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SUMMARY

Substructure coupling methods, such as the component mode synthesis (CMS) method, have been studied in
structural dynamics analysis since 1960s. The modes of subsystems associated with the lowest frequencies
are typically retained in these methods. In this paper, we present a coupling-matrix based mode selection
scheme for the CMS method, referred to as the CMS� method. This new scheme is derived using a
moment-matching principle defined on the interface between substructures. It is compatible to the one in
recently proposed optimal modal reduction (OMR) method due to Givoli et al. The improvements of the
CMS� method to the CMS and OMR methods are demonstrated by numerical examples from structural
dynamics in both frequency and time domains. Copyright q 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Substructure coupling methods as model-order reduction techniques play indispensable roles to
meet the continual and compelling needs for accurately and efficiently simulating dynamical
behaviour of very large structural systems. Component mode synthesis (CMS) method is one of
the most popular substructure coupling methods. It employs constraint modes and fixed-interface
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normal modes, as presented in Hurty’s method [1] and the Craig–Bampton variant of Hurty’s
method [2]. The CMSmethod explicitly exploits underlying structures of subsystems and effectively
avoids the expenses of processing the entire system at once. The CMS-based model-order reduction
of subsystems can be conducted in parallel, and furthermore, subsystem structure is preserved. The
CMS method has its roots back to the early work of Hurty [3] in 1960. We refer to an overview
paper [4] and references therein for further details. The mathematical analysis of the CMS method
is in the work of Bourquin [5] and Bourquin and d’Hennezel [6, 7]. A multilevel extension, called
automated multilevel substructuring (AMLS) method, is presented by Bennighof et al. [8–11].

Consider a lumped MIMO dynamical system of the form

�N :
{
Mẍ(t) + Kx(t) =Bu(t)

y(t) =LTx(t)
(1)

with the initial conditions x(0)= x0 and ẋ(0) = v0. Here t is the time variable, x(t) ∈RN is a state
vector, N is the degree of freedoms, u(t) ∈Rp the input excitation force vector, and y(t)∈Rm

the output measurement vector. B∈RN×p and L∈RN×m are input and output distribution arrays,
respectively. M and K are mass and stiffness matrices. Assume that M is symmetric semidefinite
and K is symmetric positive definite. Furthermore, the state vector x(t) and the system matrices
M and K are composed of subsystem structures, namely, they are partitioned into three blocks,
representing subsystems I, II and their interface

x(t) =
⎡⎢⎣
x1(t)

x2(t)

x3(t)

⎤⎥⎦ , M=

⎡⎢⎢⎣
M11 M13

M22 M23

MT
13 MT

23 M33

⎤⎥⎥⎦ , K=

⎡⎢⎢⎣
K11 K13

K22 K23

KT
13 KT

23 K33

⎤⎥⎥⎦ (2)

The degrees of freedom of subsystems I, II and the interface are denoted by N1, N2 and N3,
respectively. Thus, the degree of freedoms of the entire system �N is N = N1+N2+N3. The input–
output behaviour of �N in frequency domain is characterized by the m-by-p transfer matrix [12]

H(�) =LT(−�2M + K)−1B

where � is referred to as the frequency.
A substructure coupling method first computes a few selected (eigen)modes of the subsystems,

and then derives a system �n of the same form but a (much) smaller dimension of the state vector
z(t) by a projection (see Section 2 for detail)

�n :
{
Mn z̈(t) + Knz(t) =Bnu(t)

yn(t) =LT
nz(t)

(3)

where the degree of freedoms of the new state vector z(t) is n = n1 + n2 + N3 with n1�N1 and
n2�N2. We assume that the degree of freedoms of the interface is unchanged. The reduced system
matrices Mn and Kn preserve the block structures of the original system matrices M and K, i.e.

Mn =

⎡⎢⎢⎣
M(n)

11 M(n)
13

M(n)
22 M(n)

23

(M(n)
13 )T (M(n)

23 )T M̂33

⎤⎥⎥⎦ and Kn =

⎡⎢⎢⎣
K(n)

11 K(n)
13

K(n)
22 K(n)

23

(K(n)
13 )T (K(n)

23 )T K̂33

⎤⎥⎥⎦ (4)
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Correspondingly, the input–output behaviour of the reduced system �n in frequency domain is
characterized by the m-by-p transfer function

Hn(�) =LT
n (−�2Mn + Kn)

−1Bn

It is necessary that the input–output behaviour of the reduced system �n is an acceptable approx-
imation of the original system �N .

The quality of such a substructure coupling method essentially relies on the modes of subsystems
selected to retain. A standard mode selection practice is to retain the modes associated with a few
lowest frequencies. However, this mode selection does not necessarily produce an optimal reduced
system �n . Let us use the following simple example to illustrate this. Let the system �N be
given by

M=

⎡⎢⎢⎣
1 0.7

1 10−3

1 0.3
0.7 10−3 0.3 1

⎤⎥⎥⎦ , K=
⎡⎢⎣
0.9

1
2

1

⎤⎥⎦ , B=

⎡⎢⎢⎣
1
0

0
0

⎤⎥⎥⎦ , L=

⎡⎢⎢⎣
1
0

0
0

⎤⎥⎥⎦ (5)

Suppose the subsystem II is reduced. Then by the lowest frequency mode selection criterion, the
reduced system �n is given by

Mn =
⎡⎣ 1 0.7

1 10−3

0.7 10−3 1

⎤⎦ , Kn =
⎡⎣0.9

1
1

⎤⎦ , Bn =
⎡⎣1
0
0

⎤⎦ , Ln =
⎡⎣1
0
0

⎤⎦ (6)

Alternatively, if we retain the other mode in the subsystem II, then the reduced system ��
n is

given by

M�
n =

⎡⎣ 1 0.7
1 0.3

0.7 0.3 1

⎤⎦ , K�
n =

⎡⎣0.9
2

1

⎤⎦ , B�
n =

⎡⎣1
0
0

⎤⎦ , L�
n =

⎡⎣1
0
0

⎤⎦ (7)

The left of Figure 1 shows the magnitudes (in log of base 10) of the transfer functions H(�),
Hn(�) and H�

n(�) of the original system �N , and the reduced systems �n and ��
n . The right of

Figure 1 shows the output y(t) of �N and the reduced ones yn(t) of �n and y�
n (t) of ��

n with the
input function u(t) = cos(t). It is clear that the low-frequency dominant mode selection practice
is not optimal.

A question that arises naturally is ‘which are the important modes of subsystems?’ In the recent
work of Barbone and Givoli [13] and Givoli et al. [14], an optimal modal reduction (OMR)
algorithm is proposed. In contrast to the low-frequency dominant mode selection rule, a coupling
matrix-based mode selection criterion is introduced. It is derived via the DtN map [15], originally
developed for solving partial differential equations with non-reflecting boundary conditions [16].

In this paper, inspired by the OMR method, we present an alternative mode selection criterion
for the CMS method. The resulting method is called CMS�, where � stands for variation. Instead
of using the DtN map [15], we derive the CMS�-mode selection criterion in an algebraic setting
and use the moment-matching principle in frequency domain. The improvements of the CMS�
method to the CMS and OMRmethods will be demonstrated by numerical examples from structural
dynamics in both frequency and time domains.
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Figure 1. Left: transfer functions of systems �N , �n and ��
n in frequency domain. Right: outputs of

systems �N , �n and ��
n in time domain.

The rest of the paper is organized as follows. Section 2 reviews the CMS method and presents a
new variation of CMS method, called CMS�. The derivation and justification of the CMS� method
are in Section 3. Section 4 applies CMS� to the case of only one subsystem reduction and compares
with the OMR method. Numerical examples are presented in Section 5. Concluding remarks are
in Section 6.

2. SUBSTRUCTURING METHODS

In this section, we first review the CMS method in an algebraic setting. Then we present a variation
of the CMS method, referred to as the CMS� method. The derivation and justification of the CMS�
method are presented in the next section.

The CMS method consists of two key steps: (a) applying a congruence transformation to
transform the matrix pair (M,K) to the so-called Craig–Bampton form with the matrix

U=

N1 N2 N3

N1

N2

N3

⎛⎜⎝
I W13

I W23

I

⎞⎟⎠ (8)

where W13 =−K−1
11 K13 and W23 =−K−1

22 K23, and (b) projecting the Craig–Bampton form onto
the subspace spanned by the matrix Vn

Vn =

n1 n2 N3

N1

N2

N3

⎛⎜⎝
U1

U2

I

⎞⎟⎠ (9)
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where for i = 1, 2, Ui is an Ni × ni matrix whose columns are the selected ni eigenvectors /
(i)
j

of the submatrix pairs (Mi i ,Ki i )

Ki i/
(i)
j = �(i)

j Mi i/
(i)
j (10)

with

(/(i)
j )TMi i/

(i)
k = � jk =

{
1 if j = k

0 otherwise
(11)

In structural dynamics, Wi3 are referred to as interior partition of the constraint-mode matrices
and Ui are called the interior partition of the fixed-interface modal matrices.

Specifically, by performing a congruence transformation on �N with the matrix U, it yields an
equivalent system

�̂N :
{
M̂ ¨̂x(t) + K̂̂x(t) = B̂u(t)

y(t) = L̂ T̂x(t)
(12)

where x̂(t) =U−1x(t). System matrices M̂=UTMU and K̂=UTKU, and the input–output influ-
ence arrays B̂=UTB and L̂=UTL have the following structures:

M̂=

⎡⎢⎢⎣
M11 M̂13

M22 M̂23

M̂T
13 M̂T

23 M̂33

⎤⎥⎥⎦ , K̂=

⎡⎢⎢⎣
K11

K22

K̂33

⎤⎥⎥⎦ , B̂=

⎡⎢⎢⎣
B1

B2

B̂3

⎤⎥⎥⎦ , L̂=

⎡⎢⎢⎣
L1

L2

L̂3

⎤⎥⎥⎦ (13)

where

M̂i3 =Mi3 − Mi iK
−1
i i Ki3 for i = 1, 2

M̂33 =M33 −
2∑

i=1
(KT

i3K
−1
i i Mi3 + MT

i3K
−1
i i Ki3 − KT

i3K
−1
i i Mi iK

−1
i i Ki3)

K̂33 =K33 − KT
13K

−1
11 K13 − KT

23K
−1
22 K23

B̂3 =B3 − KT
13K

−1
11 B1 − KT

23K
−1
22 B2

L̂3 =L3 − KT
13K

−1
11 L1 − KT

23K
−1
22 L2

The matrix pair (M̂, K̂) is called the Craig–Bampton form [2]. In the continuous variational setting,
M̂33 is a discrete version of the mass complement operator [10] and K̂33 is the discrete version of
the Steklov–Poincaré operator [17].

An orthogonal projection technique for dimension reduction seeks an approximation of x̂(t)
constrained to stay in the subspace spanned by the columns of Vn , namely

x̂(t) ≈Vnz(t)

Then by imposing the Galerkin orthogonal condition

M̂Vn z̈(t) + K̂Vnz(t) − B̂u(t) ⊥ span{Vn}
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it yields a reduced-order system of the form

�n :
{
Mn z̈(t) + Knz(t) =Bnu(t)

ŷ(t) =LT
nz(t)

(14)

where Mn =VT
nM̂Vn , Kn =VT

n K̂Vn , Bn =VT
n B̂ and Ln =VT

n L̂. By the definition of Vn , the ma-
trices Mn and Kn are of the forms

Mn =

⎡⎢⎢⎣
I M(n)

13

I M(n)
23

(M(n)
13 )T (M(n)

23 )T M̂33

⎤⎥⎥⎦ , Kn =

⎡⎢⎢⎣
K(n)
1

K(n)
2

K̂33

⎤⎥⎥⎦ (15)

with M(n)
13 =UT

1M̂13 and M(n)
23 =UT

2M̂23.
A high-level description of the CMS method is as follows:

Algorithm 1: CMS method

1. Transform (M,K) to Craig–Bampton form (M̂, K̂) as in (13).
2. For i = 1, 2, compute the ni lowest eigenpairs (�(i)

j ,/(i)
j ) of i-th subsystem (Ki i ,Mi i ), and

define the matrix Ui as in (9), where the eigenvalues �(i)
j are ordered in increasing order

�(i)
1 ��(i)

2 � · · ·��(i)
Ni
.

3. Form Mn,Kn,Bn,Ln to define the reduced system �n as in (14).

A question that arises naturally is whether the CMS strategy of the mode selection of subsystems
is optimal, or ‘which are the important modes of subsystems?’ We will show in the next section
that a better mode selection strategy is to introduce a coupling matrix S(i)

j associated with the j th
mode of the subsystem i

S(i)
j = 1

�(i)
j

M̂T
i3/

(i)
j (/(i)

j )TM̂i3 (16)

The ni modes /(i)
j of subsystem i are then selected according to the largest norms of their

corresponding coupling matrices S(i)
j . Let us refer to this variation of the CMS method as the

CMS� method. The following is a high-level description of the CMS� method.

Algorithm 2: CMS� method

1. Transform (M,K) to Craig–Bampton form (M̂, K̂) (13).
2. For i = 1, 2, compute the eigenpairs (�(i)

j ,/(i)
j ) of i-th subsystem (Ki i ,Mi i ).

3. Sort the eigenpairs (�(i)
j ,/(i)

j ) according to the norms of the coupling matrices S(i)
j in de-

scending order, i.e.

‖S(i)
1 ‖�‖S(i)

2 ‖� · · ·�‖S(i)
Ni

‖

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (in press)
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4. Retain first ni eigenpairs (�(i)
j ,/(i)

j ) to define the matrix Ui (9).
5. Form Mn,Kn,Bn,Ln to define the reduced system �n (14).

We note that the matrix 2-norm is used at step 3 of the CMS� method, the 2-norm of the

coupling matrix S(i)
j is simply given by

‖S(i)
j ‖= 1

�(i)
j

‖M̂T
i3/

(i)
j ‖2

due to the fact that the coupling matrix S(i)
j is symmetric and of rank-one.

Note that the difference between the CMS and CMS� methods is only in the mode selection of

subsystems. The selected modes /(i)
j in CMS� are not in the natural order as in CMS. As a result,

to find such ni modes, we may have to find more than ni smallest eigenpairs of the matrix pairs
(Mi i ,Ki i ). This will be shown by numerical examples in Section 5.

3. DERIVATION OF CMS�

Let Ui contain all Ni modes of the submatrix pairs (Mi i ,Ki i ) for i = 1, 2. Then in frequency
domain, the system �N with the impulse input function in its modal co-ordinate is of the form⎛⎜⎜⎝−�2

⎡⎢⎢⎣
I M(N )

13

I M(N )
23

(M(N )
13 )T (M(N )

23 )T M̂33

⎤⎥⎥⎦+

⎡⎢⎢⎣
K1

(N )

K2
(N )

K̂33

⎤⎥⎥⎦
⎞⎟⎟⎠
⎡⎢⎣
X1(�)

X2(�)

X3(�)

⎤⎥⎦=

⎡⎢⎢⎣
B(N )
1

B(N )
2

B̂3

⎤⎥⎥⎦ (17)

For the sake of notation, we will drop the superscript (N ) in the rest of section. By solving X1(�)

and X2(�) from the first and second equations of (17) and then substituting into the third interface
equation of (17), it yields(

−�4
2∑

i=1
[MT

i3(−�2I + Ki )−1Mi3] − �2M̂33 + K̂33

)
X3(�)

=
(

�2
2∑

i=1
[MT

i3(−�2I + Ki )−1Bi ] + B̂3

)
(18)

In the context of structural dynamics, Equation (18) represents the accumulation of the forces
applied to the interface.

Instead of solving Equation (18) for X3(�) directly, we first simplify the equation to look for a
few ‘important’ modes. An approximation of (18) can be obtained by keeping the first three terms
of the power expansion in �2 of the coefficient matrix on the left hand side and the constant term
on the right hand side. This yields an approximate equation of (18)

[−�4(MT
13K

−1
1 M13 + MT

23K
−1
2 M23) − �2M̂33 + K̂33]X̃3(�) = B̂3 (19)

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (in press)
DOI: 10.1002/nme



B.-S. LIAO, Z. BAI AND W. GAO

Let the power series expansion of X̃3(�) be formally denoted by

X̃3(�) =
∞∑

�=0
r��

2�

where r� are called the �th moment vector of X̃3(�). Then by comparing the two sides of Equation
(19) in the power of �2, we observe that the moment vectors r� are given by the second-order
recurrence

r� =[K̂−1
33 M̂33] r�−1 +

[
K̂−1

33

(
2∑

i=1
MT

i3�
−1
i Mi3

)]
r�−2 for ��2

with initial moment vectors r0 = K̂−1
33 B̂3 and r1 = K̂−1

33 M̂33r0.
By an analogous calculation, for the reduced-order system �n in its modal co-ordinate form

⎛⎜⎜⎝−�2

⎡⎢⎢⎣
I M(n)

13

I M(n)
23

(M(n)
13 )T (M(n)

23 )T M(n)
33

⎤⎥⎥⎦+

⎡⎢⎢⎣
K(n)
1

K(n)
2

K(n)
33

⎤⎥⎥⎦
⎞⎟⎟⎠
⎡⎢⎢⎣
X(n)
1 (�)

X(n)
2 (�)

X(n)
3 (�)

⎤⎥⎥⎦=

⎡⎢⎢⎣
B(n)
1

B(n)
2

B̂(n)
3

⎤⎥⎥⎦ (20)

the moment vectors r(n)
� of the solution X̃(n)

3 (�) of the approximate interface equation are given
by the second-order recurrence

r(n)
� =[(K(n)

33 )−1M(n)
33 ] r(n)

�−1 +
[
(K(n)

33 )−1

(
2∑

i=1
(M(n)

i3 )T(�(n)
i )−1M(n)

i3

)]
r(n)
�−2 for ��2

with initial moment vectors r(n)
0 = (K(n)

33 )−1B(n)
3 and r(n)

1 = (K(n)
33 )−1M(n)

33 r
(n)
0 .

Note that the dimensions of the moment vectors {r�} of the original system �N and the moment
vectors {r(n)

� } of the reduced-order system �n are the same since it is assumed that the degree
of freedoms of the interface block is unchanged. A natural optimal strategy is to match as many
moment vectors {r�} and {r(n)

� } as possible. To match the first moment vector r0 = r(n)
0 , we simply

let

K(n)
33 = K̂33 and B(n)

3 = B̂3

To match the second moment vector r1 = r(n)
1 , we let

M(n)
33 = M̂33

Unfortunately, it appears that there is no easy way to match the third moment vector r2 exactly.
Instead, we try to minimize the difference between r2 and r(n)

2 . By an algebraic manipulation,
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it can be shown that

‖r2 − r(n)
2 ‖ =

∥∥∥∥∥K̂−1
33

(
2∑

i=1
MT

i3�
−1
i Mi3 − (M(n)

i3 )T(�(n)
i )−1M(n)

i3

)
K̂−1

33 B̂3

∥∥∥∥∥
� c

∥∥∥∥∥ 2∑
i=1

M̂T
i3�i�

−1
i �T

i M̂i3 − M̂T
i3�

(n)
i (�(n)

i )−1(�(n)
i )TM̂i3

∥∥∥∥∥
= c

∥∥∥∥∥ N1∑
j=1

S(1)
j −

n1∑
j=1

(S(1)
j )(n)

︸ ︷︷ ︸
1

+
N2∑
j=1

S(2)
j −

n2∑
j=1

(S(2)
j )(n)

︸ ︷︷ ︸
2

∥∥∥∥∥ (21)

where c=‖K̂−1
33 ‖ ‖K̂−1

33 B̂3‖, a constant independent of the modes /(i)
j . S(i)

j and (S(i)
j )(n) are the

coupling matrices for the j th mode of the subsystem i as defined in (16). Assume that the norms
of the coupling matrices S(i)

j and (S(i)
j )(n) are in descending order, respectively

‖S(i)
1 ‖�‖S(i)

2 ‖� · · ·�‖S(i)
Ni

‖, ‖(S(i)
1 )(n)‖�‖(S(i)

2 )(n)‖� · · · �‖(S(i)
ni )

(n)‖
The best we can do is to set

(S(i)
j )(n) =S(i)

j for j = 1, 2, . . . , ni

This cancels out the first ni terms of the differences labelled as 1 and 2 of the upper bound in
(21), and leaves the sums of the remaining terms as small as possible. By this observation, we
derive the CMS�-mode selection rule as we described in Section 2: retain the first ni modes of the

subsystem i according to the largest norms of the coupling matrices S(i)
j .

Note that the matrices M̂i3 which couple subsystems and the interface are included in the
coupling matrices S(i)

j . They are reflected for the retention of modes of importance. These coupling
effects are essentially ignored by the CMS mode selection. To this end, we also note that CMS�-
mode selection criterion is analogous to the one in the OMR method derived by the DtN map
[13, 14]. The derivation presented in this section is conduced in the frequency domain. In the next
section, we will show the connection between the two methods in detail. This moment-matching
based mode selection derivation is simple yet powerful. Comparing to the derivation as presented
in [13, 14], CMS�-mode selection is derived without the assumption of the special form of the
external force term Bu(t) in the original system �N (1). Furthermore, CMS�-mode selection
criterion is derived without the assumption of only one subsystem reduction at a time. On the
other hand, the OMR mode selection is shown to be optimal in a certain sense [13], which we
cannot claim for the CMS�-mode selection.

4. ONE SUBSYSTEM REDUCTION WITHOUT MODIFYING OTHERS

In this section, we consider the setting where the OMR method [13, 14] is derived. Let subsystem I
be a main system and subsystem II be a subsystem. The OMR method is developed to reduce
the computational effort associated with the dynamic analysis of a linear subsystem ‘attached’
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to a main system. Only the dynamic behaviour of the main system is of great interest when a
reduction is performed on the subsystem alone without modifying the main system. It is assumed
that all the external loading is applied to the main system and thus the subsystem and the interface
are unloaded externally. To accurately represent the effect on the dynamic behaviour of the main
system by subsystems, it is further assumed that all non-zero initial conditions apply to the main
system.

In order to preserve the structure of the original system without modifying main system, the
reduction of the matrices M and K of the original system �N are replaced by the smaller matrices
Mn and Kn of the following forms:

Mn =

⎡⎢⎢⎣
M11 M13

M(n)
22 M(n)

23

MT
13 (M(n)

23 )T M̂33

⎤⎥⎥⎦ and Kn =

⎡⎢⎢⎣
K11 K13

K(n)
22 K(n)

23

KT
13 (K(n)

23 )T K̂33

⎤⎥⎥⎦ (22)

where the block matrices M22, M23, M33, K22, K23 and K33 of �N are replaced by M(n)
22 , M

(n)
23 ,

M̂33, K
(n)
22 , K

(n)
23 and K̂33, respectively.

The CMS� method described in Section 2 can be easily applied on this setting to obtain the
reduced-order system matrices Mn and Kn defined in (22). This is done by letting W13 = 0 and
U1 = I in the transformation matrices U and Vn defined in (8) and (9), namely

U=

N1 N2 N3

N1

N2

N3

⎛⎜⎝
I 0

I W23

I

⎞⎟⎠,
Vn =

n1 n2 N3

N1

N2

N3

⎛⎜⎝
I

U2

I

⎞⎟⎠
Let us refer it as the CMSP� method for this special case. Before we compare the CMSP� method
to the OMR method [14], we include a high-level description of the OMR algorithm for the sake
of completeness.

Algorithm 3: OMR method [14]
1. Compute the eigenpairs (� j ,/ j ) of the subsystem (K22,M22).
2. Sort the eigenpairs (� j ,/ j ) according to the highest norm of the coupling matrices SOj in

descending order, i.e.

‖SO1 ‖�‖SO2 ‖� · · · �‖SON2
‖

3. Retain first n2 eigenpairs (� j ,/ j ) to define U2.

4. Calculate M(n)
22 ,M(n)

23 ,K(n)
22 and K(n)

23 :

M(n)
22 = I, M(n)

23 =UT
2M23, K(n)

22 =K(n), K(n)
23 =UT

2K23
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5. Update the interface matrices M33 and K33:

M̂33 =M33 − MT
23M

−1
22 M23 + (M(n)

23 )T(M(n)
22 )−1M(n)

23

K̂33 =K33 − KT
23K

−1
22 K23 + (K(n)

23 )T(K(n)
22 )−1K(n)

23

6. Form reduced system matrices Mn , Kn as defined in (22).

The main differences between CMSP� and OMR methods are as follows. First, before solving

generalized eigenvalue problem, CMSP� transforms (M,K) to Craig–Bampton form, whereas OMR
does not do any transformation. Second, after the modal projection, OMR updates the interface
blocks M33 and K33, whereas CMSP� does not modify interface blocks at this point. Finally, we

note that CMSP� is under the Galerkin reduction framework, whereas OMR is not due to the special

modification of interface blocksM33 and K33. CMSP� modifies the interface blocks implicitly when
transforming (M,K) to the Craig–Bampton form (13).

We recall the coupling matrices S j of CMSP� defined in (16)

S j = 1

� j
M̂T

23/ j/
T
j M̂23

where M̂23 = (M23 −M22K
−1
22 K23). On the other hand, coupling matrices SOj shown in the OMR

[14] are defined as

SOj = � jMT
23/ j/

T
jM23 − MT

23/ j/
T
jK23 − KT

23/ j/
T
jM23 + 1

� j
KT

23/ j/
T
jK23 (23)

It can be verified that both coupling matrices are symmetric rank-one matrices, namely

S j = s j sTj and SOj = soj (s
o
j )
T

where

s j = 1√
� j

M̂T
23/ j and soj =

√
� jMT

23/ j − 1√
� j

KT
23/ j

A notable difference between the coupling matrices of CMSP� and those of the OMR is how the

eigenvalues affect the coupling M̂23. More precisely, these eigenvalues in coupling matrices of
CMS� have a reciprocal relation to those of OMR‡:

S j = 1

�2j
SOj

The eigenvalues � j play a role as a weight for coupling matrices. The major computational costs
of the CMSP� are transforming to the Craig–Bampton form and computing the norms of coupling

‡It is sufficient to show that s j = (1/� j )soj . In fact, note that K−1
22 M22� j = (1/� j )� j , we have s j =(

1/
√

� j
)
M̂T

23/ j =
(
1/
√

� j
)
(MT

23 − KT
23K

−1
22 M22)/ j = (1/� j )

(√
� jMT

23 − (
1/
√

� j
)
KT

23

)
/ j = (1/� j )soj .
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matrices S j . The costs of the OMR method are modifying the interface blocks and computing the
norms of coupling matrices SOj . Transforming to the Craig–Bampton form has essentially the same
computational cost as modifying the interface blocks. In Section 5, numerical examples show that
the CMS�-mode selection lead to more accurate results.

5. NUMERICAL EXPERIMENTS

In this section, we present two numerical examples to compare the CMS, CMS� and OMR mode
selection strategies discussed in this paper. All numerical experiments were run in MATLAB on
a Pentium IV PC with 2.6GHz CPU and 1GB of core memory.

5.1. BCS structural dynamics

In this example, we compare the results of frequency response analysis by the CMS and CMS�
methods. The mass matrix M and stiffness matrix K of the system of the form (1) are BCSSTM06
and BCSSTK06 from structure dynamics analysis in the Harwell–Boeing collection [18]. The
dimensions of these matrices are N = 420. After a reordering by METIS [19], M and K are
dissected into two substructures coupled by a small interface block (N3 = 36). Two subsystems are
of dimensions N1 = 190 and N2 = 194, respectively. We compute all eigenpairs of two substructures
in order to select the desired modes in CMS�.

The left of Figure 2 shows the magnitude (in log of base 10) of the transfer function H(�) of

the system �N with B=L=[ 1 0 . . . 0 ]T. The transfer functions HCMS
n (�) and H

CMS�
n (�) of the

reduced systems �n , computed by CMS and CMS�, are shown in the same plot. The dimension of
the reduced-order system �n obtained by CMS or CMS� is n = 153. The dimensions of subsystems
I and II are n1 = 52 and n2 = 65, respectively. The relative errors of the computed transfer functions

shown in right of Figure 2 indicate that H
CMS�
n (�) is a much accurate approximation of H(�) than

HCMS
n (�), where the the relative error of the CMS method is defined as |H(�)−HCMS

n (�)|/|H(�)|,
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Figure 2. Left: transfer functions. Right: relative errors.
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Figure 3. Retained modes of system II by CMS and CMS�.

and similarly the relative error of H
CMS�
n (�) is |H(�) − H

CMS�
n (�)|/|H(�)|. By these two plots,

it clearly shows that CMS� is more accurate than the CMS.
Figure 3 shows the eigenvalues of original subsystem II and the ones retained by CMS and

CMS�. Note that the numbers of eigenvalues of subsystems retained by the two methods are the
same. CMS simply takes the lowest frequency eigenvalues in order. On the other hand, CMS�
skips some of the low frequency eigenvalues, and selects a few higher frequency eigenvalues to
take into the account of coupling effects between the subsystems and the interface.

5.2. The vibrating membrane problem

In this example, we compare the performance of CMS� and OMR methods for transient analysis
of a simple lateral motion of a linear flat membrane. We use the same example as described in
[13, 14]. The governed equation is the standard wave equation

∇2u = ü

where u is the lateral displacement. The geometry of the membrane is shown in Figure 4. The
substructure I is the left 3 × 3 square labelled as �1, and the substructure II is the right hexagon
labelled as �2. The interface between them is the segment labelled as �. The sides with solid
lines are fixed, whereas all the other sides (dash lines) are free. The initial velocity is zero
everywhere. The initial displacement is a function changing linearly from u = 0 along the line
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Figure 4. The geometry of the membrane problem.

x = 0 to u = 1 along the lines x = 0.5 to u = 0 again along the line x = 1. After the line x = 1, the
initial displacement is zero everywhere.

After discretization by square bilinear finite elements of size 0.1 × 0.1, the degree of free-
doms of the whole system �N is N = 1988 and that of subsystems I, II and interface are
N1 = 899, N2 = 1080 and N3 = 9, respectively. We use a Newmark trapezoidal time-integration
scheme [20] with the time-step �t = 0.01 to solve both the original problem �N and the reduced
problems �n with the given initial conditions. All eigenpairs of subsystem II are computed for the
mode selection.

Figures 5(a)–(f) show the solutions u as a function of x for the fixed y = 1.5 for the full-order
model, the reduced-order systems with n2 = 50 using CMS� and OMR at time t = 2, 4, 10, 12, 18
and 25. The OMR results reported in [13] are essentially reproduced here. In these figures, the
CMS� produces slightly more accurate solutions than the OMR method. However, the advantage
of the CMS� is clearly shown for long time simulation, see Figures 6(a)–(d) at time t = 35, 50, 75
and 100.

6. CONCLUDING REMARKS

A coupling matrices-based mode selection criterion for the popular CMS method is presented in
this paper. It is derived based on moment-matching principle. This work is motivated by the recent
work of Givoli et al. [13, 14], in which the term ‘coupling matrices’ is coined. Our mode selection
criterion is compatible to the one proposed by Givoli et al., which uses Dirichlet-to-Neumann
(DtN) map as an analysis tool. The performance improvement of the new mode selection criterion
is demonstrated by numerical examples.

Although the numerical examples are convincing, it is still unclear at a theoretical level that
how much information is lost by the frequency domain approximation and by matching only the
first two moment vectors between the full and reduced models while minimizing the error in the

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (in press)
DOI: 10.1002/nme



THE IMPORTANT MODES OF SUBSYSTEMS: A MOMENT-MATCHING APPROACH

0 1 2 3

0

0.5

1

x

u

t = 2, y =1.5

Exact
CMSχ
OMR

0 1 2 3

0

0.5

1

x

u

t = 4, y =1.5

Exact
CMSχ
OMR

0 1 2 3

0

0.5

1

x

u

t = 10, y =1.5

Exact
CMSχ
OMR

0 1 2 3

0

0.5

1

x

u
t = 12, y =1.5

Exact
CMSχ
OMR

0 1 2 3

0

0.5

1

x

u

t = 18, y =1.5

Exact
CMSχ
OMR

0 1 2 3

0

0.5

1

x

u

t = 25, y =1.5

Exact
CMSχ
OMR

(a) (b)

(c) (d)

(e) (f)

))

)

) )

)

, , , ,

, , , ,

, , , , , , , ,

Figure 5. Solution u as a function of x with y = 1.5 for full model and reduced models obtained by CMS�
and OMR at: (a) t = 2; (b) t = 4; (c) t = 10; (d) t = 12; (e) t = 18; and (f) t = 25.
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Figure 6. Solution u as a function of x for y = 1.5 for full model and reduced models obtained by CMS�
and OMR at time: (a) t = 35; (b) t = 50; (c) t = 75; and (d) t = 100.

third moment vector. Furthermore, it is also unclear what is the implication of this approximation
in time domain. A theoretical justification is a subject of further study.

We should note that the coupling matrices-based mode selection costs more than the standard one,
since some extra eigenpairs of the subsystems are typically required. If the sizes of subsystems are
moderate, the extra cost may not be significant measured by the CPU time. Multilevel substructuring
with an optimal mode selection is a subject of future study. It is worth noting that modal reduction
methods as discussed in this paper are generally less accurate and efficient than Krylov subspace-
based reduction methods. A Krylov subspace-based substructuring method is in progress.
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