
III.1. The multicore computing systems - promises and challenges: synopsis

Multicore and heterogeneous computing technology has visibly penetrated the global market. Com-
puter manufacturers have already embarked on the multicore roadmap, promising to double the number
of processors on a chip every other year, and manycores are on the horizon. This dramatic transforma-
tion of the computing landscape also include the emergence of more powerful processing elements such
as GPUs, FPGA, etc [3, 4]. The shift to an increasing number of cores and heterogeneous architec-
tures requires significant modification to today’s computational tools and technologies. For at least two
decades, we have taken it for granted that each successive generation of microprocessors would, either
immediately or after minor adjustments, make our old software run substantially faster. But this “free
ride” is about to an end. The communication costs of an algorithm can already exceed arithmetic costs
by orders of magnitude, and the gap is growing exponentially over time [4]. It is difficult to overesti-
mate the magnitude of the discontinuity that the high-performance computational physics community
is about to experience because of the emergence of the next generation of multicore and heterogeneous
processor designs.

At present, the widely available linear algebra package LAPACK relies on parallel implementations of
basic linear algebra subroutines (BLAS) to take advantage of multiple execution units. This approach is
characterized by a fork-join model of parallel execution. On current and future generations of multicore
processors, this approach may result in suboptimal performance since it introduces strict dependencies
due to the presence of non-parallelizable portions of code. There are a number of efforts aiming to
address the resulting critical and highly disruptive situation that is facing the linear algebra and high
performance computing community. The Parallel Linear Algebra for Scalable Multi-core Architecture
(PLASMA) project is one such effort [1]. The following figures show the great performance of the matrix
multiplication of Intel MKL library on an Intel Xeon EMT64 (left), and of IBM ESSL library on an
IBM Power 6 (right):

 0

 20

 40

 60

 80

 100

 120

 140

 0 2000 4000 6000 8000 10000 12000

Matrix size

16xdgemm-seq16 cores
8 cores
4 cores
2 cores
1 core

 0

 100

 200

 300

 400

 500

 600

 0 2000 4000 6000 8000 10000 12000

Matrix size

32xdgemm-seq

32 cores
16 cores

8 cores
4 cores
2 cores
1 core

courtesy of Innovative Computing Laboratory at the University of Tennessee, Knoxville.

1

The following figures shows the performance of the LU factorization and QR decomposition of
PLASMA.

PLASMA DGETRF and DGEQRF on Intel Xeon EMT64

 0

 20

 40

 60

 80

 100

 120

 140

 0 2000 4000 6000 8000 10000 12000

Matrix size

16xdssssm-seq

16 cores
14 cores
12 cores
10 cores
8 cores
6 cores
4 cores
2 cores
1 core

 0

 20

 40

 60

 80

 100

 120

 140

 0 2000 4000 6000 8000 10000 12000

Matrix size

16xdssrfb-seq
16 cores
14 cores
12 cores
10 cores

8 cores
6 cores
4 cores
2 cores
1 core

PLASMA DGETRF and DGEQRF on IBM POWER 6

 0

 100

 200

 300

 400

 500

 600

 0 2000 4000 6000 8000 10000 12000

Matrix size

32xdssssm-seq

32 cores
16 cores
8 cores
4 cores
2 cores
1 core

 0

 100

 200

 300

 400

 500

 600

 0 2000 4000 6000 8000 10000 12000

Matrix size

32xdssrfb-seq

32 cores
16 cores

8 cores
4 cores
2 cores
1 core

courtesy of Innovative Computing Laboratory at the University of Tennessee, Knoxville.

Unfortunately, by nature, not every matrix operation can be efficiently parallelized and match the
efficiency. For example, the QR decomposition (QRD) with column pivoting is significantly poorer than
the QRD without pivoting, as shown in the following plots

2000 4000 6000 8000 10000 12000
0

10

20

30

40

DGEMM

DGEQRF

DGEQP3

4 16 36 64 144 256
0

200

400

600

800

1000

1200

Number of processors

G
F
L
O
P
/
S

PDGEMM

PDGEQRF

PDGEQPF

The performance of DGEMM (matrix multiplication), DGEQRF (QRD), and DGEQP3 (pivoted
QRD) on Intel Core i7 Quad 2.66G with MKL 10.2 (left), and on Cray XT4 at NERSC (right).

2

This is due to the fact that the pivoting involves moving the columns of the matrix between levels of
a memory hierarchy and/or between processors over a network. The communication costs can already
exceed arithmetic costs by orders of magnitude, and the gap is growing exponentially over time [4].

A challenge to numerical linear algebra community is how to harvest the great performance of basic
matrix operation kernels such as matrix multiplication and QR decomposition (without pivoting) and
re-design higher-level matrix algorithms to use only highly parallelized linear algebra building blocks in
realistic large scale physical and engineering simulation applications [2].

References

[1] E. Agullo, J. Demmel, J. Dongarra, et al, “Numerical Linear Algebra on emerging architectures:
The PLASMA and MAGMA projects”, Journal of Physics: Conference Series, Vol. 189, 2009

[2] J. Demmel, Avoiding communication in linear algebra, 2009. Available at
http://www.cs.ucdavis.edu/∼demmel

[3] H. Sutter. A fundamental turn toward concurrency in software, Dr. Dobb’s Journal, 30(3), 2005

[4] S. L. Graham, M. Snior and C. A. Patterson. Getting up to speed: the future of supercomputing.
National Academies Press, Washington DC, 2005 (354 pages)

3

