
I.1.(a) Krylov subspace projection methods



Orthogonal projection technique : framework

Let A be ann × n complex matrix andK be anm-dimensional
subspace ofCn. An orthogonal projection technique seeks an
approximate eigenpair

(λ̃, ũ) with λ̃ ∈ C andũ ∈ K.

This approximate eigenpair is obtained by imposing the following
Galerkin condition:

Aũ − λ̃ũ ⊥ K , (1)

or, equivalently,

vH(Aũ − λ̃ũ) = 0, ∀ v ∈ K. (2)

In matrix form, assume that an orthonormal basis{v1, v2, . . . , vk}
of K is available. DenoteV = (v1, v2, . . . , vk), and letũ = V y.
Then, the condition (2) becomes

vH
j (AV y − λ̃V y) = 0, j = 1, . . . , k.



Therefore,y andλ̃ must satisfy

Bky = λ̃y, (3)

where
Bk = V HAV.

Each eigenvaluẽλi of Bk is called aRitz value, andV yi is called
Ritz vector, whereyi is the eigenvector ofBk associated with̃λi.



Rayleigh-Ritz procedure - orthogonal projection

1. Compute an orthonormal basis{vi}i=1,...,k of the subspaceK.
Let V = (v1, v2, . . . , vk).

2. ComputeBk = V HAV .

3. Compute the eigenvalues ofBk and selectk0 desired ones:
λ̃i, i = 1, 2, . . . , k0, wherek0 ≤ k.

4. Compute the eigenvectorsyi, i = 1, . . . , k0, of Bk associated
with λ̃i, i = 1, . . . , k0, and the corresponding approximate
eigenvectors ofA, ũi = V yi, i = 1, . . . , k0.



Oblique projection technique : framework

Select two subspacesL andK and then seek an approximate
eigenpair

(λ̃, ũ) with λ ∈ C andũ ∈ K

that satisfies thePetrov-Galerkin condition:

vH(Aũ − λ̃ũ) = 0, ∀ v ∈ L . (4)

In matrix form, letV denote the basis for the subspaceK andW
for L. Then, writingũ = V y, the Petrov-Galerkin condition (4)
yields the reduced eigenvalue problem

Bky = λ̃Cky,

where
Bk = WHAV and Ck = WHV.



If Ck = V HV = I, then the two bases are calledbiorthonormal.

In order for a biorthonormal pairV andW to exist the following
additional assumption forL andK must hold.For any two bases
V andW of K andL, respectively,

det(WHV ) 6= 0 . (5)



Rayleigh-Ritz procedure - oblique projection

1. Compute an orthonormal bases{vi}i=1,...,k of the subspaceK.
and{wi}i=1,...,k of the subspaceL.

Let V = (v1, v2, . . . , vk) andW = (w1, w2, . . . , wk).

2. ComputeBk = WHAV andCk = WHV .

3. Compute the eigenvalues ofBk − λCk and selectk0 desired
ones:λ̃i, i = 1, 2, . . . , k0, wherek0 ≤ k.

4. Compute the right and left eigenvectorsyi andzi, i = 1, . . . , k0,
of Bk − λCk associated with̃λi, i = 1, . . . , k0, and the
corresponding approximate right and left eigenvectors ofA,
ũi = V yi, andṽi = Wzi, i = 1, . . . , k0.



Optimality

Let Q = (Qk, Qu) be ann-by-n orthogonal matrix, whereQk is
n-by-k, andQu is n-by-(n − k), and span(Qk) = K. Then

T = QTAQ =

[
QT

k AQk QT
k AQu

QT
uAQk QT

uAQu

]
≡

[
Tk Tuk

Tku Tu

]

The Ritz values and Ritz vectors are consideredoptimal
approximations to the eigenvalues and eigenvectors ofA from the
selected subsapceK = span(Qk) as justified by the follows.

Theorem.

min
S,k×k

‖AQk − QkS‖2 = ‖AQk − QkTk‖2



Krylov subspace

Kk+1(A, u0) = span{u0, Au0, A
2u0, . . . , A

ku0}

= {q(A)u0 | q ∈ Pk},

wherePk is the set of all polynomial of degree less thank + 1.

Properties ofKk+1(A, u0):

1. Kk(A, u0) ⊂ Kk+1(A, u0).

AKk(A, u0) ⊂ Kk+1(A, u0).

2. If σ 6= 0, Kk(A, u0) = Kk(σA, u0) = Kk(A, σu0).

3. For any scalarκ, Kk(A, u0) = Kk(A − κI, u0).

4. If W is nonsingular,Kk(W
−1AW, W−1u0) = W−1Kk(A, u0).



Arnoldi decomposition

An explicit Krylov basis{u0, Au0, A
2u0, . . . , A

ku0} is not suitable
for numerical computing. It is extremely ill-conditioned.
Therefore, our first task is to replace a Krylov basis with a better
conditioned basis, say an orthonormal basis.

Theorem. Let the columns ofKj+1 =
(
u0 Au0 . . . Aju0

)

be linearly independent. Let

Kj+1 = Uj+1Rj+1 (6)

be the QR factorization ofKj+1. Then there is a(j + 1) × j

unreduced upper Hessenberg matrixĤj such that

AUj = Uj+1Ĥj. (7)

Conversely, ifUj+1 is orthonormal and satisfies (7), then

span(Uj+1) = span{u0, Au0, . . . , A
ju0}. (8)



Proof: Partitioning the QR decomposition (6), we have
(
Kj Aju0

)
=
(
Uj uj+1

)(Rj rj+1

0 rj+1,j+1

)
,

whereKj = UjRj is the QR decomposition ofKj. Then

AKj = AUjRj

or

AUj = AKjR
−1
j = Kj+1

(
0

R−1
j

)
= Uj+1Rj+1

(
0

R−1
j

)
.

It is easy to verify that

Ĥj = Rj+1

(
0

R−1
j

)

is a(j + 1) × j unreduced upper Hessenberg matrix. Therefore we
complete the proof of (7).
Conversely, suppose thatUj+1 satisfies (7), then by induction, we
can prove the identity (8).



:
Arnoldi decomposition: by partitioning,

Ĥj =

(
Hj

hj+1,je
T
j

)
,

the decomposition (7) can be written as follows:

AUj = UjHj + hj+1,juj+1e
T
j . (9)

We call (9) anArnoldi decomposition of orderj. The
decomposition (7) is a compact form.



Arnoldi procedure

By the Arnoldi decomposition (9), we deduce the following
process to generate an orthogonormal basis{v1, v2, . . . , vm} of the
Krylov subspaceKm(A, v):

Arnoldi Process:
1. v1 = v/‖v‖2

2. for j = 1, 2, . . . , k
3. computew = Avj

4. for i = 1, 2, . . . , j
5. hij = vT

i w
6. w = w − hijvi

7. end for
8. hj+1,j = ‖w‖2

9. If hj+1,j = 0, stop
10. vj+1 = wj/hj+1,j

11. endfor



Remarks:

1. The matrixA is only referenced via the matrix-vector
multiplicationAvj. Therefore, it is ideal for large scale
matrices. Any sparsity or structure of a matrix can be exploited.

2. The main storage requirement is(m + 1)n for storing Arnoldi
vectors{vi}

3. the cost of arithmetic ism matrix-vector products plus2m2n
for the rest. It is common that the matrix-vector multiplication
is the dominant cost.

4. The Arnoldi procedure breaks down whenhj+1,j = 0 for some
j. It is easy to see that if the Arnoldi procedure breaks down at
stepj (i.e. hj+1,j = 0), thenKj = span(Vj) is invariant
subspace of A.

5. Some care must be taken to insure that the vectorsvj remain
orthogonal to working accuracy in the presence of rounding
error. The usual technique isreorthogonalization.



Arnoldi decomposition

• Denote
Vk =

(
v1 v2 . . . vk

)

and

Hk =




h11 h12 · · · h1,k−1 h1k

h21 h22 · · · h2,k−1 h2k

h32
... h3,k−1 h3k
... ... ...

hk,k−1 hkk




.

• The Arnoldi process can be expressed in the following
governing relations:

AVk = VkHk + hk+1,kvk+1e
T
k (10)

and
V H

k Vk = I and V H
k vk+1 = 0.



• The decomposition is uniquely determined by the starting
vectorv (the implicitQ-Theorem).

• SinceV H
k vk+1 = 0, we have

Hk = V T
k AVk.

• Let µ be an eigenvalue ofHk andy be a corresponding
eigenvectory, i.e.,

Hky = µy, ‖y‖2 = 1.

Then the corresponding Ritz pair is(µ, Vky). Applying y to the
right hand side of (10), the residual vector for(µ, Vky) is given
by

A(Vky) − µ(Vky) = hk+1,kvk+1(e
T
k y).



• Using the backward error interpretation, we know that(µ, Vky)
is an exact eigenpair ofA + E:

(A + E)(Vky) = µ(Vky),

where
‖E‖2 = |hk+1,k| · |e

T
k y|.

This gives us a criterion of whether to accept the Ritz pair
(µ, Vky) as an accurate approximate eigenpair ofA.



Arnoldi method = RR + Arnoldi

1. Choose a starting vectorv;

2. Generate the Arnoldi decomposition of lengthk by the Arnoldi
process;

3. Compute the Ritz pairs and decide which ones are acceptable;

4. If necessary, increasek and repeat.



An example

A = sprandn(100,100,0.1) andv = (1, 1, . . . , 1)T .
“+” are the eigenvalues of matrixA
“◦” are the eigenvalues of the upper Hessenberg matrixH30
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Observation:exterior eigenvalues converge first, a typical
convergence phenomenon.



The need of restarting

The algorithm has two nice aspects:

1. Hk is already in the Hessenberg form, so we can immediately
apply the QR algorithm to find its eigenvalues.

2. After we increasek to, sayk + p, we only have to orthogonalize
p vectors to compute the(k + p)th Arnoldi decomposition. The
work already completed previously is not thrown away.

Unfortunately, the algorithm has its drawbacks, too:

1. If A is large, we cannot increasek indefinitely, sinceVk

requiresnk memory locations to store.

2. We have little control over which eigenpairs the algorithm
finds.



Implicit restarting

Goal: purge the unwanted eigenvaluesµ from Hk.

1. Exact arithmetic case:

By one step of the QR algorithm with shiftµ, we have

R = UH(H − µI) = upper triangular

Note thatH − µI is singular, henceR must have a zero on its
diagonal. BecauseH is unreduced, thenrnn = 0.

Furthermore, note thatU = P12P23 · · ·Pn−1,n, wherePi,i+1 is a
rotation in the(i, i + 1)-plane. Consequently,U is Hessenberg:

U =

(
U∗ u

uk,k−1e
T
k−1 uk,k

)
.

Hence

H ′ = RU + µI =

(
Ĥ∗ ĥ
0 µ

)
= UHHU.



In other words, one step of the shifted QR has found the
eigenvalueµ exactly and has deflated the problem.

2. Finite precision arithmetic case:

• In the presence of rounding error, after one step of the
shifted QR, we have

Ĥ ′ = ÛHHÛ =

(
Ĥ∗ ĥ

ĥk,k−1e
T
k−1 µ̂

)
.

• From the Arnoldi decomposition, we have

AVkÛ = VkÛ (ÛTHkÛ) + hk+1,kvk+1e
T
k Û .

• Partition
V̂k = VkÛ =

(
V̂k−1 v̂k

)

Then

A ( V̂k−1 v̂k ) = ( V̂k−1 v̂k )

(
Ĥ∗ ĥ

ĥk,k−1e
T
k−1 µ̂

)
+hk+1,kvk+1

(
ûk,k−1e

T
k−1 û



• From the firstk − 1 columns of this partition, we get

AV̂k−1 = V̂k−1Ĥ∗ + feT
k−1, (11)

wheref = ĥk,k−1v̂k + hk+1,kûk,k−1vk+1.

• Note thatĤ∗ is Hessenberg.f is orthogonal tôVk−1. Hence
(11) is an Arnoldi decomposition of lengthk − 1.

• The process may be repeated to remove other unwanted
values fromH.



The symmetric Lanczos procedure

• Observation: in the Arnoldi decomposition, ifA is symmetric,
then the upper Hessenberg matrixHj is symmetric tridiagonal.

• The following is a simplified process to compute an
orthonormal basis of a Krylov subspace:

Lanczos process:
1 q1 = v/‖v‖2, β0 = 0; q0 = 0;
2 for j = 1 to k, do
3 w = Aqj;
4 αj = qT

j w;
5 w = w − αjqj − βj−1qj−1;
6 βj = ‖w‖2;
7 if βj = 0, quit;
8 qj+1 = w/βj;
9 endfor



The symmetric Lanczos algorithm : governing equation

Denote
Qk =

(
q1 q2 . . . qk

)

and

Tk =




α1 β1

β1 α2 β2
... . .. ...

. .. αk−1 βk−1

βk−1 αk




= tridiag(βj, αj, βj+1),

thek-step Lanczos process yields

AQk = QkTk + fke
T
k , fk = βkqk+1 (12)

andQT
k Qk = I andQT

k qk+1 = 0.



Let
Tky = µy, ‖y‖2 = 1.

Then

A(Qky) = QkTky + fk(e
T
k y) = µ(Qky) + fk(e

T
k y).

Hereµ is aRitz value, andQky is the correspondingRitz vector.



Error bound

Lemma. Let H be symmetric, andHz − µz = r andz 6= 0. Then

min
λ∈λ(H)

|λ − µ| ≤
‖r‖2

‖z‖2
.

Proof: LetH = UΛUT be the eigen-decomposition ofH. Then

(H−µI)z = r ⇒ U (Λ−µI)UTz = r ⇒ (Λ−µI)(UTz) = UTr.

Notice thatΛ − µI is diagonal. Thus

‖r‖2 = ‖UTr‖2 = ‖(Λ − µI)(UTz)‖2

≥ min
λ∈λ(H)

|λ − µ| ‖UTz‖2

= min
λ∈λ(H)

|λ − µ|‖z‖2,

as expected.



Error bound

• If fk(e
T
k y) = 0 for somek, then the associated Ritz valueµ is

an eigenvalue ofA with the corresponding eigenvectorQky.

• Let ‖r‖2 = ‖fk(e
T
k y)‖2, then by the lemma, we know that for

the Ritz pair(µ, Qky), there is an eigenvalueλ of A, such that

|λ − µ| ≤
‖fk(e

T
k y)‖2

‖Qky‖2



Lanczos method = RR + Lanczos

Simple Lanczos Algorithm:
1. q1 = v/‖v‖2, β0 = 0, q0 = 0;
2. for j = 1 to k do
3. w = Aqj;
4. αj = qT

j w;
5. w = w − αjqj − βj−1qj−1;
6. βj = ‖w‖2;
7. if βj = 0, quit;
8. qj+1 = w/βj;
9. Compute eigenvalues and eigenvectors ofTj

10. Test for convergence
11. endfor



Example

A = a random diagonal matrixA of ordern = 1000
v = (1, 1, . . . , 1)T

Convergence behavior:
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We observe that

1. Extreme eigenvalues, i.e., the largest and smallest ones,
converge first, and the interior eigenvalues converge last.

2. Convergence is monotonic, with theith largest (smallest)
eigenvalues ofTk increasing (decreasing) to theith laregst
(smallest) eigenvalue ofA.

=⇒ Convergence analysis



Thick Restarting

• Selects two indicesℓ andu to indicate those Ritz values to be
kept at both ends of spectrum:

θmθ2θ1 θuθ

keep keepdiscard

l

• The corresponding kept Ritz vectors are denoted by

Q̂k = [q̂1, q̂2, . . . , q̂k] = QmYk, (13)

where
k = ℓ + (m − u + 1), (14)

Yk = [y1, y2, . . . , yℓ, yu, yu+1, . . . , ym], (15)

andyi is the eigenvector ofTm corresponding toθi.



• Sets these Ritz vectorŝQk as the firstk basis vectors at the
restart and̂qk+1 = qm+1.

• To compute the(k + 2)th basis vector̂qk+2, TRLan computes
Aq̂k+1 and orthonormalizes it against the previousk + 1 basis
vectors. That is,

β̂k+1q̂k+2 = Aq̂k+1 − Q̂k(Q̂
H
k Aq̂k+1) − q̂k+1(q̂

H
k+1Aq̂k+1).

Note thatAQ̂k satisfies the relation:

AQ̂k = Q̂kDk + βmq̂k+1s
H,

whereDk is thek × k diagonal matrix whose diagonal
elements are the kept Ritz values, ands = Y H

k em.

Thus, the coefficientŝQH
k Aq̂k+1 can be computed efficiently:

Q̂H
k Aq̂k+1 = (AQ̂k)

H q̂k+1 = (Q̂kDk + βmq̂k+1s
H)H q̂k+1

= DkY
H
k (QH

mqm+1) + βms(q̂H
k+1q̂k+1) = βms.



• Then after the first iteration after the restart, we have

AQ̂k+1 = Q̂k+1T̂k+1 + β̂k+1q̂k+2e
H
k+i,

where

T̂k+1 =

[
Dk βms

βmsH α̂k+1

]

• In general, at theith iteration after the restart, the new basis
vectorq̂k+i+1 satisfies the relation:

AQ̂k+i = Q̂k+iT̂k+i + β̂k+iq̂k+i+1e
H
k+i,

whereT̂k+i = Q̂H
k+iAQ̂k+i is of the form

T̂k+i =




Dk βms

βmsH α̂k+1 β̂k+1

β̂k+1 α̂k+2 β̂k+2
.. . ... . ..

β̂k+i−2 α̂k+i−1 β̂k+i−1

β̂k+i−1 α̂k+i




.



• Note that the three-term recurrence is not valid only for
computing the(k + 2)th basis vector and is resumed afterward.


