II.2 Quadratic eigenvalue problems

• The quadratic eigenvalue problem (QEP) is to find scalars λ and nonzero vectors x satisfying

$$Q(\lambda)x = 0, \tag{1}$$

where

$$Q(\lambda) = \lambda^2 M + \lambda D + K,$$

M, D and K are given $n \times n$ matrices.

• Sometimes, we are also interested in finding the left eigenvectors y:

 $y^H Q(\lambda) = 0.$

• $Q(\lambda)$ has 2n eigenvalues λ . They are the roots of $det[Q(\lambda)] = 0$.

Linearization

- A common way to solve the QEP is to first linearize it to a linear eigenvalue problem.
- For example, let

$$z = \left[\begin{array}{c} \lambda x \\ x \end{array} \right],$$

Then the QEP (1) is equivalent to the generalized eigenvalue problem

$$L_c(\lambda)z = 0 \tag{2}$$

where

$$L_c(\lambda) = \lambda \begin{bmatrix} M & 0 \\ 0 & I \end{bmatrix} + \begin{bmatrix} D & K \\ -I & 0 \end{bmatrix} \equiv \lambda G + C.$$

 $L_c(\lambda)$ is called a companion form or a linearization of $Q(\lambda)$.

Definition. A matrix pencil L(λ) = λG + C is called a linearization of Q(λ) if

$$E(\lambda)L(\lambda)F(\lambda) = \begin{bmatrix} Q(\lambda) & 0\\ 0 & I \end{bmatrix}$$
(3)

for some unimodular matrices $E(\lambda)$ and $F(\lambda)$.

• For the pencil $L_c(\lambda)$ in (2), the identity (3) holds with

$$E(\lambda) = \begin{bmatrix} I \ \lambda M + D \\ 0 \ -I \end{bmatrix}, \quad F(\lambda) = \begin{bmatrix} \lambda I \ I \\ I \ 0 \end{bmatrix}$$

• There are various ways to linearize a QEP. Some are preferred than others. For example if *M*, *D* and *K* are symmetric and *K* is nonsingular, then we can preserve the symmetry property and use the following linearization:

$$L_c(\lambda) = \lambda \begin{bmatrix} M & 0 \\ 0 & K \end{bmatrix} + \begin{bmatrix} D & K \\ K & 0 \end{bmatrix}.$$
 (4)

• **Direct QEP method** (MATLAB's polyeig(K,D,M)).

1. Linearize $Q(\lambda)$ into $L(\lambda) = \lambda G + C$.

- 2. Solve the generalized eigenproblem $L(\lambda)z = 0$.
- 3. Recover eigenvectors of Q from those of L.
- Additional issues on scaling and numerical sensitivity.

Arnoldi method

• Use the Arnoldi procedure to generate an orthonormal basis V_n of the Krylov subspace $\mathcal{K}_n(-G^{-1}C; -G^{-1}b)$, namely,

$$span\{V_n\} = \mathcal{K}_n(-G^{-1}C; G^{-1}b) = span\{G^{-1}b, (-G^{-1}C)G^{-1}b, \dots, (-G^{-1}C)^{n-1}G^{-1}b\}$$

• The governing equation of the Arnoldi procedure is

$$(-G^{-1}C)V_n = V_{n+1}\widehat{H}_n,$$
 (5)

where \widehat{H}_n is an $(n+1) \times n$ upper Hessenberg matrix and V_{n+1} is a $2N \times (n+1)$ matrix with orthonormal columns.

• Basic Arnoldi Method for Linearized QEP

- 1. Transform the QEP (1) to the equivalent generalized eigenvalue problem (2).
- 2. Run the Arnoldi procedure with the matrix $H = -G^{-1}C$ and the vector $v = (u^T 0)^T$ to generate an orthonormal basis $V_n = \{v_1, v_2, \dots, v_n\}$ of $\mathcal{K}_n(H; v)$.
- 3. Solve the reduced eigenvalue problem

$$(V_n^T H V_n)t = \theta t,$$

and obtain the Ritz pairs $(\theta, y = V_n t)$

- 4. Extract the approximate eigenpairs (θ, z) of the QEP (1), and test their accuracy by the residual norms
- In practice, one may incorporate the implicit restarting scheme as we discussed for the standard Arnoldi procedure.

Q-Arnoldi method

• Note that

$$-G^{-1}C = \begin{bmatrix} -M^{-1}D & -M^{-1}K \\ I & 0 \end{bmatrix} = \begin{bmatrix} A & B \\ I & 0 \end{bmatrix}$$

• Let us partition the *j*th Arnoldi vector v_j into

$$v_j = \left[egin{array}{c} u_j \ w_j \end{array}
ight]$$

where u_j and w_j are vectors of length n.

• From the second block row of the governing equation (5) of the Arnoldi procdure, we have

$$U_n = W_{n+1}\widehat{H}_n. \tag{6}$$

- Exploit this relation to avoid the storage of the U-vectors with a slight increase of computational cost, since all products with U_n are to be replaced by $W_{n+1}\hat{H}_n$.
- Derive an Q-Arnoldi method with a simple replacement of the Arnoldi procedure by the Q-Arnoldi procedure at Step 2 of the Arnoldi algorithm.

• **Definition.** Let A and B be square matrices of order N, and $u \neq 0$ be an N-vector. Then the sequence

$$r_0, r_1, r_2, \dots, r_{n-1},$$
 (7)

where

$$r_0 = u,$$

 $r_1 = Ar_0,$
 $r_j = Ar_{j-1} + Br_{j-2}$ for $j \ge 2,$

is called the **second-order Krylov sequence** of A, B on u. The space

$$\mathcal{G}_n(A,B;u) = \operatorname{span}\{r_0,r_1,r_2,\ldots,r_{n-1}\},\$$

is called the *n*th second-order Krylov subspace.

• Motiviation

- Recall that the QEP (1) \Leftrightarrow generalized eigenvalue problem (2).
- If one applies a Krylov subspace technique to (2), then an associated Krylov subspace would naturally be

$$\mathcal{K}_n(H;v) = \operatorname{span}\left\{v, Hv, H^2v, \dots, H^{n-1}v\right\}, \qquad (8)$$

where v is a starting vector of length 2N, and

$$H = -G^{-1}C = \begin{bmatrix} -M^{-1}D & -M^{-1}K \\ I & 0 \end{bmatrix} \equiv \begin{bmatrix} A & B \\ I & 0 \end{bmatrix}$$
(9)

then it immediately derives that the second-order Krylov vectors $\{r_j\}$ and the standard Krylov vectors $\{H^jv\}$ is related as the following form

$$\begin{bmatrix} r_j \\ r_{j-1} \end{bmatrix} = H^j v \quad \text{for } j \ge 1.$$
 (10)

with $v = \begin{bmatrix} u^{\mathrm{T}} & 0 \end{bmatrix}^{\mathrm{T}}$,

– In other words, the generalized Krylov sequence $\{r_j\}$ defines the entire standard Krylov sequence based on H and v.

Theorem. Let Q_n be an orthonormal basis of the second-order Krylov subspace $\mathcal{G}_n(A, B; u)$. Let $Q_{[n]}$ denote the following 2 by 2 block diagonal matrix

$$Q_{[n]} = \begin{pmatrix} Q_n \\ Q_n \end{pmatrix} \tag{11}$$

Then $H^{\ell}v \in \text{span}\{Q_{[n]}\}$ for $\ell = 0, 1, 2, ..., n - 1$. This means that

$$\mathcal{K}_n(H; v) \subseteq \operatorname{span}\{Q_{[n]}\}.$$

We call that the standard Krylov subspace $\mathcal{K}_n(H; \hat{b}_0)$ is embedded into the second-order Krylov subspace $\mathcal{G}_n(A, B; r_0)$. • Construct an orthonormal basis $\{q_i\}$ of $\mathcal{G}_j(A, B; u)$: $\operatorname{span}\{q_1, q_2, \dots, q_j\} = \mathcal{G}_j(A, B; u)$

• SOAR Procedure

 $q_1 = u/||u||_2; p_1 = 0$ 1. 2. for j = 1, 2, ..., n do 3. $r = Aq_i + Bp_i; s = q_i$ 4. for i = 1, 2, ..., j do 5. $t_{ij} = q_i^T r$ 6. $r := r - q_i t_{ij}; s := s - p_i t_{ij}$ 7. end for 8. $t_{i+1\,i} = \|r\|_2$ 9. **if** $t_{i+1} = 0$, **stop** 10. $q_{i+1} = r/t_{i+1}$; $p_{i+1} = s/t_{i+1}$ 11. end for

Remark: The **for**-loop in Lines 4-7 is an orthogonalization procedure with respect to the $\{q_i\}$ vectors. The vector sequence $\{p_j\}$ is an auxiliary sequence. • Let $Q_n = (q_1, q_2, \dots, q_n)$, $P_n = (p_1, p_2, \dots, p_n)$, $T_n = (t_{ij})_{n \times n}$. Note that T_n is upper Hessenberg. Then the following relations hold:

$$\begin{bmatrix} A & B \\ I & 0 \end{bmatrix} \begin{bmatrix} Q_n \\ P_n \end{bmatrix} = \begin{bmatrix} Q_{n+1} \\ P_{n+1} \end{bmatrix} \widehat{T}_n, \quad (12)$$

where $Q_n^T Q_n = I_n$, and $\widehat{T}_n = \begin{bmatrix} T_n \\ e_n^T t_{n+1n} \end{bmatrix}.$

• This relation assembles the similarity between the SOAR procedure and the Arnoldi procedure.

Theorem. If $t_{i+1,i} \neq 0$ for $i \leq j$, then the vector sequence $\{q_1, q_2, \ldots, q_j\}$ forms an orthonormal basis of the second-order Krylov subspace $\mathcal{G}_j(A, B; u)$:

$$\operatorname{span}\{Q_j\} = \mathcal{G}_j(A, B; u) \quad \text{for } j \ge 1.$$
(13)

• A variant of SOAR is to exploit the relations and reduce memory requirement and floating point operations by almost one half.

• Rayleigh-Ritz approximation procedure:

seek an approximate eigenpair (θ, z) , where $\theta \in C$ and $z \in \mathcal{G}_n(A, B; u)$, by imposing the following Galerkin condition:

$$(\theta^2 M + \theta D + K) z \perp \mathcal{G}_n(A, B; u),$$

or equivalently,

$$v^T \left(\theta^2 M + \theta D + K\right) z = 0 \quad \text{for all } v \in \mathcal{G}_n \left(A, B; u\right).$$
 (14)

• Since $z \in \mathcal{G}_n(A, B; u)$, it can be written as $z = Q_m g$, where the span $Q_m = \mathcal{G}_n(A, B; u)$

By (14), it yields that θ and g must satisfy the reduced QEP:

$$\left(\theta^2 M_m + \theta D_m + K_m\right)g = 0 \tag{15}$$
$$O^T M O = O^T D O = K = O^T K O$$

with $M_m = Q_m^T M Q_m$, $C_m = Q_m^T D Q_m$, $K_m = Q_m^T K Q_m$.

- The eigenpairs (θ, g) of (15) define the *Ritz pairs* (θ, z) , approximate eigenpairs of the QEP (1).
- By explicitly formulating the matrices M_m , D_m and K_m , essential structures of M, D and K are preserved. As a result, essential spectral properties of the QEP will be preserved.

- 1. Run SOAR procedure with $A = -M^{-1}D$ and $B = -M^{-1}K$ and a starting vector u to generate an $N \times m$ orthogonal matrix Q_m whose columns span an orthonormal basis of $\mathcal{G}_n(A, B; u)$.
- 2. Compute M_m , C_m and K_m
- 3. Solve the reduced QEP for (θ, g) and obtain the Ritz pairs (θ, z) , where $z = Q_m g / ||Q_m g||_2$.
- 4. Test the accuracy of Ritz pairs (θ, z) as approximate eigenvalues and eigenvectors of the QEP (1) by the relative norms of residual vectors:

$$\frac{\|(\theta^2 M + \theta D + K)z\|_2}{|\theta|^2 \|M\|_1 + |\theta| \|C\|_1 + \|K\|_1}$$
(16)

An example to illusrate the benefits of structure-preservation

- An artifical gyroscopic dynamical system: $M^T = M > 0, C^T = -C \text{ and } K^T = K > 0,$
- The distribution of the eigenvalues of the system is symmetric with respect to both the real and imaginary axes.
- Eigenvalues and approximations

• The SOAR method preserves the gyroscopic spectral property.