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Transfer function in the first-order form A.l

e Consider the matrix-valued transfer function of the firelay
multi-input multi-output (MIMO) linear dynamical system

H(s)=L'(sC + G)'B,
whereC andG areN x N,Bis N x mandLis N x p.
e Assume thatx is nonsingular.
e The transfer function can be expanded arosird( as

H(s) = ) (-1)''LY(G'C)'G'B

whereM, = LT(G71C)‘G~'B are referred to as thmoments
ats = 0.



e In the case whef is singular or approximations t(s)
around a selected poigg = 0 are sought, a shift

s=(s—s0)+ sy =0+ s
can be performed and then
sC+G=(s—5)C+5C+G=0C+(50C+ G).
Upon substitutions (i.e., renaming)
G—s55C+G, s«o,

the problem of approximating/ (s) arounds = s, becomes
equivalent to approximate the substitutédo) arounds = 0.

e Many transfer functions appearing in different forms can be
re-formulated in the first order form.



Example: RCL circuits

e The MNA formulation of RCL circuits in the Integro-DAEs
form:

{ CLz(t) + Gz(t) + F/Otz(T)dT = Bu(t),
y(t) = Bla(r).

e The transfer function of the Integro-DAESs is given by
1 —1
H(s)=B' (sc +G+ —F) B.
S

e References: [Freund], [Gaat al] in [S-vdV-R]



e Linearization #1:

Define
C 0 G T B
o= Jw) o= || r=B= 7]
for anynonsingularmatrix 1.
Then the transfer function:
H(s)=B'(sC+G) 'B.
e Linearization #2:
Define
G C " 0 B
o= ] o=y v r-B=|7]

for anynonsingularmatrix 1/
Then the transfer function:

H(s)=sB'(sC+ G) 'B.



e Remarks:

1. In the linearization #2, the matrix-vector products wlib
matricesG 1C andG~TCT are much easier to do than the
linearization #1.

2. The linearization #1 favors approximations around oc.

3. In the case when approximations near a finite pgjst 0
are sought, a shift must be performed and then neither
linearization has cost advantage over the other because the
soC + G Is no longer block diagonal.

4. If the shift is performedbeforelinearization, the same
advantage as the linearization #2 over the linearization #1
for approximations near = 0 is retained.



Example: Coupled systems

e The transfer function of interconnected (coupled) systems
H(s)=L{ (I —W(s)E)"" W(s)By,
wheref is the subsystem incidence matrix for connecting
subsystemg,(s), ..., Hy(s), and
W(s) = diag Hi(s), ..., Hi(s))
— diag L{(s] — A))"'By, ..., L.(sI — A;)"'By,).

oletA=diagA,,...,A;), B=diagBy,...,B;), L =

diag L, ..., Li), ThenH(s) can be turned into the first-order

form

H(s)=L'(sC+ G) 'B,

whereC=1, G=—-A—- BfL, B=BByL = LL,.
e References: [Reis and Stykel] and [Vandendorpe and van

Dooren] in [S-vdV-R]



Model order reduction A.2

e Model order reduction of the transfer functiéfis) via
subspace projectiostarts by computing matrices

X, Y e RY*" suchthat YTGX is nonsingular

e Then defines aeduced-order transfer function
H,(s) = L} (sC; + G;) B,
where
-)'cx, G,=Y'Gx, B,=Y'B, L =4&"L.
(1)

e The reduced transfer functidtir(s) can be expanded around

S =
oo

Hi(s) = (-1)'s'L{(G;'C)'G, "By = > (—=1)'s' My,
(=0 (=0



whereM,, = LT (G 'C,)'G,; 'B; are referred to as the
moment®f the reduced system.

e Desired properties:

1.n < N.

2. By choosingY and) right, the reduced system associated
with the reduced transfer function can be made to resemble
the original system enough to have practical relevance:
Moment matching, stability, passivity, ...



Krylov subspaces associated witlH (s)

e Transfer function
H(s)=L'(sC+G)"'B=L"sG'C+I)"'G'B
e Two associated Krylov subspace
1. RightKrylov subspace:
K:.(G'C,G'B) =
spafG'B,(G'C)G'B,...(G'C)*!'G'B,}
2. LeftKrylov subspace:
K.(G'C",G L) =
spa{G 'L, (G 'CHG'L,... (G '"CH*'G'L,}

e Numerical stable computation of the bases of these Krylov
subspaces are nontrivial tasks



The moment-matching theorem A.3

The following theorem dictates how good a reduced transfer
function H,(s) approximates the original transfer functiéfis).

Theorem. Suppose thaz andG, are nonsingular. If
K.(G'C,G'B) C spar{X’}

and
K;,(GT'C",G™'L) C spar{ )},

then the moments off (s) and of its reduced functiof/(s)
satisfy

Mg:Mryg for 0</i<k+j—1,
which imply
H,(s) = H(s) + O(s"17),



Remarks:

e The conditions suggest that by enforcing sp&n and/or
sparf )} to contain more appropriate Krylov subspaces
associated with multiple point#{,(s) can be made to
approximateH (s) well near all those points multi-point
approximation

e WhenG =1, itis due to [Vilemagne and Skelton’87]
e The general form as stated above was proved by [Grimme’97]
¢ A different proof is available in [Freund’'05]

¢ A proof using the projection language was given in [Li and
B.05].

e Its implication to structure-preserving model reducticasw
also realized in [Li and B.’05] and [Freund’05]



Structure-preserving model order reduction (SPMOR)

A4

e System structure:

For the simplicity of exposition, consider system matriCes
C, B, andL having the following2 x 2 block structure

Ny Ny
M Cy1 0 M
C_Nélo CQQI’G_Né

p
B-— Nf[Bll, L=

Ny | O

whereN; + Ny = N{ + N, = N.

N1 Ny

G G ]

S @)

Ny

System matrices from theme-domain modified nodal analysis
(MNA) circuit equations of RCL circuits take such forms.

(more late)



e The objectives of SPMOR:

1. structurally preserves the block structure:

ny ny ni U
n' | C 11 0 n’ _Gr 11 Gr 12]
c =" Gy = | Tz
' n [ 0 Cr722] ' n, I Gr,gl 0 (3)
P om
| B ny | L
o m r1 _m r1
BI’ — n,2 [ O ] ) LI’ - "y ] O ] )

wheren; + ny = nj + ny, = n.

2. Each sub-block is a direct reduction from the correspundi
sub-block in the original system.

e Advantages of SPMOR:

1. Easily provable preservation of the original system
properties, such as stability, passivity, ...

2. Better numerical stability and accuracy



Basic formulation A.4.a

In the formulation of subspace projection, SPMOR objectcas
be accomplished by picking the projection matrices

/ /

N | Xy N
S AR



Then

VICX = :YlT vy

V'IGX = :YlT v
V'B = :YlT v
= Y ]|

[ Chy

0

0 X1
| 0 Co
(G G | | X;
I Gy O
[ B _ | Bra ]
O -
Ly | Lia ]
0 0

| Grir Graz |
XQ] B [Gr,Ql 0 | Gr,
— Br,
— Lr.

For the case whed is taken to be the same a5 this idea is
exactly the so-calledsplit congruence transformatiohferns and

Yang'97].



A generic algorithm A.4.b

A generic algorithm to generate the desired projection icegt’
and):

e Compute the basis matricé§andY such that
Ki(G™'C,G™'B) C span{)?}

and N
K;(G'C",G™ L) C span{Y} .

e Partition X andY as

X = [{(/1] andY =
X

2

Y;

Yy

consistently with the block structures@, C, L, andB, and



then perform

i S IR S and Y =
X2 X2

satisfying
span{)?} C span{ X'} and spar{}N/} C span{y} (4)

Remarks

e Thesubspace embeddintgsk “~»" can be accomplished as
follows:

1. ComputeZ; having full column rank such that
spad Z;} C spaf Z;};
_ | 4
2. Outputz = [ Z ]

e There are a variety of ways to realize Step 1: Rank revealing
QR decompositions, modified Gram-Schmidt process, or SVD.



e For maximum efficiency, one should makehave as fewer
columns as one can. Notice the smallest possible number is
rank Z;), but one may have to add a few extra columns to make
sure the total number of columns in &ll and that in allY; are
the same when constructidgand)/ .

e There are numerically more efficient alternatives whertirt
characteristics in the sub-blocks@andC is known — (more
later)

e The firstk + j moments ofH (s) and the SPMOR transfer
function H(s) match.

Proof: a direct conseguence of the moment-matching theorem
and the generic algorithm.



Structure of Krylov subspace A.4.c

Thefirst-computing-then-splittingan be combined into one to
generate the desired and)’ directly, by taking advantage of a
structural property of Krylov subspaces for certain blocktmx.
Theorem. Suppose thatl and B admit the following partitioning

N N p
N AH A12 N Bl
e i AR !

whereaq is a scalar. Let a basis matri of the Krylov subspace
(A, B) be partitioned as

X:
X9

e NX1
N

Then N N
spar{ X,} C spar{ By, X1}.



Remarks:

1. This theorem provides a theoretical foundation to simply
computeX, then expandy; to X; so that
spaq X;} = spaf B,, X} and finally set

v My

2. The theorem was implicitly implied in [Su and Craig’91,iBa
and Su’05] and explicitly stated in [Li and Bai’05] for more
general cases.

3. ForA = An Aw
al

structured Arnoldi procedure, such as SOAR.

, X1 can be computed directly by a



Outline of Part B — Case study: RCL circuits

e RCL and RCS circuit equations

e Transfer functions

e SPMOR —version 1

e Towards a synthesizable reduced-order RCL system

— Expanded RCL (RCS) equations

— Transfer function

— SPMOR - version 2

— Preserving 1/O ports

— Diagonalization

— Reduced-order RCL equation — synthesizable yet?
— An example

mostly due to Y. Su and X. Zeng group at Fudan Univ., China



RCL circuit equations B.1

The MNA (modified nodal analys)gormulation of an RCL circuit
network in frequency domain is of the form

(vl ) [] = [v]
(o) = [0 0] [ 47,

S

N\

\
where

e (. L andd represent the contributions of the capacitors,
Inductors and resistors; artdis the incidence matrix for the
InductancesB, and D, denote the incidence matrices for the
Input current sources and output node voltages;

e v(s) andi(s) denoteN; nodal voltage andv, auxiliary branch
currents;

e y andy are the input current sources and output voltages;



RCS circuit equations

e When an RCL network is modeled with a 3-D extraction
method for interconnection analysis, the resulted inchaxa
matrix L is usually very large and dense.

e As an alternative approach, we can use the susceptance matri
S = L=, which is sparse after dropping small entries:

e RCS circuit equations:

(]

N\

C 0
0 [

|+l

G E
—SET 0

)l

o

y(s)




RCL/RCS transfer function B.2

e Eliminating the branch current variables) of the RCL and
RCS equations, we have teecond-order form

{ (SO + G + %F) v(s) = Byu(s),

y(s) = D)v(s),
where
I'=FEL'E"= ESE".

e The transfer functior (s):
1 —1
H(s)=D] (sC +G+ —F) B,.
S
e Perform the shift$ — sy + ¢” to get
H(s) = sD}(s*C +sG +T)'B,
= (594 0) D}[0%C 4 0(250C + G) + (s3C + oG + 1) ' B,
= (so+0)L'(cC + G)™'B,



where

Gy C Iy 0 D, B,
o s B A R R
()

andGy = 250C' + G, Ty = s5C + soG + " andTV is any
nonsingularmatrix.



SPMOR —version 1 B.3

e The SPRIM method [Freund’04] provides a SPMOR model for
the RCL equations.

e The following is an alternative SPMOR model, referred to as
the SAPOR methd®ang et al’'04].

e For the system matriceas, G andB,

N TGy TC i | To'B.
GC_[_[ o | GTB= 0

e By using the block structure @&k, and applying the SOAR, we
can generat&, with orthonormal columns such that

Ki.(G'C,G™'B) C span{ [Xr % ]}
,

e The subspace projection technique can be viewed as a



change-of-variable:
v(s) = Xvr(s),
whereuw,(s) is a vector of dimension.

e Substituting into the RCS equation, yields

1
<SCr + G, + gFr) v(s) = Bryu(s),
y(s) = Df,u(s),
where
Cr=X'CX;, Gi=X/GX,, I'=E'TE,, E, =XFE,

and
B, =X/'B,, Di,=X'D,.

e The transfer function of the reduced system is given by

1 —1
Hr(S) — DI-—I:U (SC[’ —|_ Gr —|_ gFr) BT,U'



e By setting
n N2
N M Xy
X — y — Ng [ ] ]7

The reduced second-order form corresponds to a reduced orde
SAPOR system of the original RCS equations:

| <S [CJ 9] " [—giErT ]grD [%?S;] = [B(;’“] u(s),
jis) = [ DI, 0] [%s))} |

Note thati(s) is a vector ofN, components, the same as the
original auxiliary branch currentss).

/G

\



Towards a synthesizable reduced-order RCL system B.4

e The SAPOR system preserves the block structures and the
symmetry of system data matrices of the original RCS system.

e However, the matrix@; in the SAPOR cannot be interpreted as
an incidence matrix.

e Towards synthesis based on the reduced-order model, we shal
reformulate the projection and the SAPOR system [Yang et
al'08]



Expanded RCL/RCS equation B.4.a

o Let R
i(s) = Fi(s).
Then the original RCS equations can be written as as an
expanded RCS (RCSe) equations

LS ] = [0 ]
o - (ool [2]

e Note that the incidence matri¥ in the original RCS equations
IS now the identity matrix.

L\

\

e The new current vectcﬁ(s) IS of the sizelV, typically
N; > N,. The order of RCSe equations2g/;.



RCSe transfer function B.4.b

In the first-order form, the transfer functidi(s) of the RCSe

equations:
H(s)=L'(sC + G)'B,

whereG andC are2N; x 2Ny:

C 0 G I
o= [0 o= 50)

and 5 5
B[] =[]



SPMOR - version 2 B.4.c

Let

N | X
A=Y= Ni[ r Xr]'
Then by the change-of-variables
v(s) = XTu(s) and i(s) ~ XTil(s),
and using the projection procedure, we have the reducesi-ord
RCSe equations

§ ]
C, 0 Gy 1 vr(s) B,
el (S ] - e
~ N _ [T ur(s)
\ y<8) T _Dr,v O} [Zr<8>]
Note that the reduced equations not only preserve the 2Hlgek

structure of the system data matri€g@sandC, but also preserve
the identity of the incidence matrix.

_/\




Preserving I/O port B.4.d

e Assume that the sub-blocks$, and D, in the input and output
of the RCS equations are of the forms:

p m
B — P1 Bvl D — P1 Dvl
’ N1—p1 0 |’ ’ Ni1—p1 0 |

e Furthermore, assume that the incidence mdirixas the zero
block on the top, conformal with the partition of the inputan

output matrices:
No

0
E= "1 %]
Ni—p1 [ E ]
This assumption means that there is no susceptance (imylucto
directly connecting to the input and output nodes.



e let X, be an orthonormal basis for the projection subspace
Using partitioning-and-embedding steps, we have

n pr N

(1) R
Xy = " [Xr(Z)] ~ Xy = n [[ ]7
Ni-p1 | Xr N=p1 X
where the columns ok, form an orthonormal basis for the
range ofX?. For simplicity, we assume that there is no

deflation, namely, rar®”)) = rank X) = n.
Using the subspace projection with

p1+n pi+n
N | X
X=Y)= |
Ny Xy



we have the reduced-order RCSe equations

LSS o) [ = [ ]

i) = (0], 0] [ )]

N\

ir(s)
WhereCr — )/(\'rTC)?r, Gr — )/(\';I-G)?r, Fr — )/(\';I-F)?r, andBr’U
and D, preserve the original 1/O structure:

\

p m
o= (][5 oven[7]-2[%]

Note that

el [ ) o [ 5 ])

e The reduced RCSe system has the same moment-matching
property!



Diagonalization B.4.e

e Agalin for synthesis, consider the diagonalization'of the
RCSe equations.

e The “zero-block” assumption of the incidence matkix
implies thatl" is of the form

p1 Ni1—p1
0 0
r=EL'ET= " ~ |
N-p | 0O I

o Letl, = Qﬁ@z, then the reduced RCSe equatidi$as the

same form
p1 n

0 0
F:m Y
' n[O Fr]7

Note thatl is symmetric semi-positive definite, solis



o Let N o
be the eigen-decomposition Bf, whereV/ is orthogonal ancd\
IS diagonal.

e Define
p1+n pi+n
| V
vV — p1+n |
p1+n V
where
pron
oo m I
n V1

e Then by a congruence transformation using the mafrishe



reduced-order RCSe equations is equivalent to the eggation

(L8 S ] ) - [
| its) = [ B, o}[jrfj))],

wherety(s) = VTu(s) andir(s) = VTi(s). C, Gy andT; are
(p1 +n) X (p1 +n) matrices:

C.=V'eV, G =V'G/V, T,=VI,V.

Moreover withl being block diagonal, the input and output
structures are preserved, too:

/G

p p

B\r,v — ‘7TBI’,U =" [Bovl ] 3 ﬁr,v — vTDr,v =" [l)ovl ] .

¢ \We note that after the congruence transformations



diagonal
p1r n
~ pm| 00
lr=" [o A]
Therefore, to avoid large entries in the synthesized iratact
for synthesized RCL equations, we partition the eigenvalue
matrix A of fr into
¢ n—t

! A1
A_n—ﬁl A2]7

where/, contains the: — ¢ smallest eigenvalues that are
smaller than a given thresholdn magnitude. and therefore set
Ay = 0.

p | 0
The “susceptance” matrix is = ¢ Ay
n—~{ 0




Reduced-order RCL equations — synthesizable yet? B.4.f

¢ In summary, we derived the followintpe synthesized RCL

equations

(< 0
S

\

0 Ly

N\

|

w1l

[ = | fute)

j(s) = [ DI, 0] H”

.
—
~~
Va
~—

where the inductance matrix is given by

e RCLSYN (RCL equivalent circuit synthesis) tool [Yang et

al'08]



An example

B.4.¢

e A 64-Dbit bus circuit network with 8 inputs and 8 outputs. The
order of RCL equationV = 16963, the reduced order = 640.

e SPICE transient and AC analysis:

e The CPU elapsed time for the transient and AC analysis are
shown in the following table:

Full RCL

Synthesized RCI

| Speedup

Transient analysis

)

5007.59 (sec.)

90.16 (sec.)

50x

AC analysis

29693.02 (sec.)

)

739.29 (sec.)

40x



Further reading

The materials presented in this lecture are based on tluiol
papers, and references therein:

e R.-C. Li and Z. BaiStructure-preserving model reduction
using a Krylov subspace projection formulati@@omm. Math.
Sci. 3:179-199, 2005

e Z. Bai, R-C. Li and Y. SuA Unified Krylov Projection
Framework for Structure-Preserving Model Reductitm
“Model Order Reduction: Theory, Research Aspects and
Applications”, Springer Series of Mathematics in Industry,
Vol.13. Schilders, Wilhelmus H.A.; van der Vorst, Henk A.;
Rommes, Joost (Eds.) pp.75-93, 2008

Both papers are available on the class website.



