|.1.(a) Krylov subspace projection methods




Orthogonal projection technique : framework

Let A be amn x n complex matrix andC be anm-dimensional
subspace of”. An orthogonal projection technique seeks an
approximate eigenpair

(\, %) with X € C and@ € K.

This approximate eigenpair is obtained by imposing thetalhg
Galerkin condition:

Au—\Nu LK, (1)
or, equivalently,
v (AT — \u) =0, YveKk. (2)
In matrix form, assume that an orthonormal bgsis vs, . . ., vi}
of K is available. Denot® = (vy, vy, ..., v;), and letu = Vy.

Then, the condition (2) becomes
v (AVy = AVy) =0, j=1,... k.



Thereforey and A\ must satisfy

~

By = Ay, (3)
where
B, = VAV

Each eigenvaluévz- of By Is called aRitz value, andV'y; is called
Ritz vector, wherey; iIs the eigenvector oB;. associated with,.



Rayleigh-Ritz procedure - orthogonal projection

1. Compute an orthonormal bagis, };—;
LetV = (vy,vg,...,01).

2. ComputeB;, = VHE AV,

3. Compute the eigenvalues Bf. and seleck; desired ones:
Ni,i=1,2,..., ko, whereky < k.

4. Compute the eigenvectoysi = 1,. . ., ko, of By associated
with \;,2 =1, ..., ky, and the corresponding approximate
eigenvectors ofd, u; = Vy,, i =1,..., k.

. of the subspack.

.....



Obligue projection technigue : framework

Select two subspacesand/C and then seek an approximate
eigenpair i
(A, u) with A e Candu € K

that satisfies th@etrov-Galerkin condition:
v (Au - \a) =0, VYveLl. (4)

In matrix form, letlVV denote the basis for the subsp#&candiV
for £. Then, writingu = V'y, the Petrov-Galerkin condition (4)
yields the reduced eigenvalue problem

By = \Cyy,

where
B, = WAV and C,=W"V.



If C,, = V1V = I, then the two bases are callbidrthonormal.

In order for a biorthonormal palr andlV to exist the following
additional assumption fof and/C must hold.For any two bases

V andW of L and L, respectively,
det(WHV) 40 . (5)



Rayleigh-Ritz procedure - oblique projection

1. Compute an orthonormal basgs};—; . of the subspack.

and{w;},—; _; of the subspacég.
LetV = (’Ul, Vo, . .. ,Uk> andW = (wl, wo, . .. ,’wk).
2. ComputeB, = W7 AV andC), = WHV,

3. Compute the eigenvalues Bf. — AC}. and seleck;, desired
ones:\;,i =1,2,...,ky, wherek, < k.

.....

4. Compute the right and left eigenvectgrandz;, i = 1,. .., ko,
of B, — \C}, associated with;,i = 1, ..., kg, and the
corresponding approximate right and left eigenvectord of
ﬂi = Vyz, and’ﬁi =Wz, 1= L..., ko.



Optimality

Let @ = (Q, Q.) be ann-by-n orthogonal matrix, wheré;. is
n-by-k, and@, is n-by-(n — k), and spaf;) = K. Then

L T0TAQ, QTAQL] [T T
T=QAQ= jiyq, Q%AQJ = [Tfu Tf]

The Ritz values and Ritz vectors are considesptimal
approximations to the eigenvalues and eigenvectors fobm the
selected subsapdé = span);) as justified by the follows.

Theorem.

gr]lfifk [AQr — QiS||2 = [|[AQr — Qi Tk||2



Krylov subspace

Kri1(A,ug) = spar{ug, Aug, A%ug, ..., A¥ug}
= {a(A)uo [ ¢ € Py},
where?P;. is the set of all polynomial of degree less tham 1.
Properties ofCy.1(A, up):

1. ICk<A, ’LLO) C ICk+1<A, ’LLO).
AICk(A, Uo) C Kk+1(A, UO).

2. 1f 0 £ 0, Ki(A, ug) = Kr(cg A, uy) = Ki(A, ouyp).
3. For any scalak, KCr(A, ug) = Kr(A — w1, uy).
4. 1f W is nonSingUIarKk(W_lAVV, W_luo) = W_lKk(A, U()).



Arnoldi decomposition

An explicit Krylov basis{ug, Aug, A%uq, . .., A*uy} is not suitable
for numerical computing. It is extremely ill-conditioned.
Therefore, our first task is to replace a Krylov basis with adre
conditioned basis, say an orthonormal basis.

Theorem. Let the columns of<;.; = (ug Aug ... Aluy)
be linearly independent. Let
K1 =UjnRjn (6)

be the QR factorization oK ,;. Then thereis & + 1) x j
unreduced upper Hessenberg matfixsuch that

AU; = Uy Hj. (7)
Conversely, IfU;.; Is orthonormal and satisfies (7), then
spanlU; 1) = spar{ug, Aug, . . ., A’ug}. (8)



Proof:. Partitioning the QR decomposition (6), we have
. R: 7.
- AJ _ g J J+1
(K; Alug) = (U; ujyr) (O 7“j+1,j+1> :
whereK; = U, R; Is the QR decomposition df;. Then
AK; = AU;R;

or

_ 0 0
AU; = AK;R; ' = K ( R.l) =U; 1R ( R.l) .

J J
It is easy to verify that

~ 0
Hj = Rjp (R.l)

J
ISsa(j + 1) x 5 unreduced upper Hessenberg matrix. Therefore we
complete the proof of (7).
Conversely, suppose thét, ; satisfies (7), then by induction, we
can prove the identity (8).



Arnoldi decomposition: by partitioning,

. H.
Hi=|, 7 1],
(hﬁl,ﬁj)

the decomposition (7) can be written as follows:
AUj — UjHj + hj+17jUj+1€T

j .
We call (9) anArnoldi decomposition of order;. The
decomposition (7) is a compact form.

)



Arnoldi procedure

By the Arnoldi decomposition (9), we deduce the following
process to generate an orthogonormal bésisvs, .. ., v, } of the
Krylov subspacéC,, (A, v):

Arnoldi Process:
L v =v/[v]2
2. fory;=1,2,... .k
computew = Av;
fori=1,2,...,7
hz’j = UZT’UJ
w=w — hijvi
end for
hj+1,j = HwH2
If hj—l—l,j =0, StOp
10. Vjt1 — wj/hj+17j
11. endfor

© 00N Ok W



Remarks:

1.

4.

The matrixA is only referenced via the matrix-vector
multiplication Av,. Therefore, it is ideal for large scale
matrices. Any sparsity or structure of a matrix can be exgtbi

. The main storage requirementis + 1)n for storing Arnoldi

vectors{v; }

. the cost of arithmetic is: matrix-vector products plugn?’n

for the rest. It is common that the matrix-vector multiptioa
IS the dominant cost.

The Arnoldi procedure breaks down whien; ; = 0 for some

7. Itis easy to see that if the Arnoldi procedure breaks down at
stepj (i.e. hj1; = 0), thenk; = spanV;) is invariant

subspace of A.

. Some care must be taken to insure that the veotaemain

orthogonal to working accuracy in the presence of rounding
error. The usual techniguetisorthogonalization.



Arnoldi decomposition

e Denote
Vi = (U1 vy ... vk)
and
(hn hig -+ hig—1 hm\
hot hao -+ hog_1 hoy
H), = hsg *+. h3p—1 hs
\ hi g1 hkk)

e The Arnoldi process can be expressed in the following
governing relations:

AVy = Vi Hy + hyi1 pvp 164 (10)

and
VAV, =T and Vv =0.



e The decomposition is uniguely determined by the starting
vectorv (the implicit Q-Theorem).

e SinceV, v, = 0, we have
H, = V' AV,

e Let i, be an eigenvalue dfl;, andy be a corresponding
eigenvectow, i.e.,

Hyy = py, |ylla = 1.

Then the corresponding Ritz pair(ig, Vy). Applying y to the
right hand side of (10), the residual vector far, V;y) is given
by

A(Viy) = p(Viy) = i1 s (e y)-



e Using the backward error interpretation, we know thatV,.y)
IS an exact eigenpair of + E:

(A+E)Viy) = u(Viy),

where

1E]l2 = [hgs1kl - |€;2Fy\-
This gives us a criterion of whether to accept the Ritz pair
(i, Viy) @s an accurate approximate eigenpaidof



Arnoldi method = RR + Arnoldi

1. Choose a starting vector

2. Generate the Arnoldi decomposition of lengthy the Arnoldi
process;

3. Compute the Ritz pairs and decide which ones are acceptabl
4. If necessary, increageand repeat.



An example

A=sprandn(100, 100, 0. 1) andv = (1,1,...,1)%.
“+” are the eigenvalues of matrix

o” are the eigenvalues of the upper Hessenberg matgix
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Observationexterior eigenvalues converge firattypical
convergence phenomenon.



The need of restarting

The algorithm has two nice aspects:

1. H;. is already in the Hessenberg form, so we can immediately
apply the QR algorithm to find its eigenvalues.

2. After we increase to, sayk + p, we only have to orthogonalize
p vectors to compute thg + p)th Arnoldi decomposition. The
work already completed previously is not thrown away.

Unfortunately, the algorithm has its drawbacks, too:

1. If Aislarge, we cannot increagandefinitely, sincel,
requiresnk memory locations to store.

2. We have little control over which eigenpairs the alganith
finds.



Implicit restarting

Goal: purge the unwanted eigenvalyeom H,.

1. Exact arithmetic case:
By one step of the QR algorithm with shjit we have
R =U"(H — pI) = upper triangular

Note thatH — w1 is singular, hencé& must have a zero on its
diagonal. Becaus# is unreduced, then,,, = 0.

Furthermore, note thaf = Pj3P3--- P,_1,, WhereP, ;. Is a
rotation in the(i, ¢ + 1)-plane. Consequently] is Hessenberg:

U. U
U — T .
Uk k—1€1_1 Uk K

Hence



In other words, one step of the shifted QR has found the
eigenvalue: exactly and has deflated the problem.

2. Finite precision arithmetic case:

¢ In the presence of rounding error, after one step of the
shifted QR, we have

= 5D~ <A . §> |
i j—1€h_q [
e From the Arnoldi decomposition, we have
AVU = V,U(UTH,U) + hk+1,kvk+1efﬁ.
e Partition R R
Vi=ViU = (‘7/{—1 @k)
Then

AN

- - H, _ )
AVt )= (Vi1 1) (ﬁk e T ) +hpe1 )1 (Upp—r€f g T
yhv ™ k—1



e From the firstt — 1 columns of this partition, we get
A‘//\}{;_l = ‘A/k_lﬁ* -+ f@g_l, (11)

wheref = hy x— 105 + Rpr1 Uk f—1Vk41-
e Note thatH, is Hessenbergf is orthogonal td/;._;. Hence
(11) is an Arnoldi decomposition of length— 1.

e The process may be repeated to remove other unwanted
values fromH.



The symmetric Lanczos procedure

e Observation: in the Arnoldi decomposition,Afis symmetric,
then the upper Hessenberg matfix is symmetric tridiagonal.

e The following is a simplified process to compute an
orthonormal basis of a Krylov subspace:

L anczos process.
1 g =v/||v||l2, Bo=0; g =0;
2 forj=1tok,do
Q= q]Tw,
w=w— ;¢ — Bi—1qj-1;

A
5
6 B; = |lwlf2;
2
8
9

if 3; =0, quit;

dj+1 = w/ﬁj;
endfor



The symmetric Lanczos algorithm : governing equation

Denote
Qr= (0 @ - @)

(041 B \

B oy B

and

Tk = = trldlag(ﬁj, Qi 6j+1)7

e k-1 51«—1

K Br-1 ay /
the k-step Lanczos process yields

AQy = QiTi + frer,  fr = Brqin (12)
andQ1Qy = I andQ} qry1 = 0.




Let
Ty =py, |lyll2=1.
Then

A(Qry) = ATy + frlery) = n(Quy) + filery).
Herep is aRitz value and@),y Is the correspondinRitz vector



Error bound

Lemma. Let H be symmetric, and/ z — uz = r andz # 0. Then

min (A — p| < —=
A P i

Proof: Letd = UAU be the eigen-decomposition &f. Then
(H—plz=r = UAN-pU'z=r = A-p)(U'2)=U"r
Notice that\ — x/ is diagonal. Thus

Irlla = 1U"r[ls = [|(A — Ml)(UTZ>||2
> A\ — U
> Aﬂilﬂ A= ul |U" 2]
= A —
Aﬂilﬂ A — ] =]]2,

as expected.



Error bound

e If fi.(ely) = 0 for somek, then the associated Ritz valpés
an eigenvalue ofl with the corresponding eigenvectqy.y.

e Let||r|l2 = || fx(ely)]]2, then by the lemma, we know that for
the Ritz pair(u, Qry), there is an eigenvalugeof A, such that

| filery)ll2

A—pf <
A== o




L anczos method = RR + Lanczos

Simple Lanczos Algorithm:

L qi=v/|vll2, Bo=0,q0 = 0;
2. forj=1tokdo

3. w = Ag;;

4. Qj = quw,

S. W =W — a4, ﬁy—l%—h

6. 0= lwl

7. Iif 5, = 0, quit;

8. gj+1 = w/B;

9. Compute eigenvalues and eigenvectorg)of

10. Test for convergence
11. endfor



30 steps of Lanczos (full reorthogonalization) applied to A

LD

a random diagonal matrix of ordern = 1000
Convergence behavior:

(1,1,. .
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We observe that

1. Extreme eigenvalues, i.e., the largest and smallest ones
converge first, and the interior eigenvalues converge last.

2. Convergence is monotonic, with tité largest (smallest)
eigenvalues of . increasing (decreasing) to thh laregst
(smallest) eigenvalue of.

—> Convergence analysis



Thick Restarting

e Selects two indices andwu to indicate those Ritz values to be
kept at both ends of spectrum:

e The corresponding kept Ritz vectors are denoted by

Qr =[G, Gr -+, G = QuYi, (13)

where
k=0+(m—u+1), (14)
Yk: [ylay%"':yéa yuayu+17---7ym]7 (15)

andy; is the eigenvector df;,, corresponding t@;.



e Sets these Ritz vecto@;C as the firstt basis vectors at the
restart andj,.1 = ¢+1-

e To compute thek + 2)th basis vectoi;, », TRLan computes
Aqi..1 and orthonormalizes it against the previdus 1 basis
vectors. That is,

Orni@ira = AGerr — Qu(QF A1) — G (G 1 ATrrn)-
Note thatA@k satisfies the relation:

AQy = Q1D + BnQies15”

whereD,. is thek x k diagonal matrix whose diagonal
elements are the kept Ritz values, and Y,"¢,,.

Thus, the coeﬁicient@,ﬁf Aq,.1 can be computed efficiently:

O A1 = (AQ) " Gisr = (QiDi + BunGior18™) G
— Dk:ﬁf(@ﬁ@mﬂ) T ﬁms(%ﬁ\ml) = Bms.



e Then after the first iteration after the restart, we have

A A o~ H
AQrs1 = Qp1dh1 + 6/€+1Qk+26k+z’7

where

Thoi = I
i 6mSH AL41

¢ In general, at théth iteration after the restart, the new basis
vectorg;..;.1 satisfies the relation:

AN AN AN AN ~ H
AQpvi = Qpvilhqi + 5k+z‘%+z‘+1€k+m

whereT),; = @,{HHAQW is of the form

Dk 67718 . \
B! Qpyr Pr1

f _ 5k+1 ak+2 5k+2

k+i = .

Brti—2 §k+z‘—1 Brvi-1

\ Brvict Ok )




e Note that the three-term recurrence is not valid only for
computing thek + 2)th basis vector and is resumed afterward.



