I.1.(a) Krylov subspace projection methods

Orthogonal projection technique : framework

Let A be an $n \times n$ complex matrix and \mathcal{K} be an m-dimensional subspace of \mathcal{C}^{n}. An orthogonal projection technique seeks an approximate eigenpair

$$
(\tilde{\lambda}, \widetilde{u}) \text { with } \widetilde{\lambda} \in \mathcal{C} \text { and } \widetilde{u} \in \mathcal{K}
$$

This approximate eigenpair is obtained by imposing the following Galerkin condition:

$$
\begin{equation*}
A \widetilde{u}-\tilde{\lambda} \widetilde{u} \perp \mathcal{K} \tag{1}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
v^{H}(A \widetilde{u}-\tilde{\lambda} \widetilde{u})=0, \quad \forall v \in \mathcal{K} \tag{2}
\end{equation*}
$$

In matrix form, assume that an orthonormal basis $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ of \mathcal{K} is available. Denote $V=\left(v_{1}, v_{2}, \ldots, v_{k}\right)$, and let $\widetilde{u}=V y$. Then, the condition (2) becomes

$$
v_{j}^{H}(A V y-\tilde{\lambda} V y)=0, \quad j=1, \ldots, k
$$

Therefore, y and $\tilde{\lambda}$ must satisfy

$$
\begin{equation*}
B_{k} y=\tilde{\lambda} y, \tag{3}
\end{equation*}
$$

where

$$
B_{k}=V^{H} A V .
$$

Each eigenvalue $\widetilde{\lambda}_{i}$ of B_{k} is called a Ritz value, and $V y_{i}$ is called Ritz vector, where y_{i} is the eigenvector of B_{k} associated with $\widetilde{\lambda}_{i}$.

Rayleigh-Ritz procedure - orthogonal projection

1. Compute an orthonormal basis $\left\{v_{i}\right\}_{i=1, \ldots, k}$ of the subspace \mathcal{K}. Let $V=\left(v_{1}, v_{2}, \ldots, v_{k}\right)$.
2. Compute $B_{k}=V^{H} A V$.
3. Compute the eigenvalues of B_{k} and select k_{0} desired ones: $\tilde{\lambda}_{i}, i=1,2, \ldots, k_{0}$, where $k_{0} \leq k$.
4. Compute the eigenvectors $y_{i}, i=1, \ldots, k_{0}$, of B_{k} associated with $\lambda_{i}, i=1, \ldots, k_{0}$, and the corresponding approximate eigenvectors of $A, \widetilde{u}_{i}=V y_{i}, i=1, \ldots, k_{0}$.

Oblique projection technique : framework

Select two subspaces \mathcal{L} and \mathcal{K} and then seek an approximate eigenpair

$$
(\tilde{\lambda}, \widetilde{u}) \text { with } \lambda \in \mathcal{C} \text { and } \widetilde{u} \in \mathcal{K}
$$

that satisfies the Petrov-Galerkin condition:

$$
\begin{equation*}
v^{H}(A \widetilde{u}-\tilde{\lambda} \widetilde{u})=0, \quad \forall v \in \mathcal{L} \tag{4}
\end{equation*}
$$

In matrix form, let V denote the basis for the subspace \mathcal{K} and W for \mathcal{L}. Then, writing $\widetilde{u}=V y$, the Petrov-Galerkin condition (4) yields the reduced eigenvalue problem

$$
B_{k} y=\tilde{\lambda} C_{k} y
$$

where

$$
B_{k}=W^{H} A V \quad \text { and } \quad C_{k}=W^{H} V
$$

If $C_{k}=V^{H} V=I$, then the two bases are called biorthonormal.
In order for a biorthonormal pair V and W to exist the following additional assumption for \mathcal{L} and \mathcal{K} must hold. For any two bases V and W of \mathcal{K} and \mathcal{L}, respectively,

$$
\begin{equation*}
\operatorname{det}\left(W^{H} V\right) \neq 0 \tag{5}
\end{equation*}
$$

Rayleigh-Ritz procedure - oblique projection

1. Compute an orthonormal bases $\left\{v_{i}\right\}_{i=1, \ldots, k}$ of the subspace \mathcal{K}. and $\left\{w_{i}\right\}_{i=1, \ldots, k}$ of the subspace \mathcal{L}. Let $V=\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ and $W=\left(w_{1}, w_{2}, \ldots, w_{k}\right)$.
2. Compute $B_{k}=W^{H} A V$ and $C_{k}=W^{H} V$.
3. Compute the eigenvalues of $B_{k}-\lambda C_{k}$ and select k_{0} desired ones: $\tilde{\lambda}_{i}, i=1,2, \ldots, k_{0}$, where $k_{0} \leq k$.
4. Compute the right and left eigenvectors y_{i} and $z_{i}, i=1, \ldots, k_{0}$, of $B_{k}-\lambda C_{k}$ associated with $\tilde{\lambda}_{i}, i=1, \ldots, k_{0}$, and the corresponding approximate right and left eigenvectors of A, $\widetilde{u}_{i}=V y_{i}$, and $\tilde{v}_{i}=W z_{i}, i=1, \ldots, k_{0}$.

Optimality

Let $Q=\left(Q_{k}, Q_{u}\right)$ be an n-by- n orthogonal matrix, where Q_{k} is n-by- k, and Q_{u} is n-by- $(n-k)$, and $\operatorname{span}\left(Q_{k}\right)=\mathcal{K}$. Then

$$
T=Q^{T} A Q=\left[\begin{array}{cc}
Q_{k}^{T} A Q_{k} & Q_{k}^{T} A Q_{u} \\
Q_{u}^{T} A Q_{k} & Q_{u}^{T} A Q_{u}
\end{array}\right] \equiv\left[\begin{array}{cc}
T_{k} & T_{u k} \\
T_{k u} & T_{u}
\end{array}\right]
$$

The Ritz values and Ritz vectors are considered optimal approximations to the eigenvalues and eigenvectors of A from the selected subsapce $\mathcal{K}=\operatorname{span}\left(Q_{k}\right)$ as justified by the follows.

Theorem.

$$
\min _{S, k \times k}\left\|A Q_{k}-Q_{k} S\right\|_{2}=\left\|A Q_{k}-Q_{k} T_{k}\right\|_{2}
$$

Krylov subspace

$$
\begin{aligned}
\mathcal{K}_{k+1}\left(A, u_{0}\right) & =\operatorname{span}\left\{u_{0}, A u_{0}, A^{2} u_{0}, \ldots, A^{k} u_{0}\right\} \\
& =\left\{q(A) u_{0} \mid q \in \mathcal{P}_{k}\right\}
\end{aligned}
$$

where \mathcal{P}_{k} is the set of all polynomial of degree less than $k+1$.
Properties of $\mathcal{K}_{k+1}\left(A, u_{0}\right)$:

1. $\mathcal{K}_{k}\left(A, u_{0}\right) \subset \mathcal{K}_{k+1}\left(A, u_{0}\right)$.

$$
A \mathcal{K}_{k}\left(A, u_{0}\right) \subset \mathcal{K}_{k+1}\left(A, u_{0}\right)
$$

2. If $\sigma \neq 0, \mathcal{K}_{k}\left(A, u_{0}\right)=\mathcal{K}_{k}\left(\sigma A, u_{0}\right)=\mathcal{K}_{k}\left(A, \sigma u_{0}\right)$.
3. For any scalar $\kappa, \mathcal{K}_{k}\left(A, u_{0}\right)=\mathcal{K}_{k}\left(A-\kappa I, u_{0}\right)$.
4. If W is nonsingular, $\mathcal{K}_{k}\left(W^{-1} A W, W^{-1} u_{0}\right)=W^{-1} \mathcal{K}_{k}\left(A, u_{0}\right)$.

Arnoldi decomposition

An explicit Krylov basis $\left\{u_{0}, A u_{0}, A^{2} u_{0}, \ldots, A^{k} u_{0}\right\}$ is not suitable for numerical computing. It is extremely ill-conditioned.
Therefore, our first task is to replace a Krylov basis with a better conditioned basis, say an orthonormal basis.

Theorem. Let the columns of $K_{j+1}=\left(\begin{array}{ll}u_{0} & A u_{0} \ldots A^{j} u_{0}\end{array}\right)$ be linearly independent. Let

$$
\begin{equation*}
K_{j+1}=U_{j+1} R_{j+1} \tag{6}
\end{equation*}
$$

be the QR factorization of K_{j+1}. Then there is a $(j+1) \times j$ unreduced upper Hessenberg matrix \widehat{H}_{j} such that

$$
\begin{equation*}
A U_{j}=U_{j+1} \widehat{H}_{j} \tag{7}
\end{equation*}
$$

Conversely, if U_{j+1} is orthonormal and satisfies (7), then

$$
\begin{equation*}
\operatorname{span}\left(U_{j+1}\right)=\operatorname{span}\left\{u_{0}, A u_{0}, \ldots, A^{j} u_{0}\right\} \tag{8}
\end{equation*}
$$

Proof: Partitioning the QR decomposition (6), we have

$$
\left(\begin{array}{ll}
K_{j} & A^{j} u_{0}
\end{array}\right)=\left(\begin{array}{ll}
U_{j} & u_{j+1}
\end{array}\right)\left(\begin{array}{cc}
R_{j} & r_{j+1} \\
0 & r_{j+1, j+1}
\end{array}\right)
$$

where $K_{j}=U_{j} R_{j}$ is the QR decomposition of K_{j}. Then

$$
A K_{j}=A U_{j} R_{j}
$$

or

$$
A U_{j}=A K_{j} R_{j}^{-1}=K_{j+1}\binom{0}{R_{j}^{-1}}=U_{j+1} R_{j+1}\binom{0}{R_{j}^{-1}} .
$$

It is easy to verify that

$$
\widehat{H}_{j}=R_{j+1}\binom{0}{R_{j}^{-1}}
$$

is a $(j+1) \times j$ unreduced upper Hessenberg matrix. Therefore we complete the proof of (7).
Conversely, suppose that U_{j+1} satisfies (7), then by induction, we can prove the identity (8).

Arnoldi decomposition: by partitioning,

$$
\widehat{H}_{j}=\binom{H_{j}}{h_{j+1, j} e_{j}^{T}}
$$

the decomposition (7) can be written as follows:

$$
\begin{equation*}
A U_{j}=U_{j} H_{j}+h_{j+1, j} u_{j+1} e_{j}^{T} \tag{9}
\end{equation*}
$$

We call (9) an Arnoldi decomposition of order j. The decomposition (7) is a compact form.

Arnoldi procedure

By the Arnoldi decomposition (9), we deduce the following process to generate an orthogonormal basis $\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ of the Krylov subspace $\mathcal{K}_{m}(A, v)$:

Arnoldi Process:

1. $v_{1}=v /\|v\|_{2}$
2. for $j=1,2, \ldots, k$
3. compute $w=A v_{j}$
4. for $i=1,2, \ldots, j$
5. $\quad h_{i j}=v_{i}^{T} w$
6. $\quad w=w-h_{i j} v_{i}$
7. end for
8. $\quad h_{j+1, j}=\|w\|_{2}$
9. If $h_{j+1, j}=0$, stop
10. $v_{j+1}=w_{j} / h_{j+1, j}$
11. endfor

Remarks:

1. The matrix A is only referenced via the matrix-vector multiplication $A v_{j}$. Therefore, it is ideal for large scale matrices. Any sparsity or structure of a matrix can be exploited.
2. The main storage requirement is $(m+1) n$ for storing Arnoldi vectors $\left\{v_{i}\right\}$
3. the cost of arithmetic is m matrix-vector products plus $2 m^{2} n$ for the rest. It is common that the matrix-vector multiplication is the dominant cost.
4. The Arnoldi procedure breaks down when $h_{j+1, j}=0$ for some j. It is easy to see that if the Arnoldi procedure breaks down at step j (i.e. $h_{j+1, j}=0$), then $\mathcal{K}_{j}=\operatorname{span}\left(V_{j}\right)$ is invariant subspace of A.
5. Some care must be taken to insure that the vectors v_{j} remain orthogonal to working accuracy in the presence of rounding error. The usual technique is reorthogonalization.

Arnoldi decomposition

- Denote

$$
V_{k}=\left(\begin{array}{llll}
v_{1} & v_{2} & \ldots & v_{k}
\end{array}\right)
$$

and

$$
H_{k}=\left(\begin{array}{ccccc}
h_{11} & h_{12} & \cdots & h_{1, k-1} & h_{1 k} \\
h_{21} & h_{22} & \cdots & h_{2, k-1} & h_{2 k} \\
& h_{32} & \ddots & h_{3, k-1} & h_{3 k} \\
& & \ddots & \vdots & \vdots \\
& & & h_{k, k-1} & h_{k k}
\end{array}\right) .
$$

- The Arnoldi process can be expressed in the following governing relations:

$$
\begin{equation*}
A V_{k}=V_{k} H_{k}+h_{k+1, k} v_{k+1} e_{k}^{T} \tag{10}
\end{equation*}
$$

and

$$
V_{k}^{H} V_{k}=I \quad \text { and } \quad V_{k}^{H} v_{k+1}=0
$$

- The decomposition is uniquely determined by the starting vector v (the implicit Q-Theorem).
- Since $V_{k}^{H} v_{k+1}=0$, we have

$$
H_{k}=V_{k}^{T} A V_{k}
$$

- Let μ be an eigenvalue of H_{k} and y be a corresponding eigenvector y, i.e.,

$$
H_{k} y=\mu y, \quad\|y\|_{2}=1
$$

Then the corresponding Ritz pair is $\left(\mu, V_{k} y\right)$. Applying y to the right hand side of (10), the residual vector for $\left(\mu, V_{k} y\right)$ is given by

$$
A\left(V_{k} y\right)-\mu\left(V_{k} y\right)=h_{k+1, k} v_{k+1}\left(e_{k}^{T} y\right)
$$

- Using the backward error interpretation, we know that ($\mu, V_{k} y$) is an exact eigenpair of $A+E$:

$$
(A+E)\left(V_{k} y\right)=\mu\left(V_{k} y\right),
$$

where

$$
\|E\|_{2}=\left|h_{k+1, k}\right| \cdot\left|e_{k}^{T} y\right|
$$

This gives us a criterion of whether to accept the Ritz pair ($\mu, V_{k} y$) as an accurate approximate eigenpair of A.

Arnoldi method = RR + Arnoldi

1. Choose a starting vector v;
2. Generate the Arnoldi decomposition of length k by the Arnoldi process;
3. Compute the Ritz pairs and decide which ones are acceptable;
4. If necessary, increase k and repeat.

An example

$A=\operatorname{sprandn}(100,100,0.1)$ and $v=(1,1, \ldots, 1)^{T}$.
" + " are the eigenvalues of matrix A
"o" are the eigenvalues of the upper Hessenberg matrix H_{30}

Observation: exterior eigenvalues converge first, a typical convergence phenomenon.

The need of restarting

The algorithm has two nice aspects:

1. H_{k} is already in the Hessenberg form, so we can immediately apply the QR algorithm to find its eigenvalues.
2. After we increase k to, say $k+p$, we only have to orthogonalize p vectors to compute the $(k+p)$ th Arnoldi decomposition. The work already completed previously is not thrown away.

Unfortunately, the algorithm has its drawbacks, too:

1. If A is large, we cannot increase k indefinitely, since V_{k} requires $n k$ memory locations to store.
2. We have little control over which eigenpairs the algorithm finds.

Implicit restarting

Goal: purge the unwanted eigenvalues μ from H_{k}.

1. Exact arithmetic case:

By one step of the QR algorithm with shift μ, we have

$$
R=U^{H}(H-\mu I)=\text { upper triangular }
$$

Note that $H-\mu I$ is singular, hence R must have a zero on its diagonal. Because H is unreduced, then $r_{n n}=0$.
Furthermore, note that $U=P_{12} P_{23} \cdots P_{n-1, n}$, where $P_{i, i+1}$ is a rotation in the $(i, i+1)$-plane. Consequently, U is Hessenberg:

$$
U=\left(\begin{array}{cc}
U_{*} & u \\
u_{k, k-1} e_{k-1}^{T} & u_{k, k}
\end{array}\right)
$$

Hence

$$
H^{\prime}=R U+\mu I=\left(\begin{array}{cc}
\hat{H}_{*} & \hat{h} \\
0 & \mu
\end{array}\right)=U^{H} H U
$$

In other words, one step of the shifted QR has found the eigenvalue μ exactly and has deflated the problem.
2. Finite precision arithmetic case:

- In the presence of rounding error, after one step of the shifted QR, we have

$$
\widehat{H}^{\prime}=\widehat{U}^{H} H \widehat{U}=\left(\begin{array}{cc}
\widehat{H}_{*} & \widehat{h} \\
\widehat{h}_{k, k-1} e_{k-1}^{T} & \widehat{\mu}
\end{array}\right)
$$

- From the Arnoldi decomposition, we have

$$
A V_{k} \widehat{U}=V_{k} \widehat{U}\left(\widehat{U}^{T} H_{k} \widehat{U}\right)+h_{k+1, k} v_{k+1} e_{k}^{T} \widehat{U}
$$

- Partition

$$
\widehat{V}_{k}=V_{k} \widehat{U}=\left(\widehat{V}_{k-1} \widehat{v}_{k}\right)
$$

Then

$$
A\left(\begin{array}{ll}
\widehat{V}_{k-1} & \widehat{v}_{k}
\end{array}\right)=\left(\begin{array}{ll}
\widehat{V}_{k-1} & \widehat{v}_{k}
\end{array}\right)\left(\begin{array}{cc}
\widehat{H}_{*} & \widehat{h} \\
\widehat{h}_{k, k-1} e_{k-1}^{T} & \widehat{\mu}
\end{array}\right)+h_{k+1, k} v_{k+1}\left(\widehat{u}_{k, k-1} e_{k-1}^{T}\right.
$$

- From the first $k-1$ columns of this partition, we get

$$
\begin{equation*}
A \widehat{V}_{k-1}=\widehat{V}_{k-1} \widehat{H}_{*}+f e_{k-1}^{T} \tag{11}
\end{equation*}
$$

where $f=\widehat{h}_{k, k-1} \widehat{v}_{k}+h_{k+1, k} \widehat{u}_{k, k-1} v_{k+1}$.

- Note that \widehat{H}_{*} is Hessenberg. f is orthogonal to \widehat{V}_{k-1}. Hence (11) is an Arnoldi decomposition of length $k-1$.
- The process may be repeated to remove other unwanted values from H.

The symmetric Lanczos procedure

- Observation: in the Arnoldi decomposition, if A is symmetric, then the upper Hessenberg matrix H_{j} is symmetric tridiagonal.
- The following is a simplified process to compute an orthonormal basis of a Krylov subspace:

Lanczos process:

```
    \(q_{1}=v /\|v\|_{2}, \beta_{0}=0 ; q_{0}=0 ;\)
    for \(j=1\) to \(k\), do
        \(w=A q_{j} ;\)
        \(\alpha_{j}=q_{j}^{T} w ;\)
        \(w=w-\alpha_{j} q_{j}-\beta_{j-1} q_{j-1} ;\)
        \(\beta_{j}=\|w\|_{2} ;\)
        if \(\beta_{j}=0\), quit;
        \(q_{j+1}=w / \beta_{j} ;\)
    endfor
```

The symmetric Lanczos algorithm : governing equation
Denote

$$
Q_{k}=\left(\begin{array}{llll}
q_{1} & q_{2} & \ldots & q_{k}
\end{array}\right)
$$

and

$$
T_{k}=\left(\begin{array}{ccccc}
\alpha_{1} & \beta_{1} & & & \\
\beta_{1} & \alpha_{2} & \beta_{2} & & \\
& \ddots & \ddots & \ddots & \\
& & \ddots & \alpha_{k-1} & \beta_{k-1} \\
& & & \beta_{k-1} & \alpha_{k}
\end{array}\right)=\operatorname{tridiag}\left(\beta_{j}, \alpha_{j}, \beta_{j+1}\right)
$$

the k-step Lanczos process yields

$$
\begin{equation*}
A Q_{k}=Q_{k} T_{k}+f_{k} e_{k}^{T}, \quad f_{k}=\beta_{k} q_{k+1} \tag{12}
\end{equation*}
$$

and $Q_{k}^{T} Q_{k}=I$ and $Q_{k}^{T} q_{k+1}=0$.

Let

$$
T_{k} y=\mu y, \quad\|y\|_{2}=1
$$

Then

$$
A\left(Q_{k} y\right)=Q_{k} T_{k} y+f_{k}\left(e_{k}^{T} y\right)=\mu\left(Q_{k} y\right)+f_{k}\left(e_{k}^{T} y\right)
$$

Here μ is a Ritz value, and $Q_{k} y$ is the corresponding Ritz vector.

Error bound

Lemma. Let H be symmetric, and $H z-\mu z=r$ and $z \neq 0$. Then

$$
\min _{\lambda \in \lambda(H)}|\lambda-\mu| \leq \frac{\|r\|_{2}}{\|z\|_{2}}
$$

Proof: Let $H=U \Lambda U^{T}$ be the eigen-decomposition of H. Then

$$
(H-\mu I) z=r \quad \Rightarrow \quad U(\Lambda-\mu I) U^{T} z=r \quad \Rightarrow \quad(\Lambda-\mu I)\left(U^{T} z\right)=U^{T} r
$$

Notice that $\Lambda-\mu I$ is diagonal. Thus

$$
\begin{aligned}
\|r\|_{2} & =\left\|U^{T} r\right\|_{2}=\left\|(\Lambda-\mu I)\left(U^{T} z\right)\right\|_{2} \\
& \geq \min _{\lambda \in \lambda(H)}|\lambda-\mu|\left\|U^{T} z\right\|_{2} \\
& =\min _{\lambda \in \lambda(H)}|\lambda-\mu|\|z\|_{2}
\end{aligned}
$$

as expected.

Error bound

- If $f_{k}\left(e_{k}^{T} y\right)=0$ for some k, then the associated Ritz value μ is an eigenvalue of A with the corresponding eigenvector $Q_{k} y$.
- Let $\|r\|_{2}=\left\|f_{k}\left(e_{k}^{T} y\right)\right\|_{2}$, then by the lemma, we know that for the Ritz pair $\left(\mu, Q_{k} y\right)$, there is an eigenvalue λ of A, such that

$$
|\lambda-\mu| \leq \frac{\left\|f_{k}\left(e_{k}^{T} y\right)\right\|_{2}}{\left\|Q_{k} y\right\|_{2}}
$$

Lanczos method = RR + Lanczos

Simple Lanczos Algorithm:

1. $q_{1}=v /\|v\|_{2}, \beta_{0}=0, q_{0}=0$;
2. for $j=1$ to k do
3. $w=A q_{j}$;
4. $\alpha_{j}=q_{j}^{T} w$;
5. $\quad w=w-\alpha_{j} q_{j}-\beta_{j-1} q_{j-1}$;
6. $\quad \beta_{j}=\|w\|_{2}$;
7. if $\beta_{j}=0$, quit;
8. $q_{j+1}=w / \beta_{j}$;
9. Compute eigenvalues and eigenvectors of T_{j}
10. Test for convergence
11. endfor

Example

$A=$ a random diagonal matrix A of order $n=1000$
$v=(1,1, \ldots, 1)^{T}$
Convergence behavior:

We observe that

1. Extreme eigenvalues, i.e., the largest and smallest ones, converge first, and the interior eigenvalues converge last.
2. Convergence is monotonic, with the i th largest (smallest) eigenvalues of T_{k} increasing (decreasing) to the i th laregst (smallest) eigenvalue of A.
\Longrightarrow Convergence analysis

Thick Restarting

- Selects two indices ℓ and u to indicate those Ritz values to be kept at both ends of spectrum:

- The corresponding kept Ritz vectors are denoted by

$$
\begin{equation*}
\widehat{Q}_{k}=\left[\widehat{q}_{1}, \widehat{q}_{2}, \ldots, \widehat{q}_{k}\right]=Q_{m} Y_{k}, \tag{13}
\end{equation*}
$$

where

$$
\begin{gather*}
k=\ell+(m-u+1) \tag{14}\\
Y_{k}=\left[y_{1}, y_{2}, \ldots, y_{\ell}, y_{u}, y_{u+1}, \ldots, y_{m}\right] \tag{15}
\end{gather*}
$$

and y_{i} is the eigenvector of T_{m} corresponding to θ_{i}.

- Sets these Ritz vectors \widehat{Q}_{k} as the first k basis vectors at the restart and $\widehat{q}_{k+1}=q_{m+1}$.
- To compute the $(k+2)$ th basis vector \widehat{q}_{k+2}, TRLan computes $A \widehat{q}_{k+1}$ and orthonormalizes it against the previous $k+1$ basis vectors. That is,

$$
\widehat{\beta}_{k+1} \widehat{q}_{k+2}=A \widehat{q}_{k+1}-\widehat{Q}_{k}\left(\widehat{Q}_{k}^{H} A \widehat{q}_{k+1}\right)-\widehat{q}_{k+1}\left(\widehat{q}_{k+1}^{H} A \widehat{q}_{k+1}\right) .
$$

Note that $A \widehat{Q}_{k}$ satisfies the relation:

$$
A \widehat{Q}_{k}=\widehat{Q}_{k} D_{k}+\beta_{m} \widehat{q}_{k+1} s^{H}
$$

where D_{k} is the $k \times k$ diagonal matrix whose diagonal elements are the kept Ritz values, and $s=Y_{k}^{H} e_{m}$.
Thus, the coefficients $\widehat{Q}_{k}^{H} A \widehat{q}_{k+1}$ can be computed efficiently:

$$
\begin{aligned}
\widehat{Q}_{k}^{H} A \widehat{q}_{k+1} & =\left(A \widehat{Q}_{k}\right)^{H} \widehat{q}_{k+1}=\left(\widehat{Q}_{k} D_{k}+\beta_{m} \widehat{q}_{k+1} s^{H}\right)^{H} \widehat{q}_{k+1} \\
& =D_{k} Y_{k}^{H}\left(Q_{m}^{H} q_{m+1}\right)+\beta_{m} s\left(\widehat{q}_{k+1}^{H} \widehat{q}_{k+1}\right)=\beta_{m} s .
\end{aligned}
$$

- Then after the first iteration after the restart, we have

$$
A \widehat{Q}_{k+1}=\widehat{Q}_{k+1} \widehat{T}_{k+1}+\widehat{\beta}_{k+1} \widehat{q}_{k+2} e_{k+i}^{H}
$$

where

$$
\widehat{T}_{k+1}=\left[\begin{array}{cc}
D_{k} & \beta_{m} s \\
\beta_{m} s^{H} & \widehat{\alpha}_{k+1}
\end{array}\right]
$$

- In general, at the i th iteration after the restart, the new basis vector \widehat{q}_{k+i+1} satisfies the relation:

$$
A \widehat{Q}_{k+i}=\widehat{Q}_{k+i} \widehat{T}_{k+i}+\widehat{\beta}_{k+i} \widehat{q}_{k+i+1} e_{k+i}^{H}
$$

where $\widehat{T}_{k+i}=\widehat{Q}_{k+i}^{H} A \widehat{Q}_{k+i}$ is of the form

$$
\widehat{T}_{k+i}=\left(\begin{array}{cccccc}
D_{k} & \beta_{m} s & & & & \\
\beta_{m} s^{H} & \widehat{\alpha}_{k+1} & \widehat{\beta}_{k+1} & & & \\
& \widehat{\beta}_{k+1} & \widehat{\alpha}_{k+2} & \widehat{\beta}_{k+2} & & \\
& & \ddots & \ddots & \ddots & \\
& & & \widehat{\beta}_{k+i-2} & \widehat{\alpha}_{k+i-1} & \widehat{\beta}_{k+i-1} \\
& & & & \widehat{\beta}_{k+i-1} & \widehat{\alpha}_{k+i}
\end{array}\right)
$$

- Note that the three-term recurrence is not valid only for computing the $(k+2)$ th basis vector and is resumed afterward.

