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Abstract. Rational eigenvalue problem is an emerging class of nonlinear eigenvalue problems arising from a
variety of physical applications. In this paper, we propose a linearization-based method to solve the rational eigenvalue
problem. The proposed method converts the rational eigenvalue problem into a well-studied linear eigenvalue problem,
and meanwhile, exploits and preserves the structure and properties of the original rational eigenvalue problem. For
example, the low-rank property leads to a trimmed linearization. We show that solving a class of rational eigenvalue
problems is just as convenient and efficient as solving linear eigenvalue problems of slightly larger sizes.
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1. Introduction. In recent years, there are a great deal of interest to study the rational
eigenvalue problem (REP)

R(λ)x = 0,(1.1)

where R(λ) is an n× n matrix rational function of the form

R(λ) = P (λ)−
k∑

i=1

si(λ)
qi(λ)

Ei,(1.2)

P (λ) is an n × n matrix polynomial in λ of degree d, si(λ) and qi(λ) are scalar polynomials of
degrees ni and di, respectively, and Ei are n × n constant matrices. The REP (1.2) arises from
optimization of acoustic emissions of high speed trains [13], free vibration of plates with elastically
attached masses [20], vibration of fluid-solid structure [21], free vibrations of a structure with a
viscoelastic constitutive relation describing the behavior of a material [16] and electronic structure
calculations of quantum dots [23, 10].

A brute-force approach to solve the REP (1.1) is to multiply equation (1.1) by the scalar
polynomial

∏k
i=1 qi(λ) to turn it into a polynomial eigenvalue problem (PEP) of the degree d∗ =

d+d1 + · · ·+dk. Subsequently, the PEP is converted into a linear eigenvalue problem (LEP) by the
process known as linearization. This approach is noted in [16] and employed in [10, 9] for electronic
structure calculations of quantum dots. The recent study of the linearization techniques of the PEP
can be found in [13, 14, 7, 8] and references therein. This is a practical approach only if the number k
of the rational terms and the degree di of the polynomials qi(λ) are small, say k = d1 = 1. However,
when k and/or di are large, it leads to a PEP of much higher degree and becomes impractical for
large-scale problems. Furthermore, the possible low-rank property of the matrices Ei is lost in the
linearized eigenvalue problem.

An alternative approach is to treat the REP (1.1) as a general nonlinear eigenvalue problem
(NEP), and solve it by a nonlinear eigensolver, such as Picard iteration (self-consistent iteration),
Newton’s method, nonlinear Rayleigh quotient method, nonlinear Jacobi-Davidson method, and
nonlinear Arnoldi method [16, 18, 20, 22]. This approach limits the exploitation of the underlying rich
structure and property of the REP (1.1), and is challenging in convergence analysis and validation
of computed eigenvalues.
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In this paper, we propose a linearization-based approach to solve the REP (1.1). Similarly to the
linearization of the PEP, the new approach converts the REP (1.1) into a linear eigenvalue problem
(LEP), exploits and preserves the structure and property of the REP (1.1) as much as possible.
It has a number of advantages. For example, the low-rank property of matrices Ei as frequently
encountered in applications leads to a trimmed linearization, namely, only small increase of the size
comparing to the size of the original REP (1.1). The symmetry of the REP can also be preserved in
the LEP. We show that under mild assumptions, the problem of solving a class of the REPs is just
as convenient and efficient as the problem of solving an LEP of slightly larger size.

The rest of this paper is organized as follows. In section 2, we formalize the definition of the
REP (1.1) and the assumptions we will use throughout. In section 3, we present a linearization
scheme. In section 4, we show how to use the proposed linearization scheme to a number of REPs
from different applications. Numerical examples are given in section 5.

2. Settings. We assume throughout that the matrix rational function R(λ) is regular, that is,
det(R(λ)) 6≡ 0. The roots of qi(λ) are the poles of R(λ). R(λ) is not defined on these poles. A scalar
λ such that det(R(λ)) = 0 is referred to as an eigenvalue, and the corresponding nonzero vector x
satisfying the equation (1.1) is called an eigenvector. The pair (λ, x) is referred to as an eigenpair.

Let us denote the matrix polynomial P (λ) of degree d in λ as

P (λ) = λdAd + λd−1Ad−1 + · · ·+ λA1 + A0,(2.1)

where Ai are n×n constant matrices. We assume throughout that the leading coefficient matrix Ad

is nonsingular, which is equivalent to the assumption of a monic matrix polynomial (Ad = I) in the
study of matrix polynomial [5]. The treatment in the presence of singular Ad is beyond the scope
of this paper.

We assume that si(λ) and qi(λ) are coprime, that is, having no common factors. Furthermore,
the rational functions si(λ)

qi(λ) are proper, that is, si(λ) having smaller degree than qi(λ). Otherwise
by the polynomial long division, an improper rational function can be written as the sum of a
polynomial and a proper rational function:

si(λ)
qi(λ)

= pi(λ) +
ŝi(λ)
qi(λ)

with ŝi(λ) having smaller degree than qi(λ). Subsequently, the term pi(λ)Ei can be absorbed into
the matrix polynomial term P (λ):

P (λ) := P (λ) + pi(λ)Ei.

If it is necessary, we assume that the leading coefficient matrix of the updated matrix polynomial is
still nonsingular.

Since si(λ) and qi(λ) are coprime, the proper rational function si(λ)
qi(λ) can be represented as

si(λ)
qi(λ)

= aT
i (Ci − λDi)−1bi,(2.2)

for some matrices Ci, Di ∈ Rdi×di , and vectors ai, bi ∈ Rdi×1. Moreover, Di is nonsingular. The
process of constructing the quadruple (Ci, Di, ai, bi) satisfying (2.2) is called a minimal realization
in the theory of control system, see for example [1, pp.91–98] and [19].

Finally, we assume that coefficient matrices Ei have the rank-revealing decompositions

Ei = LiU
T
i ,(2.3)

where Li, Ui ∈ Rn×ri are of full column rank ri. In section 4, we will see that the decompositions
(2.3) are often immediately available in the practical REPs. The rank of Ei is typically much
smaller than the size n, that is, ri ¿ n. The algorithms for computing such sparse rank-revealing
decompositions can be found in [17].
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3. Linearization. Under the assumptions discussed in the previous section, let us consider a
linearization method for solving the REP (1.1). By the realizations (2.2) of the rational functions
si(λ)/qi(λ) and the factorizations (2.3) of the coefficient matrices Ei, the rational terms of the matrix
rational function R(λ) can be rewritten as the following

k∑

i=1

si(λ)
qi(λ)

Ei =
k∑

i=1

aT
i (Ci − λDi)−1biLiU

T
i

=
k∑

i=1

Li

[
aT

i (Ci − λDi)−1bi · Iri

]
UT

i

=
k∑

i=1

Li(Iri
⊗ ai)T (Iri

⊗ Ci − λ Iri
⊗Di)−1(Iri

⊗ bi)UT
i ,

where ⊗ is the Kronecker product. Define

C = diag(Ir1 ⊗ C1, Ir2 ⊗ C2, . . . , Irk
⊗ Ck),

D = diag(Ir1 ⊗D1, Ir2 ⊗D2, . . . , Irk
⊗Dk),

L =
[

L1(Ir1 ⊗ a1)T L2(Ir2 ⊗ a2)T · · · Lk(Irk
⊗ ak)T

]
,

U =
[

U1(Ir1 ⊗ b1)T U2(Ir2 ⊗ b2)T · · · Uk(Irk
⊗ bk)T

]
,

where the size of C and D is m×m, the size of L and U is n×m, and m = r1d1 + r2d2 + · · ·+ rkdk.
Then the rational terms of R(λ) can be compactly represented in a realization form

k∑

i=1

si(λ)
qi(λ)

Ei = L(C − λD)−1UT .(3.1)

We note that the matrix D is nonsingular since the matrices Di in (2.2) are nonsingular. The
eigenvalues of the matrix pencil C − λD are the poles of R(λ).

Using the representation (3.1), the REP (1.1) can be equivalently written in the following com-
pact form

[
P (λ)− L(C − λD)−1UT

]
x = 0,(3.2)

and the matrix rational function R(λ) is written as

R(λ) = P (λ)− L(C − λD)−1UT .(3.3)

If P (λ) is linear and is denoted as P (λ) = A− λB, then the REP (3.2) is of the form
[
A− λB − L(C − λD)−1UT

]
x = 0.(3.4)

By introducing the auxiliary vector

y = −(C − λD)−1UT x,

the equation (3.2) can be written as the following LEP:

(A− λB)z = 0,(3.5)

where

A =
[

A L
UT C

]
, B =

[
B

D

]
, z =

[
x
y

]
.
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In general, if the matrix polynomial P (λ) is of the form (2.1), we can first write the REP (3.2)
as a semi-PEP of the form

(
λdAd + λd−1Ad−1 + · · ·+ λA1 + Ã0(λ)

)
x = 0,(3.6)

where Ã0(λ) , A0 − L(C − λD)−1UT . Then by symbolically applying the well-known (first) com-
panion form linearization to the semi-PEP (3.6), we have







Ad−1 Ad−2 · · · Ã0(λ)
−I 0 · · · 0

. . . . . .
...

−I 0


− λ




Ad

I
. . .

I










λd−1x
λd−2x

...
x


 = 0,(3.7)

which can be equivalently written as






Ad−1 Ad−2 · · · A0

−I 0 · · · 0
. . . . . .

...
−I 0


− λ




Ad

I
. . .

I




−




L
0
...
0


 (C − λD)−1




0
0
...
U




T






λd−1x
λd−2x

...
x


 = 0.

The above equation is of the same form as (3.4). Therefore, by introducing the variable

y = −(C − λD)−1
[

0 0 · · · UT
]



λd−1x
λd−2x

...
x


 = −(C − λD)−1UT x,

we derive the following linearization of the REP (1.1):

(A− λB)z = 0,(3.8)

where

A =




Ad−1 Ad−2 · · · A0 L
−I 0 · · · 0

. . . . . .
...

−I 0
UT C




, B = −




Ad

I
. . .

I
−D




, z =




λd−1x
λd−2x

...
x
y




.

The size of matrices A and B is nd + m, where m = r1d1 + r2d2 + · · · + rkdk. In the case that
all the coefficient matrices Ei are of full rank, i.e., ri = n, the LEP (3.8) is of the size nd∗, where
d∗ = d+d1+ · · ·+dk. This is the same size as the one derived by the brute-force approach. However,
it is typical that ri ¿ n in practice, then nd + m ¿ nd∗. The LEP (3.8) is a trimmed linearization
of the REP (1.1). This will be illustrated by four REPs from applications in section 4.

Note that under the assumption of nonsingularity of the matrix Ad, the matrix B is nonsingular.
Therefore all eigenvalues of the LEP (3.8) are finite. There is no infinite eigenvalue.
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The following theorem shows the connection between eigenvalues of the REP (1.1) and the LEP
(3.8).

Theorem 3.1. (a) If λ is an eigenvalue of the REP (1.1), then it is an eigenvalue of the
LEP (3.8).

(b) If λ is an eigenvalue of the LEP (3.8) and is not a pole of R(λ), then it is an eigenvalue of
the REP (1.1).

Proof. Define dn-by-dn matrices

VL(λ) =




I −λAd −Ad−1 −Ad−2 · · · −A1

I −λI
. . . . . .

. . . −λI
I




,

VR(λ) =




λd−1I −I
...

. . .
λI −I
I


 .

We have det(VL(λ)) = det(VR(λ)) = 1 and




λAd + Ad−1 Ad−2 · · · A0

−I λI
. . . . . .

−I λI


VR(λ) = VL(λ)




P (λ)
I

. . .
I


 .

Therefore,

det (A− λB) = det
(

(A− λB)
[

VR(λ)
Im

])

= det







λAd + Ad−1 Ad−2 · · · A0 L
−I λI

. . . . . .
−I λI

UT C − λD




[
VR(λ)

Im

]



= det




[
VL(λ)

Im

]



P (λ) L
I

. . .
I

UT C − λD







= det







P (λ) L
I

. . .
I

UT C − λD







,(3.9)
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where for the third equality, we use the identities

[
0 · · · 0 UT

]
VR(λ) =

[
UT 0 · · · 0

]
and




L
0
...
0


 = VL(λ)




L
0
...
0


 .

By exploiting the block structure of the matrix in the determinant of the right-hand-side of the
equation (3.9), we derive that

det (A− λB) = det
([

P (λ) L
UT C − λD

])
.(3.10)

If λ is an eigenvalue of the REP (1.1), then it is not a pole of the REP. It implies that λ is not an
eigenvalue of C − λD and C − λD is nonsingular. Therefore, we have the block factorization

[
P (λ) L
UT C − λD

]
=

[
I L(C − λD)−1

I

] [
R(λ)
UT C − λD

]
,

where R(λ) is defined by (3.3). The proof of part (a) immediately follows the identity

det (A− λB) = det (R(λ)) · det(C − λD).(3.11)

For the part (b), if λ is an eigenvalue of the pencil A − λB and is not the pole of R(λ), then the
matrix C − λD is nonsingular. By the identity (3.11), λ is an eigenvalue of the REP (1.1).

We note that the condition that λ is not a pole of the R(λ) in Theorem 3.1(b) is necessary.
Consider the following example:

(
λI2 − 1

λ
e2e

T
2

)
x = 0,(3.12)

where I2 is a 2 by 2 identity matrix, and e2 is the second column of I2. Since det(R(λ)) = λ(λ− 1
λ ),

the REP (3.12) has two eigenvalues 1 and −1. λ = 0 is a pole. Let y = λ−1eT
2 x, then the

corresponding LEP is given by

(A− λB)z =
([

0 e2

eT
2 0

]
− λ

[
I2

1

])[
x
y

]
= 0.

It has three eigenvalues, −1, 0 and 1. But λ = 0 is not an eigenvalue of the REP (3.12).
Two additional remarks are in order. First, the realization of a rational function can be repre-

sented in different forms. For example, the realization of 1
(σ−λ)2 could be given by

1
(σ − λ)2

=
[

1 0
]([

σ −1
0 σ

]
− λI

)−1 [
0
1

]

or in a symmetric form

1
(σ − λ)2

=
[

1 0
]([

σ
σ −1

]
− λ

[
1

1

])−1 [
1
0

]
.

The study of realization can be found in [1, pp.91–98] and references therein.
Second, there are many different ways of linearization for the matrix polynomials, including

recent work [7, 8, 13, 14]. Many of these linearizations can be easily integrated into the proposed
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linearization of the REP. For example, if the original REP (1.1) is symmetric, namely Ai are sym-
metric, matrices C and D are symmetric in the realization and L = U , then we can use a symmetric
linearization proposed in [7]. Specifically, let us consider a symmetric matrix polynomial of degree
d = 3, then a symmetric linearization is given by







−A3

−A3 −A2

A0 U
UT C


 + λ




A3

A3 A2

A3 A2 A1

−D










λ2x
λx
x
y


 = 0,(3.13)

where y = −(C − λD)−1UT x.

4. Applications. In this section, we apply the proposed linearization in section 3 to four REPs
from applications.

4.1. Loaded elastic string. We consider the following rational eigenvalue problem arising
from the finite element discretization of a boundary value problem describing the eigenvibration of
a string with a load of mass attached by an elastic spring:

(
A− λB +

λ

λ− σ
E

)
x = 0,(4.1)

where A and B are tridiagonal and symmetric positive definite, and E = eneT
n , en is the last column

of the identity matrix. σ is a parameter [2, 20].
By the linearization proposed in section 3, the first step is to write the rational function λ/(λ−σ)

in a proper form. It results that the REP (4.1) becomes
(

A + eneT
n − λB +

σ

λ− σ
eneT

n

)
x = 0.(4.2)

Then it can be easily written in the realization form (3.4):
[
A + eneT

n − λB − en

(
1− λ

σ

)−1

eT
n

]
x = 0.(4.3)

By defining the auxiliary vector

y = −
(

1− λ

σ

)−1

eT
nx,

we have the linear eigenvalue problem

(A− λB)z = 0,(4.4)

where

A =
[

A + eneT
n en

eT
n 1

]
, B =

[
B

1/σ

]
, z =

[
x
y

]
.

The (n + 1) × (n + 1) matrices A and B have the same structure and property as the coefficient
matrices A and B in the original REP (4.1). They are tridiagonal and symmetric positive definite.

An alternative way to solve the REP (4.1) is to first transform it to a quadratic eigenvalue
problem (QEP) by multiplying the linear factor λ− σ on the equation (4.1):

Q(λ)x =
[
λ2B − λ(A + σB + eneT

n ) + σA
]
x = 0,(4.5)
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and then convert the QEP (4.5) into an equivalent linear eigenvalue problem by the linearization
process. A symmetric linearization is

([ −(A + σB + eneT
n ) σA

σA

]
+ λ

[
B

−σA

])[
λx
x

]
= 0.(4.6)

This is a generalized symmetric indefinite eigenvalue problem. If Q(a) < 0 for some scalar a, then
by letting λ = µ + a, the QEP (4.5) becomes

[
µ2B − µ(A + (σ − 2a)B + eneT

n ) + Q(a)
]
x = 0.

Consequently, it can be linearized to a generalized symmetric definite eigenvalue problem:
([ − (

A + (σ − 2a)B + eneT
n

)
Q(a)

Q(a) 0

]
+ µ

[
B

−Q(a)

])[
µx
x

]
= 0.(4.7)

A practical issue is on the existence of the shift a and how to find it numerically, see recent work [6].
We note that the size of the LEP (4.6) and (4.7) is 2n. On the other hand, the size of the LEP

(4.4) by the new linearization process is only n + 1.

4.2. Quadratic eigenvalue problem with low-rank stiffness matrix. Consider the QEP:

(λ2M + λD + K)x = 0.(4.8)

If K is singular, then zero is an eigenvalue since Kx = 0 for some nonzero vector x. Let us consider
how to compute nonzero eigenvalues of the QEP (4.8) by exploiting the fact that K is singular and
is of low rank. Let

K = LUT

be the full-rank decomposition, where L,U ∈ Rn×r, r is the rank of K. By the linearization discussed
in section 3, the QEP (4.8) can be written in the REP form (1.1)

(
λM + D +

1
λ

LUT

)
x = 0.

In the compact form (3.2), it becomes
[
λM + D − L(0− λI)−1UT

]
x = 0.

Note that the polynomial term P (λ) = λM +D is linear. Hence, by introducing the auxiliary vector

y = −(0− λI)−1UT x = λ−1UT x,

we have the LEP (
λ

[
M

I

]
+

[
D L
−UT 0

])[
x
y

]
= 0.(4.9)

If L = K, U = I, then the LEP (4.9) is a linearization of the QEP in the first companion form.
If L = −I, U = −KT , then the LEP (4.9) is a linearization in the second companion form [11].
If K has rank r < n, the linearization (4.9) is not a linearization of the QEP (4.8) under the
standard definition of linearization of the PEPs [5]. However, by Theorem 3.1, we can conclude that
the nonzero eigenvalues of QEP (4.8) and LEP (4.9) are the same. The LEP (4.9) is a trimmed
linearization of the QEP. The order of the LEP (4.9) n + r could be significantly smaller than the
size 2n of the linearization in the companion forms.

If M is singular or more general, the leading coefficient matrix Ad is singular in the matrix
polynomial, the PEP P (λ) = 0 has infinite eigenvalues and/or corresponding singular structure. It
is discussed in [3] that how to exploit the structure of the zero blocks in the coefficient matrices
to obtain a trimmed linearization by (partially) deflating those infinite eigenvalues and/or singular
structures. In the linearization (4.9), by using a full-rank factorization of the stiffness matrix K, we
derived a trimmed linearization such that those zero eigenvalues are explicitly deflated.
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4.3. Vibration of a fluid-solid structure. Let us consider an REP arising from the simula-
tion of mechanical vibrations of fluid-solid structures [15, 16, 21]. It is of the form

(
A− λB +

k∑

i=1

λ

λ− σi
Ei

)
x = 0,(4.10)

where the poles σi, i = 1, 2, . . . , k are positive, matrices A and B are symmetric positive definite,
and

Ei = CiC
T
i ,

Ci ∈ Rn×ri has rank ri for i = 1, 2, . . . , k.
By the linearization proposed in section 3, we first write the rational terms of (4.10) in the

proper form
(

A +
k∑

i=1

CiC
T
i − λB −

k∑

i=1

σi

σi − λ
CiC

T
i

)
x = 0.(4.11)

Let

C =
[

C1 C2 · · · Ck

]
, Σ = diag(σ1Ir1 , . . . , σkIrk

),

where Iri
is the ri-by-ri identity. Then the equation (4.11) can be written as

[
A + CCT − λB − C(I − λΣ−1)−1CT

]
x = 0.

By introducing the variable y = −(I − λΣ−1)−1CT x, we have the following LEP:

(A− λB)
[

x
y

]
= 0,(4.12)

where

A =
[

A + CCT C
CT I

]
, B =

[
B

Σ−1

]

are of the size n +
∑k

i=1 ri. Note that the matrix A is symmetric, and B is symmetric positive
definite. The LEP (4.12) is a generalized symmetric definite eigenvalue problem, which can be
essentially solved by a symmetric eigensolver, such as implicitly restarted Lanczos algorithm [12] or
the thick-restart Lanczos method [24].

Mazurenko and Voss [15] addressed the question to determine the number of eigenvalues of
the REP (4.10) in a given interval (α, β) by using the fact that the eigenvalues of (4.10) can be
characterized as minimax values of a Rayleigh functional [15, p.610]. By using the linearization
(4.12), the question can be answered through computing the inertias of the symmetric matrix pencil
A− λB. First, we have the following proposition.

Proposition 4.1. If A and B are positive definite and the poles σi > 0, then all eigenvalues
of the REP (4.10) are real and positive.

Proof. Since the matrix pencil A − λB in (4.12) is a symmetric definite pencil, all eigenvalues
are real. By the fact that A is semi-positive definite, all eigenvalues are nonnegative. Therefore,
we just need to show that zero is not an eigenvalue of the pencil A − λB. By contradiction, let
z = [ xT yT ]T 6= 0 be an eigenvector corresponding to the zero eigenvalue. Then by (A− 0 · B)z =
Az = 0, we have

(A + CCT )x + Cy = 0,

CT x + y = 0.
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Note that A is positive definite, we have x = 0 and y = 0. This is a contradiction. Therefore all
eigenvalues of the LEP (4.12) are positive. By Theorem 3.1, we conclude that all eigenvalues of the
REP (4.10) are positive.

Based on Theorem 3.1 and Proposition 4.1, we conclude that the number of eigenvalues of the
REP (4.10) in the interval (α, β) is given by

κ = `− `0,(4.13)

where ` is the number of eigenvalues of A − λB in the interval (α, β), `0 =
∑

σi∈(α,β) `i, and `i is
the number of zero eigenvalues of A − σiB. The quantities ` and `0 can be computed using the
Sylvester’s law of inertia for the real symmetric matrices A− τB for τ = α, β and poles σi ∈ (α, β).

4.4. Damped vibration of a structure. This is an REP arising from the free vibrations of
a structure if one uses a viscoelastic constitutive relation to describe the behavior of a material [16].
The REP is of the form

(
λ2M + K −

k∑

i=1

1
1 + biλ

∆Gi

)
x = 0,(4.14)

where the mass and stiffness matrices M and K are symmetric positive definite, bj are relaxation
parameters over the k regions, ∆Gj is an assemblage of element stiffness matrices over the region
with the distinct relaxation parameters.

We consider the case where ∆Gi = LiL
T
i and Li ∈ Rn×ri . By defining

L = [L1, L2, . . . , Lk], D = diag(b1Ir1 , b2Ir2 , . . . , bkIrk
),

the REP (4.14) can be written in the form (3.2):

(λ2M + K − L(I + λD)−1LT )x = 0.

By linearizing the second-order matrix polynomial term λ2M + K in a symmetric form, we derive
the following symmetric LEP:






−M

K L
LT I


 + λ




M
M

D










λx
x
y


 = 0,

where the auxiliary vector y = −(I + λD)−1LT x. The size of the LEP is 2n + r1 + r2 + · · ·+ rk.

5. Numerical examples. In this section, we present two numerical examples to show com-
putational efficiency of the proposed linearization process of the REP (1.1) in sections 3 and 4.
We do not compare the proposed approach with a general-purpose nonlinear eigensolver, such as
Newton’s method, nonlinear Arnoldi method[22] or preconditioned iterative methods [20]. Instead,
we compare the extra cost of solving the REP (1.1) over the problem of solving the PEP P (λ)x = 0
without the rational terms in (1.1). All numerical experiments were run in MATLAB 7.0.1 on a
Pentium IV PC with 2.6GHz CPU and 1GB of core memory.

Example 1. We present numerical results for the REP (4.1) arising from vibration analysis of
a loaded elastic string discussed in section 4.1. This REP is included in the collection of nonlinear
eigenvalue problems (NLEVP) [2]. If the NLEVP is included in MATLAB , then the matrices A, B
and E can be generated by calling

coeffs = nlevp(’loaded_string’,n);
A = coeffs{1}; B = coeffs{2}; E = coeffs{3};

where n is the size of the REP. As in [20], the pole σ is set to be 1. The interested eigenvalues are
few smallest ones in the interval λ ∈ (1,+∞).

The following table records the 10 computed smallest eigenvalues and the corresponding residual
norms of the trimmed LEP (4.4) with the size n = 100 by MATLAB function eig:
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i λ̂i residual norm
1 0.457318488953671 5.58e− 013
2 4.48217654587198 5.96e− 013
3 24.2235731125539 6.69e− 013
4 63.7238211419405 9.40e− 013
5 123.031221067605 8.63e− 013
6 202.200899143561 9.56e− 013
7 301.310162794155 1.09e− 012
8 420.456563106511 1.01e− 012
9 559.757586307048 7.12e− 013
10 719.350660116386 9.15e− 013

The residual norm ‖R(λ̂)x̂‖2/ ‖x̂‖2 is used to measure the precision of a computed eigenpair (λ̂, x̂)
of REP (1.1), the same as in [16, Algorithm 5].

We note that the first eigenvalue λ̂1 < 1, which is not of practical interest according to [20].
Eigenvalues λ̂2 to λ̂6 match all significant digits of the computed eigenvalues by a preconditioned
iterative method reported in [20].

The following table reports the CPU elapsed time for solving the trimmed LEP (4.4) for different
sizes n by using MATLAB dense eigensolver eig. For comparison, we also report the CPU elapsed
time of solving the QEP (4.5) by using MATLAB function polyeig, and the symmetric LEP (4.7)
of size 2n by using eig. In this particular case, it is known that Q(a) < 0 for a = 2. Therefore, the
symmetric LEP (4.7) is a generalized symmetric definite eigenproblem.

solver n = 200 n = 400 n = 600 n = 800
Trimmed LEP (4.4) eig 0.0156 0.1406 1.0625 3.5469
QEP (4.5) polyeig 0.7500 6.8594 24.5313 84.9063
Full sym-LEP (4.7) eig 0.0781 0.5938 2.0781 5.4219
A− λB eig 0.0156 0.1406 1.0469 3.5313

It is clear that the trimmed LEP (4.4) is the most efficient linearization scheme to solve the REP
(4.1). Although one can efficiently exploit the positive definiteness in the generalized symmetric
definite eigenproblem (4.7) it is still slower than the trimmed LEP (4.4) due to the fact that the size
of (4.7) is 2n. By the table, we also see that the brute-force approach to convert the REP (4.1) into
the QEP (4.5) and then solve it via a companion form linearization is most expensive.

Note that the matrix pair (A,B) in the trimmed linearization (4.4) is symmetric tridiagonal and
positive definite, the same properties as the matrices A and B. Therefore, from the last row of the
previous table we see that the CPU elapsed time of solving the REP via LEP (4.4) and the one of
solving the eigenvalue problem of the pencil A− λB are essentially the same.

Example 2. This is a numerical example for the REP (4.10) discussed in section 4.3. The size of
matrices A and B is n = 36, 046. The number of nonzeros of A is nnz = 255, 088. B has the same
sparsity as A. There are nine rational terms, k = 9. The matrices Ci in rational terms have two
dense columns and are of rank ri = 2. The pole σi = i for i = 1, 2, . . . , k. Our aim is to compute all
eigenvalues in the interval (α, β) = (1, 2), i.e., between the first and second poles.

As we discussed in section 4, the linearization of the REP (4.10) leads to the LEP (A−λB)z = 0,
where A and B are defined as in (4.12) with the size n + r1d1 + · · ·+ rkdk = n + 2× 9 = n + 18.

By the expression (4.13), we can conclude that there are 8 eigenvalues in the interval. To apply
the expression (4.13), we need to know the inertias of the matrices A− τB for τ = α, β. These can
be computed using the LDLT decomposition of the matrix A− τB. Since Ci are dense, the explicit
computation of the LDLT decomposition of A− τB is too expensive. Instead, we can first perform
the following congruence transformation

[ A− τB
−I

]
= L1




A− τB C
−τΣ−1 I

CT I −I


LT

1(5.1)
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= L1L2




A− τB
−τΣ−1

F


LT

2 LT
1 ,

where F = −I − CT (A− τB)−1C + Σ/τ ,

L1 =




I C
I I

I


 , L2 =




I
I

CT (A− τB)−1 −τ−1Σ I


 .

Under these congruence transformations, we see that the inertias of the matrices A − τB can be
computed from the the inertias of the matrices A − τB, −τ−1Σ and F . Therefore, we only need
to compute the LDLT decomposition of the sparse symmetric matrix A − τB. In MATLAB , the
LDLT decomposition of a sparse symmetric matrix is computed by the function ldlsparse, which
is based on [4].

Let us turn to compute the 8 eigenvalues in the interval (α, β) by applying MATLAB ’s sparse
eigensolver eigs for the LEP (4.12). The function eigs is based on the implicitly restarted Arnoldi
(IRA) algorithm [12]. The following parameters are used for applying the function eigs with the
shift-and-invert spectral transformation:

tau = 1.5; % the shift
num = 8; % number of wanted eigenvalues
opts.issym = true;
opts.isreal = true;
opts.disp = 1;
opts.tol = 1.e-13; % residual bound
opts.p = 4*num; % number of Lanczos basis

Furthermore, we need to provide an external linear solver for the linear system
([

A− τB
−τΣ−1

]
+

[
C
I

]
[CT I]

)[
x1

x2

]
=

[
b1

b2

]
.(5.2)

The following procedure is such a solver to compute the solution vectors x1 and x2 based on the
LDLT decomposition A− τB = LDLT and the Sherman-Morrison-Woodbury formula1:

1. C := L−1C
2. b1 := L−1b1

3. e = CT D−1b1 − Σb2/τ
4. e := (I + CT D−1C − Σ/τ)−1e
5. x1 = L−T D−1(b1 − Ce), x2 = −Σ(b2 − e)/τ .

The linear system (5.2) needs to be solved repeatedly for different right-hand sides. For computa-
tional efficiency, the matrix C := L−1C in step 1 and the matrix (I + CT D−1C −Σ/τ)−1 in step 4
are computed only once and stored before calling eigs.

The CPU elapsed time is displayed in the following table, where “ldlsparse” is the time for
computing the decomposition A − τB = LDLT . “preprocessing” is for computing the matrices
C := L−1C and (I + CT D−1C − Σ/τ)−1, and the assemblage of the matrix B = diag(B,Σ−1).

A− λB A− λB
ldlsparse 0.64 0.64
preprocessing 0.49 0
eigs 7.14 6.66
Total 8.27 7.30

The residuals for all 8 computed eigenpairs are less than 5.5× 10−13. For comparison, in the third
column of the previous table, we also record the CPU time to solve only the eigenvalue problem of

1(A + BBT )−1 = A−1 −A−1B(I + BT A−1B)−1BT A−1.
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the linear term A−λB of REP (4.10) using the same parameters for calling eigs. As we can see, it
only takes about 13.3% extra time to solve the full REP than the simple eigenvalue problem of the
pencil A− λB.

The computed 8 eigenvalues λ1, λ2, . . . , λ8 of the REP (4.10) in the interval (1, 2) are plotted
below, along with the computed 8 eigenvalues µ1, µ2, . . . , µ8 of the linear pencil A − µB closest to
the shift τ = 1.5.
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λ
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1 2

We observe that there are only 6 eigenvalues of the pencil A − λB in the interval (1, 2). Among
them, µ6, µ7, µ8 are good approximations of λ6, λ7, λ8, respectively. If we treat the REP (4.10)
as a general NEP and use an iterative method (such as the nonlinear Arnoldi method [22]) with
the initial approximations µ6, µ7, µ8, we would expect good convergence to the desired eigenvalues
λ6, λ7, λ8. It would be difficult to predict the convergence behavior of the iterative method with the
initial approximations µ1, µ2, . . . , µ5.

Acknowledgement. We are grateful to Heinrich Voss for providing the data for Example 2 in
section 5. We thank Françoise Tisseur for her numerous comments. Support for this work has been
provided in part by the National Science Foundation under the grant DMS-0611548 and DOE under
the grant DE-FC02-06ER25794. The work of Y. Su was supported in part by China NSF Project
10871049 and E-Institutes of Shanghai Municipal Education Commission, N. E03004

REFERENCES

[1] A. C. Antoulas. Approximation of Large-Scale Dynamical Systems. SIAM, 2005.
[2] T. Betcke, N. J. Higham, V. Mehrmann, C. Schroder, and F. Tisseur. NLEVP: A collection of nonlinear

eigenvalue problems. Technical Report MIMS EPrint 2008.40, School of Mathematics, The University of
Manchester, 2008.
http://www.manchester.ac.uk/mims/eprints.

[3] R. Byers, V. Mehrmann, and H. Xu. Trimmed linearizations for structured matrix polynomials. Linear Alg.
Appl., 429:2373–2400, 2008.

[4] T. A. Davis. Algorithm 849: A concise sparse Cholesky factorization package. ACM Trans. Math. Software,
31(4):587–591, Dec. 2005.
http://www.cise.ufl.edu/research/sparse/ldl/.

[5] I. Gohberg, P. Lancaster, and L. Rodman. Matrix Polynomials. Academic Press, New York, 1982.
[6] C.-H. Guo, N. J. Higham, and F. Tisseur. Detecting and solving hyperbolic quadratic eigenvalue problems.

SIAM J. Matrix Anal. Appl., 30:1593–1613, 2009.
[7] N. J. Higham, D. S. Mackey, N. Mackey, and F. Tisseur. Symmetric linearizations for matrix polynomials. SIAM

J. Matrix Anal. Appl., 29(1):143–159, 2006.
[8] N. J. Higham, D. S. Mackey, and F. Tisseur. The conditioning of linearizations of matrix polynomials. SIAM

J. Matrix Anal. Appl., 28(4):1005–1028, 2006.
[9] T.-M. Hwang, W.-W. Lin, J.-L. Liu, and W. Wang. Jacobi-Davidson methods for cubic eigenvalue problems.

Numer. Lin. Alg. Appl., 12:605–624, 2005.
[10] T.-M. Hwang, W.-W. Lin, W.-C. Wang, and W. Wang. Numerical simulation of three dimensional quantum

dot. J. Comp. Physics, 196:208–232, 2004.
[11] P. Lancaster and M. Tismenetsky. The Theory of Matrices. Academic Press, London, 2nd edition, 1985.
[12] R. B. Lehoucq, D. C. Sorensen, and C. Yang. ARPACK Users’ Guide: Solution of Large-Scale Eigenvalue

Problems with Implicitly Restarted Arnoldi Methods. SIAM, Philadelphia, 1998.
[13] D.S. Mackey, N. Mackey, C. Mehl, and V. Mehrmann. Structured polynomial eigenvalue problems: Good

vibrations from good linearization. SIAM J. Matrix Anal. Appl., 28(4):1029–1051, 2006.
[14] D.S. Mackey, N. Mackey, C. Mehl, and V. Mehrmann. Vector spaces of linearizations for matrix polynomials.

SIAM J. Matrix Anal. Appl., 28(4):971–1004, 2006.
[15] L. Mazurenko and H. Voss. Low rank rational perturbations of linear symmetric eigenproblems. Z. Angew.

Math. Mech., 86(8):606–616, 2006.
[16] V. Mehrmann and H. Voss. Nonlinear eigenvalue problems: A challenge for modern eigenvalue methods. GAMM-

Reports, 27:121–152, 2004.
[17] M. J. O’Sullivan and M. A. Saunders. Sparse rank-revealing LU factorization (via threshold complete pivoting



14 Y. SU AND Z. BAI

and threshold rook pivoting). presented at Householder Symposium XV on Numerical Linear Algebra,
Peebles, Scotland, June 17-21, 2002.
http://www.stanford.edu/group/SOL/talks.html.

[18] A. Ruhe. Algorithms for the nonlinear eigenvalue problem. SIAM J. Numer. Anal., 10(4):674–689, 1973.
[19] B. De Schutter. Minimal state-space realization in linear system theory: An overview. J. Comp. Applied Math.,

121(1-2):331–354, Sep. 2000. Special Issue on Numerical Analysis in the 20th Century, Vol. I: Approximation
Theory.
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