I.1.(b) Newton-type methods

Approximate Newton method

Version 1: Newton correction formula

Objective:

given an approximate eigenpair (μ, z) of A, where
$\mu=z^{H} A z$ and $\|z\|_{2}=1$, find an improved approximation
$(\mu+\eta, z+v)$ with the constraint $v \perp z$ (i.e., $v^{H} z=0$).
Newton correction formula. Let $(\mu+\eta, z+v)$ be an exact eigenpair of A

$$
A(z+v)=(\mu+\eta)(z+v)
$$

Then by the first-order approximation, we have the correction equation

$$
\begin{equation*}
(A-\mu I) v-\eta z=-r \quad \text { and } \quad z^{H} v=0 \tag{1}
\end{equation*}
$$

where r is the residual vector

$$
r=A z-\mu z
$$

In matrix form, we have

$$
\left[\begin{array}{cc}
A-\mu I & -z \\
z^{H} & 0
\end{array}\right]\left[\begin{array}{l}
v \\
\eta
\end{array}\right]=\left[\begin{array}{c}
-r \\
0
\end{array}\right]
$$

By the block elimination, we have the triangular system

$$
\left[\begin{array}{cc}
A-\mu I & -z \\
0 & z^{H}(A-\mu I)^{-1} z
\end{array}\right]\left[\begin{array}{l}
v \\
\eta
\end{array}\right]=\left[\begin{array}{c}
-r \\
z^{H}(A-\mu I)^{-1} r
\end{array}\right]
$$

Hence, we have the following Newton correction formula

$$
\begin{align*}
\eta & =\frac{z^{H}(A-\mu I)^{-1} r}{z^{H}(A-\mu I)^{-1} z} \tag{2}\\
(A-\mu I) v & =-r+\eta z \tag{3}
\end{align*}
$$

Approximate Newton method

Version 2: Newton correction equation

Alternative to the Newton correction formula: use a projection formulation.

Let us rewrite the correction equation (1) as

$$
\begin{equation*}
(A-\mu I) v=-r+\eta z \quad \text { and } \quad z^{H} v=0 \tag{4}
\end{equation*}
$$

Let

$$
P=I-z z^{H}
$$

be the orthogonal projector onto the orthogonal complement of z. Then

1. $P z=0$,
2. $P v=v$,
3. $\operatorname{Pr}=r$.

Consequently, (4) can be written as the following form, referred to as Newton correction equation:

$$
P(A-\mu I) P v=-r \quad \text { and } \quad v \perp z
$$

or

$$
\begin{equation*}
\left(I-z z^{H}\right)(A-\mu I)\left(I-z z^{H}\right) v=-r \quad \text { and } \quad v \perp z . \tag{5}
\end{equation*}
$$

Equivalence

Theorem. v satisfies (2) and (3) if and only if v satisfies (5).
Proof:

- We have already shown that if v satisfies (2) and (3), then v satisfies (5).
- Suppose v satisfies (5). Then
$(A-\mu I)\left(I-z z^{H}\right) v=-r+z z^{H}(A-\mu I)\left(I-z z^{H}\right) v=-r+\alpha z$
and

$$
v=-(A-\mu I)^{-1} r+\alpha(A-\mu I)^{-1} z .
$$

Since $z^{H} v=0$, we have

$$
\alpha=\frac{z^{H}(A-\mu I)^{-1} r}{z^{H}(A-\mu I)^{-1} z}=\eta .
$$

Thus v satisfies (2) and (3).

Remark:

Although the Newton correction equation (5) does not give the correction vector v explicitly, it offers an opportunity to apply an iterative method with preconditioing, for example preconditioned GMRES, to solve the correction equation, which in turn we need only to compute the matrix-vector product $P(A-\mu I) P y$, where y is an arbitrary vector.

Jacobi-Davidson method $=$ Newton correction equation $+\mathbf{R R}$

Basic Jacobi-Davidson method: compute only one eigenpair whose eigenvalue is near a focal point τ.

1. $\quad V=v ;$ normalized starting vector, $\|v\|_{2}=1$.
2. for $k=1,2, \ldots, k_{\max }$
3. Using V compute a Ritz pair (μ, z) such that μ is near τ;
4. $r=A z-\mu z$;
5. if r is sufficiently small, return (μ, z), exit;
6. \quad choose a shift κ near τ or μ;
7. solve the correction equation

$$
\left(I-z z^{H}\right)(A-\kappa I)\left(I-z z^{H}\right) v=-r \text { and } v^{H} z=0 ;
$$

8. orthonormalize v with respect to V;
9. $\quad V=\left[\begin{array}{ll}V & v\end{array}\right]$;
10. end for
11. signal nonconvergence.

Remarks:

- The algorithm has two parameters: τ and κ.
$-\tau$ is the center of a focal region in which we wish to find an eigenpair, and
$-\kappa$ is generally chosen equal to τ or μ.
If it is inexpensive to vary κ, then it can be shown that by choosing $\kappa=\mu$, the algorithm converges quadatically.
- Solving the correction equation exactly

$$
\left(I-z z^{H}\right)(A-\kappa I)\left(I-z z^{H}\right) v=-r \quad \text { and } \quad v, r \perp z
$$

By $v \perp z$, we have

$$
\left(I-z z^{H}\right)(A-\kappa I) v=-r
$$

or

$$
(A-\kappa I) v=-r+z z^{H}(A-\kappa I) v
$$

$$
v=-\underbrace{(A-\kappa I)^{-1} r}_{x}+\underbrace{(A-\kappa I)^{-1} z}_{f} \underbrace{z^{H}(A-\kappa I) v}_{a} \equiv-x+f a .
$$

By $v \perp z$ again, we have

$$
0=z^{H} v=-z^{H}(A-\kappa I)^{-1} r+z^{H}(A-\kappa I)^{-1} z z^{H}(A-\kappa I) v .
$$

Then we can solve the following equation for " a ";

$$
z^{H} \underbrace{(A-\kappa I)^{-1} z}_{f} \underbrace{\left(z^{H}(A-\kappa I) v\right)}_{a}=z^{H} \underbrace{(A-\kappa I)^{-1} r}_{x} .
$$

In summary, the correction equation can be solved as follows:

1. Compute $f=(A-\kappa I)^{-1} z$;
2. Compute $c=z^{H} f$;
3. Solve $(A-\kappa I) x=r$ for x;
4. Compute $b=z^{H} x$;
5. $a=b / c$ for a;
6. $v=-x+f a$.
