
I.2 Quadratic Eigenvalue Problems

1 Introduction

The quadratic eigenvalue problem (QEP) is to find scalars λ and nonzero vectors u satisfying

Q(λ)x = 0, (1.1)

where
Q(λ) = λ2M + λD + K,

M , D and K are given n × n matrices. Sometimes, we are also interested in finding the left
eigenvectors y: yHQ(λ) = 0. Note that Q(λ) has 2n eigenvalues λ. They are the roots of
det[Q(λ)] = 0.

2 Linearization

A common way to solve the QEP is to first linearize it to a linear eigenvalue problem. For
example, let

z =

(
λu
u

)
,

Then the QEP (1.1) is equivalent to the generalized eigenvalue problem

Lc(λ)z = 0 (2.2)

where

Lc(λ) = λ

(
M 0
0 I

)
+

(
D K
−I 0

)
≡ λG + C.

Lc(λ) is called a companion form or a linearization of Q(λ).

Definition 2.1. A matrix pencil L(λ) = λG + C is called a linearization of Q(λ) if

E(λ)L(λ)F (λ) =

(
Q(λ) 0

0 I

)
(2.3)

for some unimodular matrices E(λ) and F (λ).1

For the pencil Lc(λ) in (2.2), the identity (2.3) holds with

E(λ) =

(
I λM + D
0 −I

)
, F (λ) =

(
λI I
I 0

)
.

There are various ways to linearize a quadratic eigenvalue problem. Some are preferred
than others. For example if M , D and K are symmetric and K is nonsingular, then we can
preserve the symmetry property and use the following linearization:

Lc(λ) = λ

(
M 0
0 K

)
+

(
D K
K 0

)
. (2.4)

The following is an outline of the linearization solution process for solving the QEP (1.1),
which is implemented by MATLAB function polyeig(K,D,M).

1A λ-matrix E(λ) is called unimodular, if det(E(λ)) ≡ ±1.
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Algorithm 2.1 (Direct QEP method).

1. Linearize Q(λ) into L(λ) = λG + C.

2. Solve the generalized eigenproblem L(λ)z = 0.

3. Recover eigenvectors of Q from those of L.

Remark 2.1. Additional issues on scaling and numerical sensitivity.2

3 Arnoldi methods

For large sparse QEP, we can use the Arnoldi algorithm to compute a few eigenpairs of the
QEP through the linearized problem.

3.1 Arnoldi method

We can use the Arnoldi procedure to generate an orthonormal basis Vn of the Krylov subspace
Kn(−G−1C;−G−1b), namely,

span{Vn} = Kn(−G−1C; G−1b)

= span{G−1b, (−G−1C)G−1b, . . . , (−G−1C)n−1G−1b}

Algorithm 3.1 (Arnoldi procedure).
Input: G, C, b, n

Output: Ĥn, Vn+1

1. v1 = G−1b/‖G−1b‖
2. for j = 1, 2, . . . , n do
3. Solve Gr = −Cvj for r
4. hj = V T

j r

5. r = r − Vjhj

6. hj+1,j = ‖r‖
7. stop if hj+1,j = 0
8. vj+1 = r/hj+1,j

9. end for

The governing equation of the Arnoldi procedure is

(−G−1C)Vn = Vn+1Ĥn, (3.5)

where Ĥn is an (n + 1) × n upper Hessenberg matrix and Vn+1 is a 2N × (n + 1) matrix with
orthonormal columns.

A description of the basic Arnoldi method for solving the QEP (1.1) based on linearization
(2.2) is as follows.

Algorithm 3.2 (Basic Arnoldi Method for Linearized QEP).

1. Transform the QEP (1.1) to the equivalent generalized eigenvalue problem (2.2).

2. Run the Arnoldi procedure with the matrix H = −G−1C and the vector v = (uT 0 )T

to generate an orthonormal basis {v1, v2, . . . , vn} of the Krylov subspace Kn (H; v). Let
Vn = (v1, v2, . . . , vn).

2N. J. Higham, D. S. Mackey, F. Tisseur and S. D. Garvey. Scaling, Sensitivity and Stability in the Numerical
Solution of Quadratic Eigenvalue Problems, Internat. J. Numer. Methods Eng., 73(3):344-360, 2008.
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3. Solve the reduced eigenvalue problem

(V T
n HVn)t = θt,

and obtain the Ritz pairs (θ, y) of the eigenvalue problem of the single matrix H, where
y = Vnt. Note that by (3.5), V T

n HVn = Hn(1 : n, 1 : n) is an n × n upper Hessenberg
matrix returned directly from the Arnoldi procedure without additional cost.

4. Extract the approximate eigenpairs (θ, z) of the QEP (1.1), and test their accuracy by
the residual norms as described in (5.19), where z = y(N + 1 : 2N)/‖y(N + 1 : 2N)‖2.

In practice, one may incorporate the implicit restarting scheme as we discussed for the
standard Arnoldi procedure.

4 Q-Arnoldi method

Note that

−G−1C =

(
−M−1D −M−1K

I 0

)
=

(
A B
I 0

)
.

Let us partition the jth Arnoldi vector vj into

vj =

(
uj

wj

)

where uj and wj are vectors of length n. From the second block row of the governing equation
(3.5) of the Arnoldi procdure, we have

Un = Wn+1Ĥn. (4.6)

We can exploit this relation to avoid the storage of the U -vectors with a slight increase of
computational cost, since all products with Un are to be replaced by products with Wn+1 and
Ĥn. Based upon this observations, we derive the following algorithms.

Algorithm 4.1 (Q-Arnoldi procedure).
Input: A, B, b, n

Output: Ĥn, Wn+1

1. u = b/‖b‖ and w1 = 0
2. for j = 1, 2, . . . , n do
3. r = Au + Bwj

4. t = u

5. hj =

(
ĤT

j−1(W
T
j r) + W T

j−1t

uT r + wT
j t

)

6. r = r −
(

Wj u
)(( Ĥj−1 0

0 1

)
hj

)

7. t = t − Wjhj

8. hj+1,j = (‖r‖2 + ‖t‖2)1/2

9. stop if hj+1,j = 0
10. u = r/hj+1,j

11. wj+1 = t/hj+1,j

12. end for

Consequently, we can derive an Q-Arnoldi method with a simple replacement of the Arnoldi
procedure by the Q-Arnoldi procedure at Step 2 of Algorithm 3.2.
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5 Second-order Arnoldi procedure

The Arnoldi approach has disadvantages such as the loss of essential structures of the original
problem in the process of linearization. For example, when coefficient matrices M , C and K
are symmetric positive definite, the transformed generalized eigenvalue problem (2.3) has to be
either nonsymmetric where one of G and C has to be nonsymmetric, or a symmetric indefinite
where both of G and C are symmetric but neither of them will be positive definite. Researchers
have been studying numerical methods which can be applied to the large-scale QEP directly.
In these methods, they do not transform the second-order form to an equivalent linear form;
instead, they project the second-order form onto a properly chosen low-dimensional subspace
to reduce it to a second-order problem directly. The following second-order Arnolid method is
an approached proposed recently.

5.1 A second-order Krylov subspace

Let us begin by defining the generalized Krylov subspace induced by a pair of matrices A and
B and a vector u.

Definition 5.1. Let A and B be square matrices of order N , and u 6= 0 be an N -vector. Then

the sequence

r0, r1, r2, . . . , rn−1, (5.7)

where
r0 = u,
r1 = Ar0,
rj = Arj−1 + Brj−2 for j ≥ 2,

is called the second-order Krylov sequence of A, B on u. The space

Gn (A, B; u) = span{r0, r1, r2, . . . , rn−1},

is called the nth second-order Krylov subspace.

We now discuss the motivation for the definition of the second-order Krylov subspace
Gn (A, B; u) in the context of solving the QEP (1.1). Recall that the QEP (1.1) can be trans-
formed to an equivalent generalized eigenvalue problem (2.2). If one applies a Krylov subspace
technique to (2.2), then an associated Krylov subspace would naturally be

Kn (H; v) = span
{
v, Hv, H2v, . . . , Hn−1v

}
, (5.8)

where v is a starting vector of length 2N , and

H = −G−1C =

(
−M−1D −M−1K

I 0

)
. (5.9)

Let A = −M−1D, B = −M−1K and v = [uT 0]T, then it immediately derives that the
second-order Krylov vectors {rj} of length N defined in (5.7) and the standard Krylov vectors
{Hjv} of length 2N defined in (5.8) is related as the following form

[
rj

rj−1

]
= Hjv for j ≥ 1. (5.10)

In other words, the generalized Krylov sequence {rj} defines the entire standard Krylov se-
quence based on H and v. Equation (5.10) indicates that the subspace Gj (A, B; u) of RN

should be able to provide sufficient information to let us directly work with the QEP, instead
of using the subspace Kn (H; v) of R2N for the linearized eigenvalue problem (2.2).

By the observation (5.10), the relationship between the standard Krylov subspace Kn(H; v)
and the second-order Krylov subspace Gn(A, B; u) can be charaterized by the following theorem.

4



Theorem 5.1. Let Qn be an orthonormal basis of the second-order Krylov subspace Gn(A, B; u).
Let Q[n] denote the following 2 by 2 block diagonal matrix

Q[n] =

(
Qn

Qn

)
(5.11)

Then Hℓv ∈ span{Q[n]} for ℓ = 0, 1, 2, . . . , n − 1. This means that

Kn(H; v) ⊆ span{Q[n]}.

We call that the standard Krylov subspace Kn(H; b̂0) is embedded into the second-order Krylov

subspace Gn(A, B; r0).

5.2 Second-order Arnoldi procedure

We now turn to the question of how to construct an orthonormal basis {qi} of Gj (A, B; u).
Namely,

span{q1, q2, . . . , qj} = Gj (A, B; u) for j ≥ 1.

The following is that so-called Second-Order ARnoldi (SOAR) procedure to generate the
orthonormal basis.

Algorithm 5.1 (SOAR Procedure).
1. q1 = u/‖u‖2

2. p1 = 0
3. for j = 1, 2, . . . , n do

4. r = Aqj + Bpj

5. s = qj

6. for i = 1, 2, . . . , j do

7. tij = qT
i r

8. r := r − qitij
9. s := s − pitij
10. end for

11. tj+1 j = ‖r‖2

12. if tj+1 j = 0, stop

13. qj+1 = r/tj+1 j

14. pj+1 = s/tj+1 j

15. end for

Remark 5.1. The for-loop in Lines 6-10 is an orthogonalization procedure with respect to
the {qi} vectors. The vector sequence {pj} is an auxiliary sequence. In the next section, we
will present a modified version of the algorithm to remove the requirement of explicit references
to vectors pj .

Let Qn = (q1, q2, . . . , qn), Pn = (p1, p2, . . . , pn), Tn = (tij)n×n. Note that Tn is upper
Hessenberg. Then the following relations hold:

(
A B
I 0

)(
Qn

Pn

)
=

(
Qn+1

Pn+1

)
T̂n, (5.12)

where QT
nQn = In, and

T̂n =

(
Tn

eT
n tn+1 n

)
.
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This relation assembles the similarity between the SOAR procedure and the Arnoldi proce-
dure. The essential difference between the SOAR procedure and the Arnoldi procedure is
that in SOAR, entries tij of T̂n are chosen to enforce the orthonormality among vectors qj of

dimension N , whereas in the Arnoldi method, entries hij of Ĥn are determined to ensure the
orthonormality among vectors vj of dimension 2N .

The following theorem ensures that the vector sequence {q1, q2, . . . , qn} indeed is an or-
thonormal basis of the second-order Krylov subspace Gj (A, B; u).

Theorem 5.2. If ti+1,i 6= 0 for i ≤ j, then the vector sequence {q1, q2, . . . , qj} forms an

orthonormal basis of the second-order Krylov subspace Gj (A, B; u):

span{Qj} = Gj (A, B; u) for j ≥ 1. (5.13)

Now let us exploit the relations in Algorithm 5.1 to derive a new version, which reduces
memory requirement and floating point operations by almost one half.

By (5.12) and noting that p1 = 0, we have

Qn = Pn+1T̂n = Pn+1(:, 2 : n + 1) · T̂n(2 : n + 1, 1 : n)

and
AQn + BQnSn = QnTn + qn+1e

T
n tn+1 n = Qn+1T̂n, (5.14)

where Sn is an n × n strictly upper triangular matrix of the form

Sn =

(
0 T̂n(2 : n, 1 : n − 1)−1

0 0

)
.

Equation (5.14) suggests a method for computing the vector qj+1 directly from q1, q2, . . . , qj .
This leads to the following algorithm:

Algorithm 5.2 (SOAR procedure with deflation and memory saving).
1. q1 = u/‖u‖2

2. f = 0
3. for j = 1, 2, . . . , n do

4. r = Aqj + Bf
5. for i = 1, 2, . . . , j do

6. tij = qT
i r

7. r := r − qitij
8. end for

9. tj+1 j = ‖r‖2

10. if tj+1 j 6= 0,
11. qj+1 := r/tj+1 j

12. f = Qj T̂ (2 : j + 1, 1 : j)−1ej

13. else

14. reset tj+1 j = 1
15. qj+1 = 0

16. f = Qj T̂ (2 : j + 1, 1 : j)−1ej

17. save f and check deflation and breakdown
18. end if

19. end for

Remark 5.2. Note that at Line 17, if f belongs to the subspace spanned by previously
saved f vectors, then the algorithm encounters breakdown and terminates. Otherwise, there is
a deflation at step j; after setting tj+1 j to 1 or any nonzero constant, the algorithm continues.
Those saved f vectors are the pi vectors correspoding to the vector qi = 0 in Algorithm 5.1.
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As a practical consideration, the work in the SOAR procedure and the Arnoldi procedure
can be divided between the computation of matrix-vector products Ap and Bq and orthogonal-
ization. The two methods cost the same for computing the former, which varies depending on
the sparsity and structures of matrices A and B. The costs of orthogonalization for SOAR and
Arnoldi are 3n2N + 3nN and 4n2N + 10nN , respectively. It indicates that SOAR costs about
25% less floating point operations than Arnoldi. More importantly, the memory requirement
of the SOAR procedure is only half of the memory requirement the Arnold procedure.

5.3 SOAR algorithm

We now follow the orthogonal Rayleigh-Ritz approximation procedure to derive a method
which approximates a large QEP by a small QEP. Following the standard derivation, to apply
Rayleigh-Ritz approximation technique based on the subspace Gn(A, B; u) with A = −M−1D
and B = −M−1K, we seek an approximate eigenpair (θ, z), where θ ∈ C and z ∈ Gn (A, B; u),
by imposing the following orthogonal condition, also called the Galerkin condition,

(
θ2M + θD + K

)
z ⊥ Gn (A, B; u) ,

or equivalently,
vT
(
θ2M + θD + K

)
z = 0 for all v ∈ Gn (A, B; u). (5.15)

Since z ∈ Gn (A, B; u), it can be written as

z = Qmg, (5.16)

where the N × m matrix Qm is an orthonormal basis of Gn (A, B; u) generated by the SOAR
procedure, and g is an m vector and m ≤ n. When there are deflations, m < n. By (5.15) and
(5.16), it yields that θ and g must satisfy the reduced QEP:

(
θ2Mm + θDm + Km

)
g = 0 (5.17)

with
Mm = QT

mMQm, Cm = QT
mDQm, Km = QT

mKQm. (5.18)

The eigenpairs (θ, g) of (5.17) define the Ritz pairs (θ, z). The Ritz pairs are approximate
eigenpairs of the QEP (1.1). The accuracy of the approximate eigenpairs (θ, z) can be assessed
by the norms of the residual vectors

r = (θ2M + θD + K)z.

By explicitly formulating the matrices Mm, Dm and Km, essential structures of M , D and
K are preserved. As a result, essential spectral properties of the QEP will be preserved.

The following algorithm is a description of the Rayleigh-Ritz projection procedure based
on Gn (A, B; u) for solving the QEP (1.1) directly.

Algorithm 5.3 (SOAR Method for Solving the QEP Directly).

1. Run SOAR procedure with A = −M−1D and B = −M−1K and a starting vector u to
generate an N × m orthogonal matrix Qm whose columns span an orthonormal basis of
Gn (A, B; u).

2. Compute Mm, Cm and Km as defined in (5.18).

3. Solve the reduced QEP (5.17) for (θ, g) and obtain the Ritz pairs (θ, z), where z =
Qmg/‖Qmg‖2.
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Figure 5.1: Random gyroscopic QEP, exact and approximate eigenvalues (left) and relative
residual norms (right) (Example 1).

4. Test the accuracy of Ritz pairs (θ, z) as approximate eigenvalues and eigenvectors of the
QEP (1.1) by the relative norms of residual vectors:

‖r‖2

|θ|2‖M‖1 + |θ|‖C‖1 + ‖K‖1
(5.19)

Remark 5.3. At step 3, to solve the small QEP (5.17), we transform it to a generalized
eigenvalue problem in the form of (2.2), and use the direct QEP solver (Algorithm 2.1)

Example 5.1. This example is to show that the convergence rate of SOAR method and
Arnoldi method are comparable. However, SOAR method and hybrid method preserve the
essential properties of the QEP. Specifically, M , C and K are chosen as 200 × 200 random
matrices with the elements chosen from a normal distribution with mean zero, variance one
and standard deviation one. Furthermore, MT = M > 0, CT = −C and KT = K > 0, as
one encounters in a gyroscopic dynamical system. The gyroscopic system is a widely studied
system. There are many interesting properties associated with such a system. For example,
it is known that the distribution of the eigenvalues of the system in the complex plane is
symmetric with respect to both the real and imaginary axes.

The left plot of Figure 5.1 shows the approximate eigenvalues computed by all three algo-
rithms with n = 20. The right plot of Figure 5.1 shows the relative residual norms returned
by the three algorithms. This example shows that SOAR method preserves the gyroscopic
spectral property. Furthermore, the residual norms indicate that the SOAR method has a
slight better convergence rate.

6 Further reading

A survey of the quadratic eigenvalue problem can be found in

• F. Tisseur and K. Meerbergen. The quadratic eigenvalue problem. SIAM Review. vol.
43, pp 234-286, 2001.

The study of the linearization technique in a general setting can be found in

• D. Mackey, N. Mackey, C. Mehl and V. Mehrmann, Vector spaces of linearizations for
matrix polynomials, SIAM J. Matrix Anal. Appl. 28:971-1004, 2006
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The following recent work to focus on the influence of the linearization process on the accuracy
and stability of the computed solution, via a simple model QEP:

• N. J. Higham, D. S. Mackey, F. Tisseur and S. D. Garvey, Scaling, sensitivity and stability
in the numerical solution of quadratic eigenvalue problems, Int. J. Numer. Meth. Engng,
73:344-360, 2008

The Q-Arnoldi method is discussed in the following paper:

• K. Meerbergen. The quadratic Arnoldi method for the solution of the quadratic eigen-
value problem. SIAM J. Matrix Anal. Appl. 30:1463-1482, 2008.

The second-order Krylov subspace approach is presented in

• Z. Bai and Y. Su, SOAR: A second-order Arnoldi method for the solution of the quadratic
eigenvalue problem, SIAM J. Matrix Anal. Appl., Vol.26, No.3, pp.640-659, 2005

A collection of quadratic and other nonlinear eigenvalue problems can be founded in

• T. Betcke, N. J. Higham, V. Mehrmann, C. Schroder and F. Tisseur. NLEVP: A
collection of nonlinear eigenvalue problems. Technique report MIMS EPrint 2008.40.
School of Mathematics, The University of Manchester, 2008.

http://www.manchester.ac.uk/mims/eprints.
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