
II.2 Quadratic eigenvalue problems



Basics

• The quadratic eigenvalue problem (QEP) is to find scalarsλ
and nonzero vectorsx satisfying

Q(λ)x = 0, (1)

where
Q(λ) = λ2M + λD + K,

M , D andK are givenn × n matrices.

• Sometimes, we are also interested in finding the left
eigenvectorsy:

yHQ(λ) = 0.

• Q(λ) has2n eigenvaluesλ. They are the roots of det[Q(λ)] = 0.



Linearization

• A common way to solve the QEP is to first linearize it to a
linear eigenvalue problem.

• For example, let

z =

[
λx
x

]
,

Then the QEP (1) is equivalent to the generalized eigenvalue
problem

Lc(λ)z = 0 (2)

where

Lc(λ) = λ

[
M 0
0 I

]
+

[
D K
−I 0

]
≡ λG + C.

Lc(λ) is called a companion form or a linearization ofQ(λ).



• Definition. A matrix pencilL(λ) = λG + C is called a
linearization of Q(λ) if

E(λ)L(λ)F (λ) =

[
Q(λ) 0

0 I

]
(3)

for some unimodular matricesE(λ) andF (λ).

• For the pencilLc(λ) in (2), the identity (3) holds with

E(λ) =

[
I λM + D
0 −I

]
, F (λ) =

[
λI I
I 0

]
.

• There are various ways to linearize a QEP. Some are preferred
than others. For example ifM , D andK are symmetric andK
is nonsingular, then we can preserve the symmetry property
and use the following linearization:

Lc(λ) = λ

[
M 0
0 K

]
+

[
D K
K 0

]
. (4)



• Direct QEP method (MATLAB’s polyeig(K,D,M)).

1. LinearizeQ(λ) into L(λ) = λG + C.

2. Solve the generalized eigenproblemL(λ)z = 0.

3. Recover eigenvectors ofQ from those ofL.

• Additional issues on scaling and numerical sensitivity.



Arnoldi method

• Use the Arnoldi procedure to generate an orthonormal basisVn

of the Krylov subspaceKn(−G−1C;−G−1b), namely,

span{Vn} = Kn(−G−1C; G−1b)

= span{G−1b, (−G−1C)G−1b, . . . , (−G−1C)n−1G−1b}

• The governing equation of the Arnoldi procedure is

(−G−1C) Vn = Vn+1Ĥn, (5)

whereĤn is an(n + 1) × n upper Hessenberg matrix andVn+1

is a2N × (n + 1) matrix with orthonormal columns.



• Basic Arnoldi Method for Linearized QEP

1. Transform the QEP (1) to the equivalent generalized
eigenvalue problem (2).

2. Run the Arnoldi procedure with the matrixH = −G−1C
and the vectorv = ( uT 0 )T to generate an orthonormal
basisVn = {v1, v2, . . . , vn} of Kn (H ; v).

3. Solve the reduced eigenvalue problem

(V T
n HVn)t = θt,

and obtain the Ritz pairs(θ, y = Vnt)

4. Extract the approximate eigenpairs(θ, z) of the QEP (1),
and test their accuracy by the residual norms

• In practice, one may incorporate the implicit restarting scheme
as we discussed for the standard Arnoldi procedure.



Q-Arnoldi method

• Note that

−G−1C =

[
−M−1D −M−1K

I 0

]
=

[
A B
I 0

]
.

• Let us partition thejth Arnoldi vectorvj into

vj =

[
uj

wj

]

whereuj andwj are vectors of lengthn.

• From the second block row of the governing equation (5) of the
Arnoldi procdure, we have

Un = Wn+1Ĥn. (6)



• Exploit this relation to avoid the storage of theU -vectors with a
slight increase of computational cost, since all products with
Un are to be replaced byWn+1Ĥn.

• Derive an Q-Arnoldi method with a simple replacement of the
Arnoldi procedure by the Q-Arnoldi procedure at Step 2 of the
Arnoldi algorithm.



Second-order Krylov subspace

• Definition. Let A andB be square matrices of orderN , and
u 6= 0 be anN -vector. Then the sequence

r0, r1, r2, . . . , rn−1, (7)

where
r0 = u,
r1 = Ar0,
rj = Arj−1 + Brj−2 for j ≥ 2,

is called thesecond-order Krylov sequenceof A, B onu. The
space

Gn (A,B; u) = span{r0, r1, r2, . . . , rn−1},

is called thenth second-order Krylov subspace.



• Motiviation

– Recall that the QEP (1)⇔ generalized eigenvalue problem
(2).

– If one applies a Krylov subspace technique to (2), then an
associated Krylov subspace would naturally be

Kn (H ; v) = span
{
v,Hv, H2v, . . . , Hn−1v

}
, (8)

wherev is a starting vector of length2N , and

H = −G−1C =

[
−M−1D −M−1K

I 0

]
≡

[
A B
I 0

]
(9)

then it immediately derives that the second-order Krylov
vectors{rj} and the standard Krylov vectors{Hjv} is
related as the following form

[
rj

rj−1

]
= Hjv for j ≥ 1. (10)

with v = [uT 0]T,



– In other words, the generalized Krylov sequence{rj}
definesthe entire standard Krylov sequence based onH and
v.
Theorem. Let Qn be an orthonormal basis of the
second-order Krylov subspaceGn(A, B; u). Let Q[n] denote
the following 2 by 2 block diagonal matrix

Q[n] =

(
Qn

Qn

)
(11)

ThenHℓv ∈ span{Q[n]} for ℓ = 0, 1, 2, . . . , n − 1. This
means that

Kn(H ; v) ⊆ span{Q[n]}.

We call that the standard Krylov subspaceKn(H ; b̂0) is
embedded into the second-order Krylov subspace
Gn(A, B; r0).



Second-Order ARnoldi (SOAR) procedure

• Construct an orthonormal basis{qi} of Gj (A, B; u):

span{q1, q2, . . . , qj} = Gj (A, B; u)

• SOAR Procedure
1. q1 = u/‖u‖2; p1 = 0
2. for j = 1, 2, . . . , n do
3. r = Aqj + Bpj; s = qj

4. for i = 1, 2, . . . , j do
5. tij = qT

i r
6. r := r − qitij; s := s − pitij
7. end for
8. tj+1 j = ‖r‖2

9. if tj+1 j = 0, stop
10. qj+1 = r/tj+1 j; pj+1 = s/tj+1 j

11. end for



Remark: Thefor -loop in Lines 4-7 is an orthogonalization
procedure with respect to the{qi} vectors. The vector sequence
{pj} is an auxiliary sequence.



• Let Qn = (q1, q2, . . . , qn), Pn = (p1, p2, . . . , pn), Tn = (tij)n×n.
Note thatTn is upper Hessenberg. Then the following relations
hold: [

A B
I 0

] [
Qn

Pn

]
=

[
Qn+1

Pn+1

]
T̂n, (12)

whereQT
nQn = In, andT̂n =

[
Tn

eT
n tn+1 n

]
.

• This relation assembles the similarity between the SOAR
procedure and the Arnoldi procedure.

Theorem. If ti+1,i 6= 0 for i ≤ j, then the vector sequence
{q1, q2, . . . , qj} forms an orthonormal basis of the second-order
Krylov subspaceGj (A, B; u):

span{Qj} = Gj (A, B; u) for j ≥ 1. (13)

• A variant of SOAR is to exploit the relations and reduce
memory requirement and floating point operations by almost
one half.



SOAR algorithm = RR + SOAR procedure

• Rayleigh-Ritz approximation procedure:

seek an approximate eigenpair(θ, z), whereθ ∈ C and
z ∈ Gn (A, B; u), by imposing the following Galerkin
condition:

(
θ2M + θD + K

)
z ⊥ Gn (A, B; u) ,

or equivalently,

vT
(
θ2M + θD + K

)
z = 0 for all v ∈ Gn (A, B; u). (14)

• Sincez ∈ Gn (A, B; u), it can be written asz = Qmg, where the
spanQm = Gn (A, B; u)

By (14), it yields thatθ andg must satisfy the reduced QEP:
(
θ2Mm + θDm + Km

)
g = 0 (15)

with Mm = QT
mMQm, Cm = QT

mDQm, Km = QT
mKQm.



• The eigenpairs(θ, g) of (15) define theRitz pairs(θ, z),
approximate eigenpairs of the QEP (1).

• By explicitly formulating the matricesMm, Dm andKm,
essential structures ofM , D andK are preserved. As a result,
essential spectral properties of the QEP will be preserved.



SOAR algorithm

1. Run SOAR procedure withA = −M−1D andB = −M−1K
and a starting vectoru to generate anN × m orthogonal matrix
Qm whose columns span an orthonormal basis ofGn (A, B; u).

2. ComputeMm, Cm andKm

3. Solve the reduced QEP for(θ, g) and obtain the Ritz pairs
(θ, z), wherez = Qmg/‖Qmg‖2.

4. Test the accuracy of Ritz pairs(θ, z) as approximate
eigenvalues and eigenvectors of the QEP (1) by the relative
norms of residual vectors:

‖(θ2M + θD + K)z‖2

|θ|2‖M‖1 + |θ|‖C‖1 + ‖K‖1
(16)



An example to illusrate the benefits of structure-preservation

• An artifical gyroscopic dynamical system:

MT = M > 0, CT = −C andKT = K > 0,

• The distribution of the eigenvalues of the system is symmetric
with respect to both the real and imaginary axes.

• Eigenvalues and approximations relative residual norms.
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• The SOAR method preserves the gyroscopic spectral property.


