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Which are the important modes of a subsystem?
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SUMMARY

A linearly behaving vibrational substructure (or more generally a linear dynamic subsystem) attached
to a main structure (or a main dynamic system) is considered. After discretization, the substructure
is represented by a finite, typically large, number of degrees of freedom, Ns and hence also by Ns
eigenmodes. In order to reduce the computational effort, it is common to apply ‘modal reduction’ to
the subsystem such that only Nr modes out of the total number of Ns modes are retained, where
Nr>Ns. The following question then arises: ‘Which Nr modes should be retained?’ In structural
dynamics, it is traditional to retain those modes associated with the lowest frequencies. In this paper,
the question is answered by solving an appropriate optimization problem. The most important modes of
the subsystem are shown to be those whose coupling matrices, which are defined in a particular way,
have the highest norm. This leads to a simple and effective algorithm for optimal modal reduction.
The new criterion for ‘modal importance’ is explained both mathematically and physically, and is
demonstrated by numerical examples. Copyright � 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

One of the fundamental problems of linear system theory is the approximation of complex
systems by simpler ones. In the context of structural dynamics, the goal is to approximate a
given discrete model of a structure by another model which involves a much smaller number
of degrees of freedom. Such a reduction is very important in cases where the computational
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effort associated with the direct analysis of the given system is prohibitive. There is a very
large volume of literature on the subject, often called ‘model order reduction;’ see, e.g. the
review papers [1–5]. Some of this work is related to robust control, where there is a need for
the repetitive real-time solution of large structural dynamic problems [6].

One major way to simplify models is via modal reduction. The original linear system is
first decomposed into its eigenmodes. Then a small number of these eigenmodes is retained to
represent the system, whereas all the other modes are discarded. The following question then
arises: ‘Which of the modes should be retained?’ In structural dynamics, it is traditional to retain
those modes associated with the lowest frequencies [7]. In control theory, a common procedure
is the balanced realization method proposed by Moore [8], where a special mode truncation
is used to obtain a reduced system with equal amount of controllability and observability.
Both these approaches are simple and easy to code, but they are not based on any optimality
criterion. Hence, although in many cases they produce very good approximations, they are not
guaranteed to do so.

There are also model reduction methods which are not based on modal truncation. One very
simple procedure, used mainly in aeroelasticity, is Guyan reduction which is an approximate
dynamical analogue of static condensation [9]. The next level of complexity in structural dy-
namic condensation is ‘component mode synthesis’. In this case, the response of the subsystem
is projected via a Ritz reduction procedure onto a collection of vectors which are described
as rigid body ‘modes’, dynamic ‘modes’ and constraint ‘modes’ [10]. In the robust controls
literature, we can find reduction schemes on the other end of the spectrum of complexity.
The optimal projection method of Hyland and Bernstein [11], for example, is an optimization
method which guarantees a minimum reduction error using a quadratic error criterion. Both
the theoretical considerations and the practical implementation of this method are much more
complicated than those of balanced realization, component mode synthesis, or Guyan reduction.

These methods are applied, in most cases, to an entire dynamic system with given boundary
conditions, whose reduction is desired. In this paper, we consider a slightly different perspective.
We consider a linear subsystem ‘attached’ to a main system. In the context of structural
dynamics, such a subsystem may represent a piece of equipment, antenna, etc., connected to
the main structure. On the other hand, if an engineer is interested in the dynamics of different
antenna designs, the ‘subsystem’ may be most of the structure, while the antenna may be
treated as the ‘main’ structure. We wish to reduce the subsystem alone, without modifying
the main system. When doing this, we are not interested in the accurate representation of the
dynamics of the subsystem itself, but in accurately representing the effect this subsystem has
on the dynamic behaviour of the main structure.

Recently, we have considered the exact representation of a dynamic linear substructure using
a reduced number of degrees of freedom [12]. This is achieved by transforming the equations of
motion of the substructure to a system of integro-differential equations on the interface between
the substructure and the main structure, which are appended to the differential equations of
motion of the main structure. In Reference [12] several time-integration schemes for the solution
of the resulting equations have been introduced and analysed.

In this paper, we concentrate on the modal reduction of a linear subsystem with no damping.
We ask a question similar to the one mentioned above: In the reduction process, which of
the subsystem’s modes should be retained? In contrast to the low-frequency rule dominating
structural dynamics, we shall obtain a new criterion for ‘modal importance’. We shall show
that the most important modes of the subsystem are those whose coupling matrices, to be
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defined in a particular way, have the highest norm. This will lead to a simple and effective
algorithm for optimal modal reduction. We shall explain the new criterion both mathematically
and physically and shall demonstrate it via numerical examples.

In Reference [13] we have looked into a similar problem in a simplified setting. In particular,
we assumed in Reference [13] that the mass matrix of the original subsystem is partially lumped.
Here we shall remove this limiting assumption, with the price of making the formulation
slightly more complicated. In addition, we shall provide a physical explanation and some
illustrative examples to our ‘modal importance’ criterion which were lacking in Reference [13].
We shall also present the whole procedure in a slightly different way than we have done in
Reference [13], by using modal truncation from the outset and omitting the assumption of
long simulation times. We note that in Reference [13], we show that of all Ritz reduction
procedures, modal truncation is in a certain sense optimal.

The outline of the rest of the paper is as follows. In Section 2, we provide the detailed
statement of the reduction problem under consideration. The formulation of this problem is
based on the notion of the Dirichlet-to-Neumann (DtN) map, a concept whose relevance to
the present problem we explain. In Section 3, we derive the appropriate DtN map, and define
the coupling matrix of a mode. This matrix is related to the amount of coupling existing
between the subsystem and the main system. In Section 4, we use these concepts to derive
the solution to the reduction problem. This involves the formulation of a criterion for choosing
the subsystem’s most important modes. We then present a modal reduction algorithm based on
this criterion. In Section 5, we provide the physical interpretation of the ‘modal importance
criterion’ and illustrate it via examples. We present some numerical results in Section 6, which
are compared to those obtained by standard modal reduction (the latter being based on retaining
the lowest-frequency modes). We conclude with some remarks in Section 7.

2. STATEMENT OF THE PROBLEM

We consider the vibrational motion of a structure consisting of a main part and an attached
part, which interact with each other through an interface. We assume that the structure behaves
linearly and that no damping is involved. More generally, one may have a main structure
attached to several substructures. However, as long as the different substructures do not interact
directly with each other but only through the main structure, the methodology proposed here
can be applied to each substructure separately.

After spatial discretization, say by finite elements, the structural model becomes a linear
dynamic system consisting of a main part indicated by ‘m’, and an additional subsystem
indicated by ‘s’. The discrete interface separating ‘m’ and ‘s’ is indicated by ‘b’. We denote the
number of degrees of freedom inside ‘m’, on ‘b’ and inside ‘s’ by Nm, Nb and Ns, respectively.
Thus, the total number of degrees of freedom in the entire system is N = Nm + Nb + Ns. The
set-up is illustrated in the upper part of Figure 1.

We remark that although the description above involves structures, the problem discussed
here is quite general and can involve various other types of linear dynamical systems as well.

The global discrete system is written in the standard form

Mü(t) + Ku(t) = F(t) (1)
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Figure 1. Set-up for the subsystem reduction problem.

Here t is time, and a superposed dot indicates time differentiation. In the terminology of
structural dynamics, M is the global mass matrix, K is the global stiffness matrix, F is the
global load vector and u(t) is the unknown vector of displacements. M and K are assumed to
be constant real symmetric matrices; M is positive definite while K is positive semi-definite.
All the above-mentioned arrays are of dimension N . Initial conditions for u(t) at time t = 0
are given as well:

u(0) = u0, u̇(0) = v0 (2)

The vector of unknowns u is partitioned into three subvectors, i.e. uT = {um ub us}, represent-
ing the degrees of freedom inside the main system, on the interface and inside the subsystem,
respectively. Here and elsewhere, the superscript T denotes vector or matrix transposition. Thus,
(1) can be written in a partitioned form as


Mmm Mmb 0

Mbm Mbb Mbs

0 Msb Mss





üm

üb

üs


+



Kmm Kmb 0

Kbm Kbb Kbs

0 Ksb Kss





um

ub

us


 =



Fm

0

0


 (3)

The zero blocks in the mass and stiffness matrices appear due to the fact that the subsystem
‘s’ and the main system ‘m’ are coupled only through the interface degrees of freedom ‘b’.
Owing to the symmetry of K and M, all the diagonal block matrices in (3) are symmetric,
while the off-diagonal rectangular blocks are equal to the transpose of their reflections, namely
Mmb = MT

bm, etc. The dimensions of the various arrays are obvious, e.g. Mmb is an Nm × Nb
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matrix. We assume that all the external loading is applied to the main system, and thus the
subsystem and the interface are unloaded externally. This explains the two zero subvectors in
the load vector F in (3). We further assume that all non-zero initial conditions apply to the
main system only, namely

um(0) = um0, u̇m(0) = vm0, ub(0) = 0, u̇b(0) = 0, us(0) = 0, u̇s(0) = 0 (4)

Assuming the number of degrees of freedom Ns of the given subsystem is too large for
practical computation, we wish to replace the subsystem ‘s’ by a new subsystem ‘r’ (see
Figure 1) with Nr degrees of freedom and with the following properties:

1. The subsystem ‘r’ should be computationally efficient, namely it should have a much
smaller number of degrees of freedom than the original ‘s’: Nr>Ns.

2. The subsystem ‘r’ should be modular, namely the properties of ‘r’ should be determined
entirely in terms of the properties of ‘s’ (i.e. independent of the properties of ‘m’).

3. The subsystem ‘r’ should be a good approximation of the original ‘s’, in that the replace-
ment of ‘s’ by ‘r’ should have the smallest possible effect on the dynamics of the main
system ‘m’.

The need for properties 1 and 3 is obvious. Property 2 is required to allow a subsystem model
to be used with different main systems. For example, if the subsystem is an aeroengine, an
engineer may be interested in determining the effects of the aeroengine on the dynamics of
wings of different geometries. Thus, it is important to make the reduction based on just the
properties of the subsystem. This criterion is distinct from typical reduction procedures found
in the controls community [6].

We make a few remarks regarding the properties above:

• It is important to note that the computational cost associated with the model reduction
is not of a major concern here. The reason is that in most cases the reduction algorithm
is employed one time in order to produce a reduced model which is then used many
times with various inputs (external loads and initial conditions). Thus, in many cases one
is willing to invest a lot of effort in reducing a given system. This is especially so in
substructuring and in real-time control applications, and it is the former that motivates the
authors’ current interest. In fact, some reduction methods involve the one-time solution
of the full original system for a specific input (e.g. a Dirac-delta input), or the full
spectral decomposition of the original system. In the latter case, approximate, relatively
fast, methods of spectral decomposition may be used to reduce the computational cost in
the reduction process if one is willing to compromise the modal accuracy.

• The main concern here is the dynamical behaviour of the main system ‘m’; it is assumed
that the dynamics of the subsystem ‘s’ itself is not of interest. Yet, the subsystem must
be represented sufficiently well since the effect that it has on the main system is very
important in determining the dynamical response of the latter. If a poor reduced model is
used for the given subsystem, it may produce a large error in the dynamics of the main
system as well.

• If the discretization that leads to the linear system is performed using the standard finite
element method, then the degrees of freedom of ‘m’, ‘b’ and ‘s’ are nodal values of
the solution (nodal displacements in the case of a vibrating structure). However, after
reduction, the degrees of freedom of the new subsystem ‘r’ should not necessarily be
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nodal solutions. In fact, they do not have to possess any physical meaning at all, as long
as they accurately preserve the effect the subsystem has on the main system.

Mathematically, the linear system (3) is replaced with the smaller system

Mmm Mmb 0

Mbm mbb mbr

0 mrb mrr





üm

üb

ür


+



Kmm Kmb 0

Kbm kbb kbr

0 krb krr





um

ub

ur


 =



Fm

0

0


 (5)

Here ur(t) is the Nr-dimensional unknown vector associated with the reduced subsystem. The
two linear systems (3) and (5) differ in that us is replaced by the shorter vector ur, and
the block matrices Mbb, Mbs = MT

sb, Mss, Kbb, Kbs = KT
sb and Kss are replaced by mbb,

mbr = mT
rb, mrr, kbb, kbr = kTrb and krr, respectively.

We remark that at first sight the necessity to replace Mbb and Kbb by other matrices mbb
and kbb is not obvious, since the new matrices have exactly the same dimensions as the old
ones (Nb×Nb); however, it turns out that performing such a modification is beneficial in that it
leads to a smaller reduction error. This has been shown in a simpler setting in Reference [13],
and will become clear in this paper too. Furthermore, it may seem like such a replacement
violates requirement 2, above. We note, however, that Mbb and Kbb have contributions from
both the main system and the subsystem, e.g.

Kbb = K(m)
bb + K(s)

bb (6)

Requirement 2 allows modifying M(s)
bb and K(s)

bb, which manifests itself more broadly as a
change to Mbb and Kbb.

The initial conditions (see (4)) dictate that

ur(0) = 0, u̇r(0) = 0 (7)

The problem to be solved is thus: Find the six matrices mbb, mbr = mT
rb, mrr, kbb, kbr = kTrb

and krr such that for arbitrary external load and initial conditions the behaviour of the main
system ‘m’ in the reduced system (5) be as ‘similar’ as possible to that of ‘m’ in the original
system (3). Of course, there are various ways to define the norm in which this similarity is
measured. We choose a specific norm, based on the DtN map.

In the context of discrete structural models, the DtN map is the operator relating the dis-
placement and force on a certain boundary interface. In shell theory, this operator is sometimes
called the ‘interface stiffness’ or ‘edge stiffness’ [14]. More generally, it is the operator relating
the primary field and its ‘flux’ on an interface. This operator is a good measure of the effect
that a part of the system lying on one side of the interface has on the other part. The use of
the DtN map in computational schemes was originally developed by Keller and Givoli [15, 16]
for the solution of boundary value problems in unbounded domains. Later, the concept was
also used for the solution of problems with geometrical singularities [17]. Much more recently,
the DtN method was applied to linear dynamical systems by Barbone et al. [18–20]. See also
the review paper [21].

Relating to Figure 1, the DtN map associated with the interface ‘b’ will be considered. The
proposed viewpoint is as follows. Since the subsystem ‘s’ interacts with the main system ‘m’
only through the interface ‘b’, the effect that ‘s’ has on ‘m’ is characterized by the DtN map �
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on ‘b’. This is true also for the reduced system, namely the effect that the reduced subsystem
‘r’ has on ‘m’ is characterized by �̃, which is the DtN map on ‘b’ associated with the reduced
subsystem. Now, consider the ‘distance’ between � and �̃ in some appropriate norm. We shall
find the reduced subsystem ‘r’ for which this ‘distance’ is minimized.

We now put this idea in mathematical terms. Thinking of u as a vector of displacements,
we first find the forces applied to the interface by the subsystem (and by the interface itself).
From the middle set of Equations in (3) (for the original system) and in (5) (for the reduced
system) we have

Mbmüm + Kbmum = −Mbbüb − Mbsüs − Kbbub − Kbsus (8)

Mbm
¨̃um + Kbmũm = −mbb

¨̃ub − mbrür − kbbũb − kbrur (9)

The notation ũm and ũb has been used here for the independent variables of the reduced
system. The right-hand sides of (8) and (9) give us expressions for the interface forces:

fb(t) = �u(t) ≡ −Mbbüb − Mbsüs − Kbbub − Kbsus (10)

f̃b(t) = �̃u(t) ≡ −mbbüb − mbrür − kbbub − kbrur (11)

Note that these quantities are ‘forces’ in the D’Alembert sense, namely they include inertial
loads. Also, note that we have omitted the ˜ from the interface displacement in the reduced
system, since we are interested in comparing the forces produced by the original and by the
reduced subsystems for the same given interface displacement. Finally, note that both force
vectors fb and f̃b are of dimension Nb.

We consider now the distance between these two vectors. More precisely, we define

� ≡ ‖fb − f̃b‖T = ‖�u − �̃u‖T (12)

where ‖ · ‖T is the norm defined by

‖f‖T = 1

T

∫ T

0
|f(t)|2 dt (13)

In (13), T is a given time value which represents the time span of interest (‘simulation time’).
Now our goal is to find the matrices comprising the reduced system such that � is minimized.

In the next two sections, we solve this minimization problem within the framework of
modal analysis, and show that its solution amounts to a certain criterion for choosing the most
important modes of the subsystem.

3. THE DIRICHLET-TO-NEUMANN (DtN) MAP

The quantity � defined in the previous section measures the distance between the DtN maps
� and �̃ (where �u = fb and �̃u = f̃b) on the interface ‘b’. In this section, we shall derive
expressions for these DtN maps.
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We start with the original subsystem ‘s’. We consider the generalized eigenvalue problem
associated with it:

Kss� = �2Mss� (14)

We assume that the matrices Mss and Kss are symmetric and positive definite.
The solution of (14) yields Ns eigenfrequencies �n and Ns corresponding eigenvectors �n.

The eigenvectors are orthogonal with respect to the mass matrix and are normalized so that

�T
mMss�n = �mn (15)

where �mn is the Kronecker delta. From (14) and (15) we also have

�T
mKss�n = �mn�

2
n (16)

The last two orthogonality statements can also be written as

�TMss� = I (17)

�TKss� = �2 (18)

where � is the Ns×Ns matrix whose columns are the eigenvectors �n, I is the Ns×Ns identity,
and �2 is the Ns ×Ns diagonal matrix whose diagonal entries are the squared frequencies �2

n.
Now, the third set of equations in (3) describes the dynamics of ‘s’:

Mssüs + Kssus = −Msbüb − Ksbub (19)

We diagonalize this equation by making use of the solutions to the generalized eigenvalue
problem (14). To this end, we expand us in the eigenvectors �n, i.e.

us(t) =
Ns∑

n=1
�nYn(t) ≡ �Y(t) (20)

where the Yn(t) are scalar functions of time. We substitute (20) in (19) and multiply the
equation on the left by �T. Then by using the orthogonality properties (17) and (18) we
obtain

Ÿ + �2Y = −�TMsbüb − �TKsbub (21)

In component form this equation becomes

Ÿn(t) + �2
nYn(t) = −�T

nMsbüb(t) − �T
nKsbub(t) ≡ q̇n(t) + pn(t) (22)

Here we have used the definitions

pn(t) = −�T
nKsbub(t), qn(t) = −�T

nMsbu̇b(t) (23)

We note that pn(0) = 0 and qn(0) = 0 from (4). From (20) and from (4) again we also have

Yn(0) = 0, Ẏn(0) = 0 (24)
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To solve (22) and (24) we first find the Green function gn(t) associated with these equations.
This Green function satisfies

g̈n(t) + �2
ngn(t) = �(t) (25)

gn(0) = 0, ġn(0
−) = 0 (26)

where �(t) is the Dirac delta function. It is easy to verify that the Green function is

gn(t) = sin�nt

�n

, t � 0 (27)

With g(t) known, the solution of (22) and (24) is

Yn(t) =
∫ t

0
gn(t − �)pn(�) d� +

∫ t

0
gn(t − �)q̇n(�) d� (28)

We use (27) in (28) and integrate by parts once to obtain

Yn(t) = pn(t)

�2
n

−
∫ t

0

cos�n(t − �)

�2
n

ṗn(�) d� +
∫ t

0
cos�n(t − �)qn(�) d� (29)

Then from (20) and (29) we obtain

us(t) =
Ns∑

n=1
�n

[
pn(t)

�2
n

−
∫ t

0
cos�n(t − �)

(
ṗn(�)

�2
n

− qn(�)

)
d�

]
(30)

Equation (30) is an expression for us that we shall use momentarily. We also need an
expression for üs. From (20) and (22) we find, after some algebra,

üs =
Ns∑

n=1
�n

[∫ t

0
cos�n(t − �)

(
ṗn(�) − �2

nqn(�)
)
d� + q̇n(t)

]
(31)

Now the expressions for pn(t) and qn(t) given by (23) are used in (30) and (31), and the
results are substituted in (10) to evaluate

fb(t) = −Mbbüb(t) − Kbbub(t)

−Mbs

Ns∑
n=1

�n

[∫ t

0
cos�n(t − �)

(
−�T

nKsbu̇b + �2
n�

T
nMsbu̇b

)
d� − �T

nMsbüb

]

−Kbs

Ns∑
n=1

�n

[
−�T

nKsbub
�2

n

−
∫ t

0
cos�n(t − �)

(
−�T

nKsbu̇b
�2

n

+ �T
nMsbu̇b

)
d�

]

(32)
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Finally, we rearrange (32), and recognize that
∑Ns

n=1 �n�
T
n = M−1

ss and
∑Ns

n=1 �n�
T
n/�2

n = K−1
ss ,

to obtain

fb(t) = −(Mbb − MbsM−1
ss Msb)üb(t)−(Kbb − KbsK−1

ss Ksb)ub(t)

−
Ns∑

n=1
Sn

∫ t

0
cos�n(t − �)u̇b(�) d� (33)

Here Sn is the Nb ×Nb matrix which we call the coupling matrix for the nth mode and which
is defined by

Sn = �2
nMbs�n�

T
nMsb − Mbs�n�

T
nKsb − Kbs�n�

T
nMsb + 1

�2
n

Kbs�n�
T
nKsb (34)

By looking at its form it is obvious that the matrix Sn is related to the coupling between the
interface ‘b’ and the subsystem ‘s’ for the nth mode, hence its name. It is easy to see that
this is a symmetric rank-1 matrix, as follows. We let

sn = �nMbs�n − 1

�n

Kbs�n (35)

Then

Sn = snsTn (36)

In writing (33), we have assumed that the matrices Mss and Kss are non-singular. This indeed
follows from our assumption that they are symmetric and positive definite.

An exactly analogous calculation can be performed for the reduced subsystem. The end
result can easily be deduced from (33) by simply replacing each matrix with its counterpart in
the reduced subsystem:

f̃b(t) = −(mbb − mbrm−1
ss mrb)üb(t) − (kbb − kbrk−1

ss krb)ub(t) −
Nr∑

n=1
S̃n

∫ t

0
cos �̃n(t − �)u̇b(�) d�

(37)

Here S̃n is the Nb×Nb coupling matrix for the reduced subsystem whose definition is analogous
to (34), i.e.

S̃n = �̃2
nmbr�̃n�̃

T
nmrb − mbr�̃n�̃

T
nkrb − kbr�̃n�̃

T
nmrb + 1

�̃2
n

kbr�̃n�̃
T
nkrb (38)

The �̃n and �̃n are, respectively, the eigenfrequencies and eigenvectors of the generalized
eigenvalue problem associated with the reduced subsystem, i.e.

krr�̃ = �̃2mrr�̃ (39)

In writing (37), we have assumed that m−1
rr and k−1

rr exist. Indeed this is the case, as will
become clear in the next section.
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4. THE OPTIMAL MODAL REDUCTION ALGORITHM

We now concentrate on modal reduction. To this end, we truncate expansion (20) of us after
Nr terms. Namely, we replace (20) by the approximation

us(t) �
Nr∑

n=1
�̃nyn(t) ≡ �ry(t) (40)

Here �r = [�̃n] is the Ns×Nr matrix whose columns are the Nr ‘most important’ eigenvectors
chosen out of the Ns eigenvectors �n of the original subsystem. We shall soon see how those
Nr modes are chosen.

Now, we consider Equation (19) again, describing the original subsystem:

Mssüs + Kssus = −Msbüb − Ksbub (41)

To reduce this set of Ns equations into a set of Nr equations, we multiply both sides of (41)
on the left by �T

r . Then we substitute (40) in the resulting equation, which yields

(�T
r Mss�r)ÿ + (�T

r Kss�r)y = −�T
r Msbüb − �T

r Ksbub (42)

Using the orthogonality properties of the eigenvectors (cf. (17) and (18)) we obtain

ÿ + �2
r y = −�T

r Msbüb − �T
r Ksbub (43)

Here �2
r is the Nr × Nr diagonal matrix whose diagonal entries are the squared frequencies of

the Nr chosen modes.
On the other hand, the third set of equations in (5) describes the reduced subsystem ‘r’, i.e.

mrrür + krrur = −mrbüb − krbub (44)

Comparing (44) with (43), we identify y(t) with ur(t) and deduce

mrr = Ir (45)

krr = �2
r (46)

mrb =mT
br = �T

r Msb (47)

krb = kTbr = �T
r Ksb (48)

Here Ir is the Nr × Nr identity. It is easy to show that the matrices mrr and krr obtained by
(45) and (46) are symmetric and positive definite. In other words, the reduced matrices mrr
and krr inherit the properties of the original matrices Mss and Kss.

Having determined the matrices mrr, krr, mrb and krb, it remains to determine the matrices
mbb and kbb and to decide which of the original Ns modes is to be included in the reduced list
of Nr modes. To address both these issues, we recall that the goal is to minimize � ≡ ‖fb−f̃b‖T
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as defined by (12). We take the difference between (33) and (37) to obtain

f(t) − f̃(t) =M0üb + K0ub −
Ns∑

n=1
Sn

∫ t

0
cos�n(t − �)u̇b(�) d�

+
Nr∑

n=1
S̃n

∫ t

0
cos �̃n(t − �)u̇b(�) d� (49)

Here

M0 = −(Mbb − MbsM−1
ss Msb) + (mbb − mbrm−1

rr mrb) (50)

K0 = −(Kbb − KbsK−1
ss Ksb) + (kbb − kbrk−1

rr krb) (51)

Since we achieve the reduction via modal truncation, then by construction �̃n = �n for n =
1, . . . , Nr. From this we can also deduce that S̃n = Sn for n = 1, . . . , Nr (see Appendix A).
Thus, (49) reduces to

f(t) − f̃(t) = M0üb + K0ub −
Ns∑

n=Nr+1
Sn

∫ t

0
cos�n(t − �)u̇b(�) d� (52)

Now we can estimate

� ≡ ‖fb − f̃b‖T � ‖M0üb + K0ub‖T +
Ns∑

n=Nr+1
‖Sn‖

∣∣∣∣
∣∣∣∣
∫ t

0
cos�n(t − �)u̇b(�) d�

∣∣∣∣
∣∣∣∣
T

(53)

Here ‖Sn‖ is the norm of the coupling matrix Sn; this can be either the Frobenius norm defined
by

‖S‖ =
(

Nb∑
i=1

Nb∑
j=1

S2
ij

)1/2
(54)

or the 2-norm ‖ · ‖2 induced by the Euclidian vector norm; see, e.g. Reference [22]. In fact,
since Sn is a symmetric rank-one matrix (cf. (36)), it can be shown that the two norms are
identical in this case.

The first norm on the right-hand side of (53) can be minimized by simply taking M0 = 0
and K0 = 0. From (50) and (51), this choice yields expressions for mbb and kbb, i.e.

mbb =Mbb − MbsM−1
ss Msb + mbrm−1

rr mrb (55)

kbb =Kbb − KbsK−1
ss Ksb + kbrk−1

rr krb (56)

Note that all the matrices on the right-hand sides of (55) and (56) are known, being either the
submatrices comprising the original subsystem, or the submatrices of the reduced subsystem
that have already been found (see (45)–(48)).
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Having chosen M0 = 0 and K0 = 0, it now remains to minimize the sum on the right-
hand side of (53). This term depends on the function u̇b which is, of course, unknown. For an
arbitrary u̇b, the best that we can do is to minimize the coefficients ‖Sn‖ for n = Nr+1, . . . , Ns.
Thus, among the Ns modes of the original subsystem, the modes n = Nr + 1, . . . , Ns should
be those for which the corresponding matrices Sn have the smallest norms. This yields the rule
for choosing the first Nr ‘important’ modes: these are the modes for which the corresponding
coupling matrices Sn have the largest norms.

The estimate in (53) which leads to the ‖Sn‖-based criterion is taken in order that the
reduction be accurate for a wide variety of responses. The resulting reduction is optimal in the
sense that no better reduction may be found for arbitrary loads and initial conditions.

We can now assemble all the pieces derived above into a single algorithm which we call
optimal modal reduction (OMR). The OMR algorithm is summarized in Box 1.

Box 1. The OMR algorithm.

• Given: the matrices Mbb, Mss, Mbs = MT
sb, Kbb, Kss and Kbs = KT

sb in (3).
• Solve the generalized eigenvalue problem

Kss� = �2Mss�

and find the Ns eigenfrequencies �n and corresponding eigenvectors �n. Normalize
the eigenvectors such that �T

nMss�n = 1.
• For each mode n = 1, . . . , Ns, calculate ‖Sn‖ by using (34) and (54).
• Sort the modes according to the value of ‖Sn‖ in descending order. Thus,

‖S1‖ � ‖S2‖ � · · · � ‖SNs‖
• If the dimension of the reduced subsystem, Nr, is not given a priori, Choose Nr.
A reasonable way to do this is to take Nr such that ‖SNr‖ � �‖S1‖, where 0 < �
< 1 is a given parameter. In other words, choose Nr so that the minimum ‖Sn‖
value of the retained modes is a given fraction (say � = 30%) of the maximum
‖Sn‖ value.

• Let Ir be the Nr × Nr identity, �2
r be the Nr × Nr diagonal matrix whose diagonal

entries are the squared frequencies �2
n of the first Nr modes, and �r be the Ns×Nr

matrix whose columns are the first Nr eigenvectors �n. Then

mrr = Ir, mrb = mT
br = �T

r Msb

krr = �2
r , krb = kTbr = �T

r Ksb

• Calculate:

mbb =Mbb − MbsM−1
ss Msb + mbrm−1

rr mrb

kbb =Kbb − KbsK−1
ss Ksb + kbrk−1

rr krb

• The reduced system is (5), with the matrices mbb, mbr = mT
rb, mrr, kbb, kbr = kTrb

and krr obtained above.

Copyright � 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 59:1657–1678



1670 D. GIVOLI, P. E. BARBONE AND I. PATLASHENKO

We note that OMR differs from standard modal reduction (SMR) in two ways:

1. The rule of ‘modal importance’ obtained here is different than that used in SMR.
2. The OMR algorithm involves a special construction of the matrices mbb and kbb as in

(55) and (56). In SMR, one usually takes mbb = Mbb and kbb = Kbb.

5. PHYSICAL INTERPRETATION

As observed above, the rule of ‘modal importance’ obtained in OMR is different than that used
in SMR, say in structural dynamics. In the latter, the important modes, which are retained in
the reduction, are defined to be those with the smallest frequencies. Indeed, various arguments
can be given to support the sensibility of the low-frequency rule in the case where the reduction
of a complete independent dynamical system is sought. However, when we focus our attention
on the reduction of a subsystem, it turns out that this rule is not optimal.

The new optimal rule is not based directly on the spectrum of the subsystem as in SMR.
Instead, it is based on the strength of interaction between the subsystem ‘s’ and the interface
‘b’. This is manifested mathematically by the way in which the matrices Mbs, Msb, Kbs and
Ksb appear in expression (34) for the coupling matrix Sn. According to this new criterion, the
important subsystem modes are those that interact strongly with the interface, and thus will
potentially affect the main system the most.

To demonstrate this criterion, we consider the set-up illustrated in Figure 2. This example
was also examined in Reference [13], in a simplified setting using partial mass lumping. We
consider the lateral motion of a linear flat membrane, governed by the scalar wave equation

c2∇2u = ü (57)

where u is the lateral displacement and c is the given wave speed. We take c = 1. As Figure 2
shows, the main structure is the 3 × 3 square ACDK, and the attached substructure is the
hexagon EFGHIJ. The interface between them is the segment EJ. The sides AC, DE, EF, HI,
IJ and JK are fixed (they are represented by thick lines in Figure 2), whereas all the other
sides are free. The shaded strip shown in Figure 2 has to do with the initial conditions which
will be described later.

We discretize the entire membrane by square bilinear finite elements of size 0.1 × 0.1.
Altogether there are N = 1988 degrees of freedom in the discrete membrane (which is the
number of nodes excluding the fixed nodes). Of these, there are Nb = 9 degrees of freedom
on the interface ‘b’ and Ns = 1080 degrees of freedom inside the substructure ‘s’.

We solve the generalized eigenvalue problem (14) associated with the subsystem ‘s’. Then
we sort all the eigenmodes in two different ways: by ascending frequencies (SMR) and by
descending ‖Sn‖ norm values (OMR). Table I shows the characteristics of the first 10 modes
according to the SMR sorting. For each mode number n the values of ‖Sn‖ and the frequency
�n are given in the table. In addition, the last column indicates the position of this mode in
the list generated by using OMR sorting. Table II describes the first 10 modes according to
the OMR sorting. Its last column indicates the position of each mode in the list generated by
using SMR sorting.

By inspecting Tables I and II we observe that the two top-ten sets of modes obtained in
SMR and OMR are completely disjoint. Moreover, some of the modes that appear in one of
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Figure 2. The vibrating membrane problem.

Table I. Top-ten modes according to SMR (i.e. modes are
sorted by ascending frequencies). The last column shows

for each mode its position in the OMR list.

SMR-mode Mode number
number n ‖Sn‖ Frequency in OMR-mode list

1 3.73 × 10−17 0.74 1071
2 8.95 × 10−15 1.65 1062
3 2.09 × 10−24 1.66 1078
4 1.26 × 10−12 2.20 1027
5 2.36 × 10−11 2.66 942
6 1.17 × 10−19 2.68 1073
7 1.59 × 10−8 2.95 527
8 9.50 × 10−16 3.06 1068
9 4.30 × 10−5 3.36 89

10 7.84 × 10−5 3.64 54

the top-ten list are found in the middle or even at the end of the other full list. For example,
the single most important mode according to SMR is number 1071 (out of 1080 total) in the
OMR list. Thus, the two criteria for ‘modal importance’ lead to completely different results.
This is also seen in Figure 3, which shows the frequencies of the OMR-sorted modes ( joined
by straight lines) as a function of the mode number. Although there is a general correlation
between the OMR-mode number and the frequency, there are many exceptions which make the
dependence between the two highly non-monotone. Note in particular the long ‘spikes’ seen in
Figure 3 for large n; these correspond to modes which are regarded as unimportant in OMR,
but whose frequencies are low and are thus considered very important in SMR. A concern
with OMR is that it may include ‘high frequency’ modes which are not accurately discretized.
If so, this can be an indication that the original FEM discretization is not accurately capturing
all the important physical phenomena in a given problem.

To better understand the difference between the two ‘modal importance’ criteria, we visualize
the first eigenfunction obtained in SMR and in OMR in Figures 4 and 5, respectively. This
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Table II. Top-ten modes according to OMR (i.e. modes are
sorted by descending ‖Sn‖ values). The last column shows

for each mode its position in the SMR list.

OMR-mode Mode number
number n ‖Sn‖ Frequency in SMR-mode list

1 37.79 × 105 9.13 66
2 35.96 × 105 8.50 60
3 35.19 × 105 28.67 528
4 34.15 × 105 11.18 99
5 32.64 × 105 5.50 25
6 30.05 × 105 7.72 49
7 28.19 × 105 11.07 98
8 26.83 × 105 5.93 28
9 26.25 × 105 6.58 35

10 25.95 × 105 8.62 61
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Figure 3. Frequencies of the OMR-sorted modes ( joined by straight lines)
as a function of the mode number.

eigenfunction is obtained, via finite element interpolation, from the corresponding eigenvector
�1, whose entries are the nodal values of the first mode. Both the colours and the contour
lines in Figures 4 and 5 represent values of u. The first SMR mode, shown in Figure 4, has
by construction the lowest frequency among all the modes of the subsystem (�1 = 0.74; see
Table I). The first OMR mode, shown in Figure 5, has a much higher frequency (�1 = 9.13;
see Table II), but, by definition, its coupling matrix has the largest norm. The difference
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Figure 4. The first subsystem eigenfunction, �1, obtained by SMR. The eigenfunction
is plotted over the domain of the substructure ‘s’. The left side of this domain is the
interface ‘b’ connecting ‘s’ to the main structure ‘m’ which is not shown. Both the colours

and the contour lines represent values of u.

Figure 5. The first subsystem eigenfunction, �1, obtained by OMR. The eigenfunction
is plotted over the domain of the substructure ‘s’. The left side of this domain is the
interface ‘b’ connecting ‘s’ to the main structure ‘m’ which is not shown. Both the colours

and the contour lines represent values of u.

between the two modes is seen very clearly by comparing the two figures; while the SMR
mode illustrated in Figure 4 is ‘global’ and smooth, the OMR mode in Figure 5 is rapidly
oscillating.

We have already argued that the strength of the coupling between the subsystem and the
main system, which is the measure used by the OMR criterion, manifests itself in the forces
that the subsystem ‘s’ applies on the interface ‘b’. For finite elements with uniform stiffness
(i.e. elements with the same size and material properties, as in the present case), these forces
are proportional to the gradients of u along the interface. Thus, we can visualize the strength
of system–subsystem coupling of the two modes shown in Figures 4 and 5 by looking at the
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changes of colour or at the density of contours near the interface in these two figures. It is
clear that the SMR mode (Figure 4) is associated with very weak coupling, whereas the OMR
mode (Figure 5) exhibits strong coupling. There is no point in retaining the first SMR mode
in the reduced subsystem, since it has hardly any effect on the main system whose dynamical
behaviour is of interest to us. On the other hand, the first OMR mode plays an important
role in this dynamical behaviour and therefore must not be omitted, despite the fact that its
frequency is rather high.

6. NUMERICAL RESULTS

We now solve the vibrating membrane problem introduced above as a time-dependent problem.
To this end we need to specify initial conditions. The initial velocity is zero everywhere. The
initial displacement is also zero everywhere except in the left shaded 3 × 1 strip shown in
Figure 2. In this strip the initial displacement is a ‘hat’ function, changing linearly from u = 0
along the line x = 0 to u = 1 along the lines x = 0.5 to u = 0 again along the line x = 1. We
use the Newmark trapezoidal time-integration scheme [23] with time-step increment �t = 0.01
to solve both the original problem (3) and the reduced problem (5) with the given initial
conditions.

The geometry, boundary conditions and initial conditions of this problem guarantee a com-
plicated solution. The initial pulse propagates to the right with speed c = 1, penetrates the
substructure and is reflected back to the main structure from the substructure walls as well as
the from the boundaries DE and JK. There are many reflections, including internal reflections
among the walls of the substructure. Moreover, there is a geometrical wave dispersion effect
due to fact that the domain has the shape of a wave guide. Thus, the solution consists of com-
plex wave patterns that involve significant modes with both low and high frequencies. During
the simulation time the wave travels a number of times the entire length of the membrane.

How many modes (or degrees of freedom) should we include in the reduced substructure,
namely what is a good choice for Nr? In Box 1, we have proposed a simple procedure for
determining Nr. To see how this procedure should be applied in the present example, we plot
in Figure 6 the graph of ‖Sn‖ as a function of n (1� n �Ns = 1080), after OMR mode
sorting. We see that at about n = 200 the graph starts to level off. Thus, a reduced model with
Nr = 200 is a very reasonable choice in this case. This amounts to a great reduction in the
number of degrees of freedom, namely a reduction of (Ns − Nr)/Ns = 81.5%. We have tried
a number of reduced models, with Nr varying between 1 and 200.

First, the dimension of the reduced subsystem is chosen to be Nr = 50. Since the dimension
of the original subsystem is Ns = 1080, this yields a reduction of Nr/Ns = 95.4%. Figures 7(a)
and (b) show the solution u as a function of x for y = 1.5 at two times: t = 4 and 25. Note
that the x range shown is that which is in the main system ‘s’, since there is no interest in
the accuracy of the solution inside the subsystem. We compare three solutions in each figure:
the solution for the original substructure (Nr = Ns = 1080), the solution for the reduced
substructure with Nr = 50 obtained by OMR, and the solution with Nr = 50 obtained by
SMR. The deviations of both the SMR and OMR solutions from the full-model solution grow
in time, but the deviation of the SMR solution is much larger. In general the OMR solution
remains close to the full solution, whereas the SMR solution is far off.
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Figure 6. The norm of the coupling matrix, ‖Sn‖, as a function of the
mode number n, after OMR mode sorting.

(a) (b)

Figure 7. Solution u as a function of x for y = 1.5 for the full model (Nr = Ns = 1080),
the reduced model with Nr = 50 using OMR, and the reduced model with Nr = 50 using

SMR, at times: (a) t = 4; and (b) t = 25.

To examine the local accuracy more closely, we define the relative pointwise error

e(t) = ‖u(x, y, t) − ũ(x, y, t)‖0/‖u(x, y, t)‖0 (58)

where u is the full solution (Nr = 1080), ũ is the reduced solution, and ‖ · ‖0 is the one-
dimensional L2 norm along the middle horizontal ‘fibre’ in the main structure, i.e. along
the segment y = 1.5, 0� x � 3. Figure 8(a) shows the error e(t) generated by the OMR
scheme with different numbers of degrees of freedom Nr, on a logarithmic scale. The critical
deterioration between Nr = 30 and 10 is evident. We also see that although the error has an

Copyright � 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 59:1657–1678



1676 D. GIVOLI, P. E. BARBONE AND I. PATLASHENKO

(a) (b)

Figure 8. The relative error e(t): (a) comparison of the errors generated by OMR with reduced
models having Nr = 1, 5, 10, 30 and 50 degrees of freedom; and (b) comparison between the errors

generated OMR and by SMR with Nr = 200 degrees of freedom.

oscillatory behaviour it generally increases in time. Figure 8(b) compares the OMR error to
the SMR error, for Nr = 200. The general superiority of OMR is clear. In fact, the OMR error
is more than an order of magnitude smaller than the SMR error.

The example shown was chosen to demonstrate clearly the potential advantage of OMR
to SMR when one is interested in the effect one part of a system has on another. It is
expected that such clear superiority will not be evidenced in every possible example. In fact,
in an experiment done with a simple rectangular domain (with a Dirichlet condition along its
entire boundary) which was subdivided into two rectangular domains (the main system and the
subsystem), OMR and SMR yielded very similar results.

Figure 3 provides evidence supporting the rule of thumb that lower-frequency modes tend
to be more important than higher-frequency modes. This may explain why SMR tends to give
satisfactory, if suboptimal, results. Figure 3 shows also that this rule of thumb is not generally
true. The OMR criterion, on the other hand, generally provides an optimal reduction, and thus
should be viewed as an important tool in the armory of the analyser.

7. CONCLUDING REMARKS

We have proposed a new criterion for choosing the modes to be retained in the reduction of
a linear dynamical subsystem. We have shown how this criterion can be incorporated in an
effective algorithm of optimal modal reduction (OMR). The important modes of the subsystem
turned out to be those whose coupling matrices have the highest norm. The new formulation
is an extension of the partially lumped scheme presented in Reference [13].

We intend to combine the new OMR scheme with the ‘high modal density’ approximation
devised in Reference [19]. The latter is a very effective way to represent subsystems in problems
where the modes are dense, namely packed in near each other, a situation which arises in a
number of important applications.
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As we have remarked in the end of Section 4, the OMR scheme is different than standard
modal reduction (SMR) in more than just the rule of ‘modal importance’. A second difference
is related to the special construction of the matrices mbb and kbb (see Box 1, or (55) and
(56)). We have not discussed this aspect of the OMR scheme in detail in this paper; this has
been done in Reference [13] in the context of the partially-lumped formulation. This special
construction of the interface matrices turns out to be about as important as implementing the
‘modal importance’ rule.

APPENDIX A. PROOF THAT S̃n = Sn FOR n = 1, . . . , Nr

By construction,

�̃n = �n for n = 1, . . . , Nr (A1)

From this fact and from (45), (46) and (39), we deduce that the eigenvectors �̃n are just the
Cartesian unit vectors. Therefore,

�r�̃n = �n (A2)

Now, we substitute expressions (47) and (48) for mbr and kbr in (38) to obtain

S̃n = �̃2
nMbs�r�̃n�̃

T
n�T

r Msb − Mbs�r�̃n�̃
T
n�T

r Ksb

−Kbs�r�̃n�̃
T
n�T

r Msb + 1

�̃2
n

Kbs�r�̃n�̃
T
n�T

r Ksb (A3)

We use (A1) and (A2) in (A3) to get, for n = 1, . . . , Nr,

S̃n = �2
nMbs�n�

T
nMsb − Mbs�n�

T
nKsb − Kbs�n�

T
nMsb + 1

�2
n

Kbs�n�
T
nKsb (A4)

But this is exactly expression (34) for Sn. Hence S̃n = Sn for n = 1, . . . , Nr. In other words,
the original and reduced subsystems share the same first Nr coupling matrices.
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