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2. Model order reduction

3. The moment-matching theorem

4. SPMOR

(a) Basic formulation

(b) A generic algorithm

(c) Structure of Krylov subspace and structured Arnoldi
procedure (framework)

joint with R. C. Li of Univ. of Texas, Arlington



Transfer function in the first-order form A.1

• Consider the matrix-valued transfer function of the first-order
multi-input multi-output (MIMO) linear dynamical system

H(s) = L
T(sC + G)−1

B,

whereC andG areN ×N , B is N ×m andL is N × p.

• Assume thatG is nonsingular.

• The transfer function can be expanded arounds = 0 as

H(s) =

∞∑

ℓ=0

(−1)ℓsℓ
L
T(G−1

C)ℓG−1
B

≡

∞∑

ℓ=0

(−1)ℓsℓMℓ,

whereMℓ = L
T(G−1

C)ℓG−1
B are referred to as themoments

ats = 0.



• In the case whenG is singular or approximations toH(s)
around a selected points0 6= 0 are sought, a shift

s = (s− s0) + s0 ≡ σ + s0

can be performed and then

sC + G = (s− s0)C + s0C + G ≡ σC + (s0C + G).

Upon substitutions (i.e., renaming)

G← s0C + G, s← σ,

the problem of approximatingH(s) arounds = s0 becomes
equivalent to approximate the substitutedH(σ) aroundσ = 0.

• Many transfer functions appearing in different forms can be
re-formulated in the first order form.



Example: RCL circuits

• The MNA formulation of RCL circuits in the Integro-DAEs
form: 




C d
dt
z(t) + Gz(t) + Γ

∫ t

0

z(τ )dτ = Bu(t),

y(t) = BTz(τ ).

• The transfer function of the Integro-DAEs is given by

H(s) = BT

(
sC + G +

1

s
Γ

)−1

B.

• References: [Freund], [Gadet al] in [S-vdV-R]



• Linearization #1:

Define

C =

[
C 0
0 −W

]
, G =

[
G Γ
W 0

]
, L = B =

[
B

0

]

for anynonsingularmatrixW .
Then the transfer function:

H(s) = B
T(sC + G)−1

B.

• Linearization #2:

Define

C =

[
G C

W 0

]
, G =

[
Γ 0
0 −W

]
, L = B =

[
B

0

]

for anynonsingularmatrixW

Then the transfer function:

H(s) = sB
T(sC + G)−1

B.



• Remarks:

1. In the linearization #2, the matrix-vector products withthe
matricesG−1

C andG
−T

C
T are much easier to do than the

linearization #1.

2. The linearization #1 favors approximations arounds =∞.

3. In the case when approximations near a finite points0 6= 0
are sought, a shift must be performed and then neither
linearization has cost advantage over the other because the
s0C + G is no longer block diagonal.

4. If the shift is performedbeforelinearization, the same
advantage as the linearization #2 over the linearization #1
for approximations nears = 0 is retained.



Example: Coupled systems

• The transfer function of interconnected (coupled) systems:

H(s) = LT
0 (I −W (s)E)−1

W (s)B0,

whereE is the subsystem incidence matrix for connecting
subsystemsH1(s), . . . , Hk(s), and

W (s) = diag( H1(s), . . . , Hk(s) )

= diag( LT
1(sI − A1)

−1B1, . . . , LT
k(sI − Ak)

−1Bk ).

• Let A = diag(A1, . . . , Ak), B = diag(B1, . . . , Bk), L =
diag(L1, . . . , Lk), ThenH(s) can be turned into the first-order
form

H(s) = L
T(sC + G)−1

B,

whereC = I, G = −A−BEL, B = BB0 L = LL0.

• References: [Reis and Stykel] and [Vandendorpe and van
Dooren] in [S-vdV-R]



Model order reduction A.2

• Model order reduction of the transfer functionH(s) via
subspace projectionstarts by computing matrices

X ,Y ∈ R
N×n such that YTGX is nonsingular,

• Then defines areduced-order transfer function

Hr(s) = L
T
r (sCr + Gr)

−1
Br,

where

Cr = YTCX , Gr = YTGX , Br = YTB, Lr = X T
L.

(1)

• The reduced transfer functionH r(s) can be expanded around
s = 0:

Hr(s) =

∞∑

ℓ=0

(−1)ℓsℓ
L
T
r (G−1

r Cr)
ℓ
G
−1
r Br =

∞∑

ℓ=0

(−1)ℓsℓMr,ℓ,



whereMr,ℓ = L
T
r (G−1

r Cr)
ℓ
G
−1
r Br are referred to as the

momentsof the reduced system.

• Desired properties:

1. n≪ N .

2. By choosingX andY right, the reduced system associated
with the reduced transfer function can be made to resemble
the original system enough to have practical relevance:
Moment matching, stability, passivity, ...



Krylov subspaces associated withH(s)

• Transfer function

H(s) = L
T(sC + G)−1

B = L
T(sG−1

C + I)−1
G
−1

B

• Two associated Krylov subspace

1. RightKrylov subspace:

Kk(G
−1

C,G−1
B) =

span{G−1
B, (G−1

C)G−1
B, . . . (G−1

C)k−1
G
−1

B, }

2. LeftKrylov subspace:

Kk(G
−T

C
T,G−TL) =

span{G−TL, (G−TCT)G−TL, . . . (G−TCT)k−1
G
−T

L, }

• Numerical stable computation of the bases of these Krylov
subspaces are nontrivial tasks



The moment-matching theorem A.3

The following theorem dictates how good a reduced transfer
functionHr(s) approximates the original transfer functionH(s).

Theorem. Suppose thatG andGr are nonsingular. If

Kk(G
−1

C,G−1
B) ⊆ span{X}

and
Kj(G

−T
C
T,G−TL) ⊆ span{Y},

then the moments ofH(s) and of its reduced functionHr(s)
satisfy

Mℓ = Mr,ℓ for 0 ≤ ℓ ≤ k + j − 1,

which imply

Hr(s) = H(s) +O(sk+j).



Remarks:

• The conditions suggest that by enforcing span{X} and/or
span{Y} to contain more appropriate Krylov subspaces
associated with multiple points,Hr(s) can be made to
approximateH(s) well near all those points –multi-point
approximation.

•WhenG = I, it is due to [Villemagne and Skelton’87]

• The general form as stated above was proved by [Grimme’97]

• A different proof is available in [Freund’05]

• A proof using the projection language was given in [Li and
B.’05].

• Its implication to structure-preserving model reduction was
also realized in [Li and B.’05] and [Freund’05]



Structure-preserving model order reduction (SPMOR) A.4

• System structure:

For the simplicity of exposition, consider system matricesG,
C, B, andL having the following2× 2 block structure

C =

[ N1 N2

N ′1 C11 0
N ′2 0 C22

]
, G =

[ N1 N2

N ′1 G11 G12

N ′2 G21 0

]
,

B =

[ p

N ′1 B1

N ′2 0

]
, L =

[ m

N1 L1

N2 0

]
,

(2)

whereN1 + N2 = N ′1 + N ′2 = N .

System matrices from thetime-domain modified nodal analysis
(MNA) circuit equations of RCL circuits take such forms.
(more later)



• The objectives of SPMOR:

1. structurally preserves the block structure:

Cr =

[ n1 n2

n′1 Cr,11 0
n′2 0 Cr,22

]
, Gr =

[ n1 n2

n′1 Gr,11 Gr,12

n′2 Gr,21 0

]
,

Br =

[ p

n′1 Br,1

n′2 0

]
, Lr =

[ m

n1 Lr,1

n2 0

]
,

(3)

wheren1 + n2 = n′1 + n′2 = n.

2. Each sub-block is a direct reduction from the corresponding
sub-block in the original system.

• Advantages of SPMOR:

1. Easily provable preservation of the original system
properties, such as stability, passivity, ...

2. Better numerical stability and accuracy



Basic formulation A.4.a

In the formulation of subspace projection, SPMOR objectivescan
be accomplished by picking the projection matrices

X =

[ n1 n2

N1 X1

N2 X2

]
, Y =

[ n′1 n′2

N ′1 Y1

N ′2 Y2

]
.



Then

YTCX =

[
Y T

1

Y T
2

] [
C11 0
0 C22

] [
X1

X2

]
=

[
Cr,11 0

0 Cr,22

]
= Cr,

YTGX =

[
Y T

1

Y T
2

] [
G11 G12

G21 0

] [
X1

X2

]
=

[
Gr,11 Gr,12

Gr,21 0

]
= Gr,

YTB =

[
Y T

1

Y T
2

] [
B1

0

]
=

[
Br,1

0

]
= Br,

X T
L =

[
XT

1

XT
2

] [
L1

0

]
=

[
Lr,1

0

]
= Lr.

For the case whenY is taken to be the same asX , this idea is
exactly the so-called “split congruence transformations” [Kerns and

Yang’97].



A generic algorithm A.4.b

A generic algorithm to generate the desired projection matricesX
andY:

• Compute the basis matrices̃X andỸ such that

Kk(G
−1

C,G−1
B) ⊆ span

{
X̃
}

and
Kj(G

−T
C
T,G−TL) ⊆ span

{
Ỹ
}

.

• PartitionX̃ andỸ as

X̃ =

[
X̃1

X̃2

]
and Ỹ =

[
Ỹ1

Ỹ2

]

consistently with the block structures inG, C, L, andB, and



then perform

X̃ =

[
X̃1

X̃2

]
; X =

[
X1

X2

]
and Ỹ =

[
Ỹ1

Ỹ2

]
; Y =

[
Y1

Y2

]
.

satisfying

span
{

X̃
}
⊆ span{X} and span

{
Ỹ
}
⊆ span{Y} (4)

Remarks

• Thesubspace embeddingtask “;” can be accomplished as
follows:

1. ComputeZi having full column rank such that
span{Z̃i} ⊆ span{Zi};

2. OutputZ =

[
Z1

Z2

]
.

• There are a variety of ways to realize Step 1: Rank revealing
QR decompositions, modified Gram-Schmidt process, or SVD.



• For maximum efficiency, one should makeZi have as fewer
columns as one can. Notice the smallest possible number is
rank(Z̃i), but one may have to add a few extra columns to make
sure the total number of columns in allXi and that in allYi are
the same when constructingX andY.

• There are numerically more efficient alternatives when further
characteristics in the sub-blocks inG andC is known – (more
later)

• The firstk + j moments ofH(s) and the SPMOR transfer
functionHr(s) match.

Proof: a direct consequence of the moment-matching theorem
and the generic algorithm.



Structure of Krylov subspace A.4.c

Thefirst-computing-then-splittingcan be combined into one to
generate the desiredX andY directly, by taking advantage of a
structural property of Krylov subspaces for certain block matrix.
Theorem. Suppose thatA andB admit the following partitioning

A =

[ N N

N A11 A12

N αI 0

]
, B =

[ p

N B1

N B2

]
,

whereα is a scalar. Let a basis matrix̃X of the Krylov subspace
Kk(A, B) be partitioned as

X̃ =

[
N X̃1

N X̃2

]
.

Then
span{X̃2} ⊆ span{B2, X̃1}.



Remarks:

1. This theorem provides a theoretical foundation to simply
computeX̃1, then expand̃X1 to X1 so that
span{X1} = span{B2, X̃1} and finally set

X =

[
X1

X1

]
.

2. The theorem was implicitly implied in [Su and Craig’91, Bai
and Su’05] and explicitly stated in [Li and Bai’05] for more
general cases.

3. ForA =

[
A11 A12

αI

]
, X1 can be computed directly by a

structured Arnoldi procedure, such as SOAR.



Outline of Part B – Case study: RCL circuits

• RCL and RCS circuit equations

• Transfer functions

• SPMOR – version 1

• Towards a synthesizable reduced-order RCL system

– Expanded RCL (RCS) equations

– Transfer function

– SPMOR – version 2

– Preserving I/O ports

– Diagonalization

– Reduced-order RCL equation – synthesizable yet?

– An example

mostly due to Y. Su and X. Zeng group at Fudan Univ., China



RCL circuit equations B.1

The MNA (modified nodal analysis) formulation of an RCL circuit
network in frequency domain is of the form



(
s

[
C 0
0 L

]
+

[
G E

−ET 0

])[
v(s)
i(s)

]
=

[
Bv

0

]
u(s),

y(s) =
[
DT

v 0
] [ v(s)

i(s)

]
,

where

• C, L andG represent the contributions of the capacitors,
inductors and resistors; andE is the incidence matrix for the
inductances.Bv andDv denote the incidence matrices for the
input current sources and output node voltages;

• v(s) andi(s) denoteN1 nodal voltage andN2 auxiliary branch
currents;

• u andy are the input current sources and output voltages;



RCS circuit equations

•When an RCL network is modeled with a 3-D extraction
method for interconnection analysis, the resulted inductance
matrixL is usually very large and dense.

• As an alternative approach, we can use the susceptance matrix
S = L−1, which is sparse after dropping small entries:

• RCS circuit equations:




(
s

[
C 0
0 I

]
+

[
G E

−SET 0

])[
v(s)
i(s)

]
=

[
Bv

0

]
u(s),

y(s) =
[
DT

v 0
] [ v(s)

i(s)

]
.



RCL/RCS transfer function B.2

• Eliminating the branch current variablei(s) of the RCL and
RCS equations, we have thesecond-order form{ (

sC + G + 1
sΓ
)

v(s) = Bvu(s),

y(s) = DT
vv(s),

where
Γ = EL−1ET = ESET.

• The transfer functionH(s):

H(s) = DT
v

(
sC + G +

1

s
Γ

)−1

Bv.

• Perform the shift “s→ s0 + σ” to get

H(s) = s DT
v (s2C + sG + Γ)−1Bv

= (s0 + σ) DT
v [σ2C + σ(2s0C + G) + (s2

0C + s0G + Γ)]−1Bv

= (s0 + σ)LT(σC + G)−1
B,



where

C =

[
G0 C

W 0

]
, G =

[
Γ0 0
0 −W

]
, L =

[
Dv

0

]
, B =

[
Bv

0

]
,

(5)
andG0 = 2s0C + G, Γ0 = s2

0C + s0G + Γ andW is any
nonsingularmatrix.



SPMOR – version 1 B.3

• The SPRIM method [Freund’04] provides a SPMOR model for
the RCL equations.

• The following is an alternative SPMOR model, referred to as
the SAPOR method[Yang et al’04].

• For the system matricesC, G andB,

G
−1

C =

[
Γ−1

0 G0 Γ−1
0 C

−I 0

]
, G

−1
B =

[
Γ−1

0 Bv

0

]
.

• By using the block structure ofG, and applying the SOAR, we
can generateXr with orthonormal columns such that

Kk(G
−1

C,G−1
B) ⊆ span

{[
Xr

Xr

]}

• The subspace projection technique can be viewed as a



change-of-variable:

v(s) ≈ Xrvr(s),

wherevr(s) is a vector of dimensionn.

• Substituting into the RCS equation, yields



(
sCr + Gr +

1

s
Γr

)
vr(s) = Br,vu(s),

ỹ(s) = DT
r,vvr(s),

where

Cr = XT
r CXr, Gr = XT

r GXr, Γr = ET
r ΓEr, Er = XT

r E,

and
Br,v = XT

r Bv, Dr,v = XT
r Dv.

• The transfer function of the reduced system is given by

Hr(s) = DT
r,v

(
sCr + Gr +

1

s
Γr

)−1

Br,v.



• By setting

X = Y =

[ n N2

N1 Xr

N2 I

]
,

The reduced second-order form corresponds to a reduced order
SAPOR system of the original RCS equations:




(
s

[
Cr 0
0 I

]
+

[
Gr Er

−SET
r 0

])[
vr(s)
ĩ(s)

]
=

[
Br,v

0

]
u(s),

ỹ(s) =
[
DT

r,v 0
] [ vr(s)

ĩ(s)

]
.

Note that̃i(s) is a vector ofN2 components, the same as the
original auxiliary branch currentsi(s).



Towards a synthesizable reduced-order RCL system B.4

• The SAPOR system preserves the block structures and the
symmetry of system data matrices of the original RCS system.

• However, the matrixEr in the SAPOR cannot be interpreted as
an incidence matrix.

• Towards synthesis based on the reduced-order model, we shall
reformulate the projection and the SAPOR system [Yang et
al’08]



Expanded RCL/RCS equation B.4.a

• Let
î(s) = E i(s).

Then the original RCS equations can be written as as an
expanded RCS (RCSe) equations:




(
s

[
C 0
0 I

]
+

[
G I

−Γ 0

])[
v(s)

î(s)

]
=

[
Bv

0

]
u(s),

y(s) =
[
DT

v 0
] [ v(s)

î(s)

]
.

• Note that the incidence matrixE in the original RCS equations
is now the identity matrixI.

• The new current vector̂i(s) is of the sizeN1, typically
N1 ≥ N2. The order of RCSe equations is2N1.



RCSe transfer function B.4.b

In the first-order form, the transfer functionH(s) of the RCSe
equations:

H(s) = L
T(sC + G)−1

B,

whereG andC are2N1 × 2N1:

C =

[
C 0
0 I

]
, G =

[
G I

−Γ 0

]
,

and

B =

[
Bv

0

]
, L =

[
Dv

0

]
.



SPMOR – version 2 B.4.c

Let

X = Y =

[ n n

N1 Xr

N1 Xr

]
.

Then by the change-of-variables

v(s) ≈ XT
r vr(s) and î(s) ≈ XT

r ir(s),

and using the projection procedure, we have the reduced-order
RCSe equations



(
s

[
Cr 0
0 I

]
+

[
Gr I

−Γr 0

])[
vr(s)
ir(s)

]
=

[
Br,v

0

]
u(s),

ỹ(s) =
[
DT

r,v 0
] [ vr(s)

ir(s)

]
.

Note that the reduced equations not only preserve the 2-by-2block
structure of the system data matricesG andC, but also preserve
the identity of the incidence matrix.



Preserving I/O port B.4.d

• Assume that the sub-blocksBv andDv in the input and output
of the RCS equations are of the forms:

Bv =

[ p

p1 Bv1

N1−p1 0

]
, Dv =

[ m

p1 Dv1

N1−p1 0

]
.

• Furthermore, assume that the incidence matrixE has the zero
block on the top, conformal with the partition of the input and
output matrices:

E =

[ N2

p1 0

N1−p1 Ẽ

]
.

This assumption means that there is no susceptance (inductor)
directly connecting to the input and output nodes.



• let Xr be an orthonormal basis for the projection subspace
Using partitioning-and-embedding steps, we have

Xr =

[ n

p1 X
(1)
r

N1−p1 X
(2)
r

]
; X̂r =

[ p1 n

p1 I

N1−p1 X2

]
,

where the columns ofX2 form an orthonormal basis for the
range ofX(2)

r . For simplicity, we assume that there is no
deflation, namely, rank(X(2)

r ) = rank(X2) = n.

Using the subspace projection with

X = Y =

[ p1+n p1+n

N1 X̂r

N1 X̂r

]
,



we have the reduced-order RCSe equations



(
s

[
Cr 0
0 I

]
+

[
Gr I

−Γr 0

])[
vr(s)
ir(s)

]
=

[
Br,v

0

]
u(s),

ỹ(s) =
[
DT

r,v 0
] [ vr(s)

ir(s)

]
,

whereCr = X̂T
r CX̂r, Gr = X̂T

r GX̂r, Γr = X̂T
r ΓX̂r, andBr,v

andDr,v preserve the original I/O structure:

Br,v = X̂T
r

[
Bv1

0

]
=

[ p

p1 Bv1

n 0

]
, Dr,v = X̂T

r

[
Dv1

0

]
=

[ m

p1 Dv1

n 0

]
.

Note that

span

{[
Xr

Xr

]}
⊆ span

{[
X̂r

X̂r

]}
.

• The reduced RCSe system has the same moment-matching
property!



Diagonalization B.4.e

• Again for synthesis, consider the diagonalization ofΓ in the
RCSe equations.

• The “zero-block” assumption of the incidence matrixE

implies thatΓ is of the form

Γ = EL−1ET =

[ p1 N1−p1

p1 0 0

N1−p1 0 Γ̃

]
.

• Let Γ̃r = QT
2 Γ̃Q2, then the reduced RCSe equationsΓr has the

same form

Γr =

[ p1 n

p1 0 0

n 0 Γ̃r

]
,

Note that̃Γ is symmetric semi-positive definite, so isΓ̃r.



• Let
Γ̃r = Ṽ ΛṼ T

be the eigen-decomposition ofΓ̃r, whereV is orthogonal andΛ
is diagonal.

• Define

V =

[ p1+n p1+n

p1+n V̂

p1+n V̂

]
,

where

V̂ =

[ p1 n

p1 I

n Ṽ

]
.

• Then by a congruence transformation using the matrixV , the



reduced-order RCSe equations is equivalent to the equations




(
s

[
Ĉr 0
0 I

]
+

[
Ĝr I

−Γ̂r 0

])[
v̂r(s)

îr(s)

]
=

[
B̂r,v

0

]
u(s),

ŷ(s) =
[

D̂T
r,v 0

] [ v̂r(s)

îr(s)

]
,

wherev̂r(s) = V̂ Tvr(s) and̂ir(s) = V̂ Tir(s). Ĉr, Ĝr andΓ̂r are
(p1 + n)× (p1 + n) matrices:

Ĉr = V̂ TCrV̂ , Ĝr = V̂ TGrV̂ , Γ̂r = V̂ TΓrV̂ .

Moreover withV being block diagonal, the input and output
structures are preserved, too:

B̂r,v = V̂ TBr,v =

[ p

p1 Bv1

n 0

]
, D̂r,v = V̂ TDr,v =

[ p

p1 Dv1

n 0

]
.

•We note that after the congruence transformation,Γ̂r is



diagonal

Γ̂r =

[ p1 n

p1 0 0
n 0 Λ

]

Therefore, to avoid large entries in the synthesized inductors
for synthesized RCL equations, we partition the eigenvalue
matrixΛ of Γ̃r into

Λ =

[ ℓ n−ℓ

ℓ Λ1

n−ℓ Λ2

]
,

whereΛ2 contains then− ℓ smallest eigenvalues that are
smaller than a given thresholdǫ in magnitude. and therefore set
Λ2 = 0.

The “susceptance” matrix iŝΓr =




p1 ℓ n−ℓ

p1 0
ℓ Λ1

n−ℓ 0


.



Reduced-order RCL equations – synthesizable yet? B.4.f

• In summary, we derived the followingthe synthesized RCL
equations:



(
s

[
Ĉr 0

0 L̂r

]
+

[
Ĝr I

−I 0

])[
v̂r(s)

îr(s)

]
=

[
Br,v

0

]
u(s),

ỹ(s) =
[
DT

r,v 0
] [ v̂r(s)

îr(s)

]
,

where the inductance matrix̂Lr is given by

L̂r =




p1 ℓ n−ℓ

p1 0
ℓ Λ−1

1

n−ℓ 0


.

• RCLSYN (RCL equivalent circuit synthesis) tool [Yang et
al’08]



An example B.4.g

• A 64-bit bus circuit network with 8 inputs and 8 outputs. The
order of RCL equationN = 16963, the reduced ordern = 640.

• SPICE transient and AC analysis:
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• The CPU elapsed time for the transient and AC analysis are
shown in the following table:

Full RCL Synthesized RCLSpeedup
Transient analysis 5007.59 (sec.) 90.16 (sec.) 50×
AC analysis 29693.02 (sec.) 739.29 (sec.) 40×



Further reading

The materials presented in this lecture are based on the following
papers, and references therein:

• R.-C. Li and Z. Bai,Structure-preserving model reduction
using a Krylov subspace projection formulation,Comm. Math.
Sci. 3:179-199, 2005

• Z. Bai, R-C. Li and Y. Su,A Unified Krylov Projection
Framework for Structure-Preserving Model Reduction. In
“Model Order Reduction: Theory, Research Aspects and
Applications”, Springer Series of Mathematics in Industry,
Vol.13. Schilders, Wilhelmus H.A.; van der Vorst, Henk A.;
Rommes, Joost (Eds.) pp.75-93, 2008

Both papers are available on the class website.


