1.2 Quadratic eigenvalue problems




Basics

e The quadratic eigenvalue problem (QEP) is to find scalars
and nonzero vectors satisfying

QA)z =0, (1)

where
Q\) = MM + A\D + K,

M, D and K are givemn x n matrices.

e Sometimes, we are also interested in finding the left
eigenvectory:

y"Q(\) = 0.
e (Q()\) has2n eigenvalues\.. They are the roots of dé}(\)| = 0.



Linearization

e A common way to solve the QEP is to first linearize it to a
linear eigenvalue problem.

H
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Then the QEP (1) is equivalent to the generalized eigenvalue
problem

e For example, let

LX)z =0 (2)
where
LX) = A []\04 ?] + [Z [0(

L.()\) is called a companion form or a linearization@f)).

]E)\G—I—C.



e Definition. A matrix pencilL(A\) = A\G + C'is called a
linearization of Q()\) if

ELFe) = | 9 | @

for some unimodular matrices(\) and F'(\).
e For the pencilL.(\) in (2), the identity (3) holds with

E()) = [é AM_;D], F(A) = [A][ é]

e There are various ways to linearize a QEP. Some are preferred
than others. For exampleiff, D and K are symmetric andk
IS nonsingular, then we can preserve the symmetry property
and use the following linearization:
M 0 ] [ D K ]
+ :

LC<A>=A[OK P (4)



e Direct QEP method (MATLAB’s pol yei g( K, D, M ).
1. LinearizeQ()\) into L(\) = \G + C.
2. Solve the generalized eigenproblém)z = 0.
3. Recover eigenvectors ¢f from those ofL.

e Additional issues on scaling and numerical sensitivity.



Arnoldi method

e Use the Arnoldi procedure to generate an orthonormal Basis
of the Krylov subspacé&,,(—G~'C:; —G~'b), namely,

spar(V,,} = K,.(—G~'C;G'b)
= spaf{G'b, (-G 'C)G b, ..., (=GO G b}
e The governing equation of the Arnoldi procedure is
(~G7'C)V, = Vyui H,, (5)

whereH,, is an(n + 1) x n upper Hessenberg matrix ang,
ISa2N x (n + 1) matrix with orthonormal columns.



e Basic Arnoldi Method for Linearized QEP
1. Transform the QEP (1) to the equivalent generalized

eigenvalue problem (2).

2. Run the Arnoldi procedure with the matidk = —-G~1C
and the vector = (u' 0)! to generate an orthonormal
basisV,, = {v1, vo,...,v,} Of IC,, (H;v).

3. Solve the reduced eigenvalue problem

(VIHV,)t = ot,

and obtain the Ritz paird, y = V,,t)
4. Extract the approximate eigenpaiés z) of the QEP (1),
and test their accuracy by the residual norms

¢ In practice, one may incorporate the implicit restartingesue
as we discussed for the standard Arnoldi procedure.



Q-Arnoldi method

e Note that

~M™'D —-M 'K A B
—1~ _ —
nel R e P

e Let us partition thegth Arnoldi vectory; into

j = .
W;

whereu; andw; are vectors of length.

e From the second block row of the governing equation (5) of the
Arnoldi procdure, we have

Un — Wn+1ﬁn- (6)



e Exploit this relation to avoid the storage of thievectors with a
slight increase of computational cost, since all products w
U, are to be replaced by/,,.1 H,,.

e Derive an Q-Arnoldi method with a simple replacement of the
Arnoldi procedure by the Q-Arnoldi procedure at Step 2 of the
Arnoldi algorithm.



Second-order Krylov subspace

e Definition. Let A and B be square matrices of ordat, and
u # 0 be anN-vector. Then the sequence

o, 71,792y ... Tn—-1, (7)

where

o = u,

rL = ATO)

ri = Ar,_y+ Brj_o forj > 2,
Is called thesecond-order Krylov sequencef A, B onu. The
space

gn (A7 B7 U> — Sp&ﬂ{?"o, Iy, T2y ..., Tn—l}a

Is called thenth second-order Krylov subspace



e Motiviation

— Recall that the QEP (19> generalized eigenvalue problem
(2).
— If one applies a Krylov subspace technigue to (2), then an
associated Krylov subspace would naturally be
K, (H;v) =span{v, Hv, H*v,...,H" v}, (8)
wherev is a starting vector of length/v, and
M™‘D —-M'K| |AB
A R O
then it immmediately derives that the second-order Krylov

vectors{r;} and the standard Krylov vectof${/v} is
related as the following form

H=-G'C= [_

[777' ]:va for j > 1. (10)

Tj_l

with v = [u! 0%,



—In other words, the generalized Krylov sequefeg
defineghe entire standard Krylov sequence basediocand
.

Theorem. Let (),, be an orthonormal basis of the
second-order Krylov subspacg(A, B;u). LetQ, denote
the following 2 by 2 block diagonal matrix

Q= (Q” Qn) (11)

ThenH"v € span{Qy, } for ¢ =0,1,2,...,n — 1. This
means that
Kn(H;v) € span{Q}-

We call that the standard Krylov subspacg H ;30) IS
embedded into the second-order Krylov subspace

gn(A7 B7 TO)-



Second-Order ARnoldi (SOAR) procedure

e Construct an orthonormal basig;} of G, (A, B; u):
span{qi, q2, - - -, q;} = G; (A, By u)

e SOAR Procedure
q = u/||ull2; pr =0
for j=1,2,...,ndo
r = Aq; + Bpj; s = q;
fori=1,2,...,5do
tz’j — qZTT
rTi=Tr— taw’ S =8 — pZt@]
end for
tiay = lIrlls
if t;11;, =0, stop
dj+1 = T/tjﬂj; Pj+1 = S/tj+1j
end for

=
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= O



Remark: Thdor-loop in Lines 4-7 is an orthogonalization
procedure with respect to tHe, } vectors. The vector sequence
{p,} is an auxiliary sequence.



o Let Qn — (Qb q2, - - -, QTL>7 Pn — (p17p27 s 7pn>7 Tn — (t2]>n><n
Note that7,, is upper Hessenberg. Then the following relations

hold: e 0 0
n| n+l | o
TollE ]
whereQ?Q, = I,,, and,, = [ TT" ] .
entn+1n

e This relation assembles the similarity between the SOAR
procedure and the Arnoldi procedure.

Theorem. If ¢,.1; # 0 for < < 7, then the vector sequence

{¢1,q, .. .,q;} forms an orthonormal basis of the second-order
Krylov subspacey; (A, B; u):
span{@;} = G; (A, B;u) forj > 1. (13)

e A variant of SOAR is to exploit the relations and reduce
memory requirement and floating point operations by almost
one half.



SOAR algorithm = RR + SOAR procedure

e Rayleigh-Ritz approximation procedure:

seek an approximate eigenpéir =), wheref € C and
» € G, (A, B;u), by imposing the following Galerkin
condition:

(°M+60D+K)z L G,(A B;u),
or equivalently,
' (°M +0D+K)z=0 forallveg,(A, Bu). (14)
e Sincez € G, (A, B;u), it can be written as = @,,,g, where the

span@y, = G, (A, B;u)
By (14), it yields that) andg must satisfy the reduced QEP:

(0°M,, + 6D, + K,,) g =0 (15)



e The eigenpairgd, g) of (15) define theRitz pairs(d, z),
approximate eigenpairs of the QEP (1).
e By explicitly formulating the matriced/,,, D,, andk,,,

essential structures @ff, D and K are preserved. As a result,
essential spectral properties of the QEP will be preserved.



SOAR algorithm

1. Run SOAR procedure with = —M~'D andB = —M 'K
and a starting vectar to generate aiv x m orthogonal matrix
Q).» whose columns span an orthonormal basi§,ofA, B; u).

2. ComputeM,,, C,, and K,

3. Solve the reduced QEP f(#, g) and obtain the Ritz pairs
(0, z), wherez = Q,,9/||Qmg]|o.

4. Test the accuracy of Ritz paif®, =) as approximate

eigenvalues and eigenvectors of the QEP (1) by the relative
norms of residual vectors:

1(6>M + 6D + K)z||s
O M L+ [O[IClh + [

(16)



An example to illusrate the benefits of structure-preservabn

e An artifical gyroscopic dynamical system:
M'=M>0,C"=—-CandK" = K >0,

e The distribution of the eigenvalues of the system is symimetr
with respect to both the real and imaginary axes.

e Eigenvalues and approximations relative residual norms.
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e The SOAR method preserves the gyroscopic spectral property



