all (n−j+1)-dimensional subspaces
S

n−j+1 of R
n, and the subsequent maximum is over all nonzero vector s in the subspace.

The minimum is attained for S
n−j+1 = span(qj, qj+1, . . . , qn), and a maximizing u is

u = qj.
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4.1 Sensitivity of eigenvalues

Let A and E be n-by-n symmetric matrices, and let {λi} and {λ̃i} be the eigenvalues of A and
A + E, respectively. Then note that cond(λi) = 1 for all i. From the first order perturbation
analysis of a general matrix A, we immediately have

|λj − λ̃i| ≤ ‖E‖2 + O(‖E‖2
2)

The above result is weak in three aspects: 1) it does not say j = i, and 2) it is under
the assumption that sufficiently small ‖E‖2 is sufficiently small, and 3) it is an asymptotical
bound. The next theorem eliminates all three weaknesses.

Theorem 4.3 (Weyl). Let A and E be n-by-n real symmetric matrices, and let λ1 ≥ λ2 ≥
· · · ≥ λn and λ̃1 ≥ λ̃2 ≥ · · · ≥ λ̃n be the eigenvalues of A and A + E, respectively, then

|λi − λ̃i| ≤ ‖E‖2.

4.2 Sensitivity of eigenvectors

Let A = QΛQT = Qdiag(λi)Q
T and Ã = A + E = Q̃Λ̃Q̃T = Q̃diag(λ̃i)Q̃

T be the eigen-
decompositions of A and A + E, respectively. Write

Q = (q1, q2, . . . , qn) and Q̃ = (q̃1, q̃2, . . . , q̃n).

Note qi and q̃i are the original and perturbed eigenvectors, respectively.

Theorem 4.4 (Davis-Kahan). Let θi denote the acute angle between qi and q̃i. Then

1

2
sin 2θi ≤

‖E‖2

minj 6=i |λj − λi|
, (4.4)

provided that minj 6=i |λj − λi| > 0.

Remark 4.2.

1. When θi ≪ 1, then 1
2 sin 2θi ≈ sin θi ≈ θi.

2. minj 6=i |λj − λi| > 0 is called the gap between the eigenvalue λi and the rest of the
spectrum. It is sometimes written as gap(i, A) or gap(i) if A is understood from the
context. The upper bound (4.4) is often written as

1

2
sin 2θi ≤

‖E‖2

gap(i, A)
.

3. By considering A+ E as the unperturbed matrix and A = (A+ E)−E as the perturbed
matrix. then the upper bound (4.4) can also be written

1

2
sin 2θi ≤

‖E‖2

minj 6=i |λ̃j − λ̃i|
≡ ‖E‖2

gap(i, A + E)
.

The attraction of stating the bound in terms of gap(i, A + E) is that frequently we
know only the eigenvalues of A + E, since they are typically the output of an eigenvalue
algorithm that we have used. In this case, it is straightforward to evaluate gap(i, A+E),
whereas we can only estimate gap(i, A).
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Exercises

4.1. Show that for any scalar σ and any nonzero vector x, there is an eigenvalue of λ of A
satisfying

|λ − σ| ≤ ‖Ax − xσ‖2/‖x‖2.

5 Generalized eigenvalue problems

The standard eigenvalue problem asks for which scalars λ the matrix A− λI is singular; these
scalars are the eigenvalues. This notion generalizes in several important ways:

Definition 5.1. Given m × n matrices A and B, A − λB is called a matrix pencil. Here λ
is an indeterminate, not a particular numerical value.

Definition 5.2. Let A and B be n × n.

• If A and B are square and det(A − λB) is not identically zero, then pencil A − λB is
called regular. Otherwise it is called singular.

• When A − λB is regular, p(λ) = det(A− λB) is called the characteristic polynomial
of A − λB.

• The eigenvalues of A − λB are defined to be

1. the roots of p(λ) = 0

2. ∞ (with algebraic multiplicity n − deg(p)) if deg(p) < n.

• The set of the eigenvalues of A − λB is denoted as eig(A,B).

Example 5.1.

1. For A =

(
1 2
0 3

)
and B =

(
1 0
0 1

)
, eig(A,B) = {1, 3}

2. For A =

(
1 2
0 3

)
and B =

(
1 0
0 0

)
, eig(A,B) = {1,∞}.

3. For A =

(
1 0
0 3

)
and B =

(
0 0
1 0

)
, eig(A,B) = {∞,∞}.

4. For A =

(
1 2
0 0

)
and B =

(
1 0
0 0

)
, p(λ) = det(A − λB) ≡ 0 for any λ. It is a

singular pencil.

Definition 5.3. Let λ be a finite eigenvalue of the regular pencil A − λB. We say x 6= 0 is a
right eigenvector if

Ax = λBx.

If λ = ∞ is an eigenvalue and Bx = 0, then x is a right eigenvector. A left eigenvector of
A − λB is a right eigenvector of (A − λB)H , i.e.

yHA = λyHB

The following proposition relates the eigenvalues of a regular pencil A − λB to the eigen-
values of a single matrix.
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Proposition 5.1. Suppose A − λB is an n × n regular pencil.

1. If B is nonsingular, all eigenvalues of A−λB are finite and the same as the eigenvalues
of AB−1 or B−1A.

2. If B is singular, A − λB has eigenvalue ∞ with geometric multiplicity n − rank(B).

3. If A is nonsingular, the eigenvalues of A − λB are the same as reciprocals of the eigen-
values of A−1B or BA−1, where a zero eigenvalue of A−1B corresponds to an infinite
eigenvalue of A − λB.

Recall that all of our theory and algorithms for the eigenvalue problem of a single matrix
depend on finding a similarity transformation S−1AS of A that is in a “simpler” form. The
next definition shows how to generalize the notion of similarity to matrix pencils.

Definition 5.4. Let Y and X be nonsingular matrices. Then pencils A − λB and Y AX −
λY BX are called equivalent.

Proposition 5.2.

• The equivalent regular pencils A − λB and Y AX − λY BX have the same eigenvalues.

• The vector x is a right eigenvector of A − λB if and only if X−1x is a right eigenvector
of Y AX − λY BX.

• The vector y is a left eigenvector of A − λB if and only if Y −Hx is a left eigenvector of
Y AX − λY BX.

Theorem 5.1 (Generalized Schur Decomposition). For any A,B ∈ C
n×n, there exist unitary

matrices Q and Z so that
QHAZ = T and QHBZ = S

are both upper triangular. The eigenvalues of A − λB are then ratios of the diagonal entries
of T and S.

Remark 5.1.

1. If A and B are real, there is a generalized real Schur form, too: Q and Z are (real)
orthogonal, and that QT AZ is quasi-upper triangular and QT BZ is upper triangular.

2. Weierstrass canonical form for a regular matrix pencil is a generalization of Jordan
canonical form. Kronecker canonical form is for a singular pencil.

Definition 5.5. Matrix pencil A − λB with Hermitian A and B such that

min
x∈Cn

‖x‖2=1

|xH(A + iB)x| > 0.

is called a definite pencil.

Example 5.2. A special case that often arises in practice is matrix pencil A − λB with real
symmetric A and B and B positive definite. Such a pencil is evidently a definite pencil.

Theorem 5.2. Let A−λB be a definite pencil. Then there is a nonsingular matrix X so that

XHAX = diag(α1, α2, . . . , αn) and XHBX = diag(β1, β2, . . . , βn).

In particular, all the eigenvalues of A − λB are real, and they are finite if B is nonsingular.
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6 Further reading

For more studies of perturbation theory, see

• G. W. Stewart and J.-G. Sun. Matrix Perturbation Theory. Academic Press, Boston,
1990.

• J.-G. Sun, Matrix Perturbation Analysis (Second Edition), Science Press, Beijing, China,
2001 (in Chinese)
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