II.2 Structure Preserving Model Order Reduction via Krylov Subspace Projection

Outline

- **A.** A unified theory for SPMOR
- **B.** Case study: RCL/RCS circuits

- 1. Transfer function in the first-order form
- 2. Model order reduction
- 3. The moment-matching theorem
- 4. SPMOR
 - (a) Basic formulation
 - (b) A generic algorithm
 - (c) Structure of Krylov subspace and structured Arnoldi procedure (framework)

joint with R. C. Li of Univ. of Texas, Arlington

• Consider the matrix-valued transfer function of the first-order multi-input multi-output (MIMO) linear dynamical system

$$H(s) = \mathbf{L}^{\mathrm{T}}(s\mathbf{C} + \mathbf{G})^{-1}\mathbf{B},$$

where C and G are $N \times N$, B is $N \times m$ and L is $N \times p$.

- Assume that G is nonsingular.
- The transfer function can be expanded around s = 0 as

$$H(s) = \sum_{\ell=0}^{\infty} (-1)^{\ell} s^{\ell} \mathbf{L}^{\mathrm{T}} (\mathbf{G}^{-1} \mathbf{C})^{\ell} \mathbf{G}^{-1} \mathbf{B}$$
$$\equiv \sum_{\ell=0}^{\infty} (-1)^{\ell} s^{\ell} M_{\ell},$$

where $M_{\ell} = \mathbf{L}^{\mathrm{T}} (\mathbf{G}^{-1} \mathbf{C})^{\ell} \mathbf{G}^{-1} \mathbf{B}$ are referred to as the *moments* at s = 0.

In the case when G is singular or approximations to H(s) around a selected point s₀ ≠ 0 are sought, a shift

$$s = (s - s_0) + s_0 \equiv \sigma + s_0$$

can be performed and then

$$s\mathbf{C} + \mathbf{G} = (s - s_0)\mathbf{C} + s_0\mathbf{C} + \mathbf{G} \equiv \sigma\mathbf{C} + (s_0\mathbf{C} + \mathbf{G}).$$

Upon substitutions (i.e., renaming)

$$\mathbf{G} \leftarrow s_0 \mathbf{C} + \mathbf{G}, \quad s \leftarrow \sigma,$$

the problem of approximating H(s) around $s = s_0$ becomes equivalent to approximate the substituted $H(\sigma)$ around $\sigma = 0$.

• Many transfer functions appearing in different forms can be re-formulated in the first order form.

• The MNA formulation of RCL circuits in the Integro-DAEs form:

$$\begin{cases} C\frac{d}{dt}z(t) + Gz(t) + \Gamma \int_0^t z(\tau)d\tau \ = \ Bu(t), \\ y(t) \ = \ B^{\mathsf{T}}z(\tau). \end{cases}$$

• The transfer function of the Integro-DAEs is given by

$$H(s) = B^{\mathrm{T}} \left(sC + G + \frac{1}{s} \Gamma \right)^{-1} B.$$

• References: [Freund], [Gad et al] in [S-vdV-R]

• Linearization #1:

Define

$$\mathbf{C} = \begin{bmatrix} C & 0 \\ 0 & -W \end{bmatrix}, \ \mathbf{G} = \begin{bmatrix} G & \Gamma \\ W & 0 \end{bmatrix}, \ \mathbf{L} = \mathbf{B} = \begin{bmatrix} B \\ 0 \end{bmatrix}$$

for any *nonsingular* matrix *W*. Then the transfer function:

$$H(s) = \mathbf{B}^{\mathrm{T}}(s\mathbf{C} + \mathbf{G})^{-1}\mathbf{B}.$$

• Linearization #2:

Define

$$\mathbf{C} = \begin{bmatrix} G & C \\ W & 0 \end{bmatrix}, \ \mathbf{G} = \begin{bmatrix} \Gamma & 0 \\ 0 & -W \end{bmatrix}, \ \mathbf{L} = \mathbf{B} = \begin{bmatrix} B \\ 0 \end{bmatrix}$$

for any *nonsingular* matrix WThen the transfer function:

$$H(s) = s \mathbf{B}^{\mathrm{T}}(s\mathbf{C} + \mathbf{G})^{-1}\mathbf{B}.$$

- Remarks:
 - 1. In the linearization #2, the matrix-vector products with the matrices $\mathbf{G}^{-1}\mathbf{C}$ and $\mathbf{G}^{-T}\mathbf{C}^{T}$ are much easier to do than the linearization #1.
 - 2. The linearization #1 favors approximations around $s = \infty$.
 - 3. In the case when approximations near a finite point $s_0 \neq 0$ are sought, a shift must be performed and then neither linearization has cost advantage over the other because the $s_0\mathbf{C} + \mathbf{G}$ is no longer block diagonal.
 - 4. If the shift is performed *before* linearization, the same advantage as the linearization #2 over the linearization #1 for approximations near s = 0 is retained.

• The transfer function of interconnected (coupled) systems:

$$H(s) = L_0^{\mathrm{T}} \left(I - W(s) \mathcal{E} \right)^{-1} W(s) B_0,$$

where \mathcal{E} is the subsystem incidence matrix for connecting subsystems $H_1(s), \ldots, H_k(s)$, and

$$W(s) = \operatorname{diag}(H_1(s), \ldots, H_k(s)) = \operatorname{diag}(L_1^{\mathrm{T}}(sI - A_1)^{-1}B_1, \ldots, L_k^{\mathrm{T}}(sI - A_k)^{-1}B_k).$$

• Let $A = \text{diag}(A_1, \dots, A_k)$, $B = \text{diag}(B_1, \dots, B_k)$, $L = \text{diag}(L_1, \dots, L_k)$, Then H(s) can be turned into the first-order form

 $H(s) = \mathbf{L}^{\mathrm{T}}(s\mathbf{C} + \mathbf{G})^{-1}\mathbf{B},$

where $\mathbf{C} = I$, $\mathbf{G} = -A - B\mathcal{E}L$, $\mathbf{B} = BB_0 \mathbf{L} = LL_0$.

• References: [Reis and Stykel] and [Vandendorpe and van Dooren] in [S-vdV-R]

• Model order reduction of the transfer function H(s) via *subspace projection* starts by computing matrices

 $\mathcal{X}, \mathcal{Y} \in \mathbf{R}^{N \times n}$ such that $\mathcal{Y}^{\mathrm{T}} \mathbf{G} \mathcal{X}$ is nonsingular,

• Then defines a *reduced-order transfer function* $H_{\rm r}(s) = {\bf L}_{\rm r}^{\rm T}(s{\bf C}_{\rm r}+{\bf G}_{\rm r})^{-1}{\bf B}_{\rm r},$

where

$$\mathbf{C}_{\mathrm{r}} = \mathcal{Y}^{\mathrm{T}} \mathbf{C} \mathcal{X}, \quad \mathbf{G}_{\mathrm{r}} = \mathcal{Y}^{\mathrm{T}} \mathbf{G} \mathcal{X}, \quad \mathbf{B}_{\mathrm{r}} = \mathcal{Y}^{\mathrm{T}} \mathbf{B}, \quad \mathbf{L}_{\mathrm{r}} = \mathcal{X}^{\mathrm{T}} \mathbf{L}.$$
(1)

• The reduced transfer function $H_{\rm r}(s)$ can be expanded around s = 0:

$$H_{\mathbf{r}}(s) = \sum_{\ell=0}^{\infty} (-1)^{\ell} s^{\ell} \mathbf{L}_{\mathbf{r}}^{\mathrm{T}} (\mathbf{G}_{\mathbf{r}}^{-1} \mathbf{C}_{\mathbf{r}})^{\ell} \mathbf{G}_{\mathbf{r}}^{-1} \mathbf{B}_{\mathbf{r}} = \sum_{\ell=0}^{\infty} (-1)^{\ell} s^{\ell} M_{\mathbf{r},\ell},$$

where $M_{r,\ell} = \mathbf{L}_r^T (\mathbf{G}_r^{-1} \mathbf{C}_r)^{\ell} \mathbf{G}_r^{-1} \mathbf{B}_r$ are referred to as the *moments* of the reduced system.

- Desired properties:
 - 1. $n \ll N$.
 - By choosing X and Y right, the reduced system associated with the reduced transfer function can be made to resemble the original system enough to have practical relevance: *Moment matching, stability, passivity, ...*

• Transfer function

$$H(s) = \mathbf{L}^{\mathrm{T}}(s\mathbf{C} + \mathbf{G})^{-1}\mathbf{B} = \mathbf{L}^{\mathrm{T}}(s\mathbf{G}^{-1}\mathbf{C} + \mathbf{I})^{-1}\mathbf{G}^{-1}\mathbf{B}$$

- Two associated Krylov subspace
 - 1. Right Krylov subspace:

 $\mathcal{K}_k(\mathbf{G}^{-1}\mathbf{C}, \mathbf{G}^{-1}\mathbf{B}) =$ span{ $\mathbf{G}^{-1}\mathbf{B}, (\mathbf{G}^{-1}\mathbf{C})\mathbf{G}^{-1}\mathbf{B}, \dots (\mathbf{G}^{-1}\mathbf{C})^{k-1}\mathbf{G}^{-1}\mathbf{B},$ }

2. Left Krylov subspace:

 $\mathcal{K}_{k}(\mathbf{G}^{-\mathsf{T}}\mathbf{C}^{\mathsf{T}},\mathbf{G}^{-\mathsf{T}}\mathbf{L}) = \operatorname{span}\{\mathbf{G}^{-\mathsf{T}}\mathbf{L},(\mathbf{G}^{-\mathsf{T}}\mathbf{C}^{\mathsf{T}})\mathbf{G}^{-\mathsf{T}}\mathbf{L},\ldots(\mathbf{G}^{-\mathsf{T}}\mathbf{C}^{\mathsf{T}})^{k-1}\mathbf{G}^{-\mathsf{T}}\mathbf{L},\}$

• Numerical stable computation of the bases of these Krylov subspaces are nontrivial tasks

The following theorem dictates how good a reduced transfer function $H_r(s)$ approximates the original transfer function H(s).

Theorem. Suppose that G and G_r are nonsingular. If

$$\mathcal{K}_k(\mathbf{G}^{-1}\mathbf{C},\mathbf{G}^{-1}\mathbf{B}) \subseteq \operatorname{span}{\mathcal{X}}$$

and

$$\mathcal{K}_j(\mathbf{G}^{-\mathrm{T}}\mathbf{C}^{\mathrm{T}},\mathbf{G}^{-\mathrm{T}}\mathbf{L}) \subseteq \operatorname{span}{\mathcal{Y}},$$

then the moments of H(s) and of its reduced function $H_{\mathbf{r}}(s)$ satisfy

$$M_{\ell} = M_{\mathbf{r},\ell} \quad \text{for} \quad 0 \le \ell \le k + j - 1,$$

which imply

$$H_{\mathbf{r}}(s) = H(s) + \mathcal{O}(s^{k+j}).$$

Remarks:

- The conditions suggest that by enforcing span{ \mathcal{X} } and/or span{ \mathcal{Y} } to contain more appropriate Krylov subspaces associated with multiple points, $H_r(s)$ can be made to approximate H(s) well near all those points *multi-point approximation*.
- When G = I, it is due to [Villemagne and Skelton'87]
- The general form as stated above was proved by [Grimme'97]
- A different proof is available in [Freund'05]
- A proof using the projection language was given in [Li and B.'05].
- Its implication to structure-preserving model reduction was also realized in [Li and B.'05] and [Freund'05]

• System structure:

For the simplicity of exposition, consider system matrices G, C, B, and L having the following 2×2 block structure

$$\mathbf{C} = {\begin{array}{*{20}c} N_{1} & N_{2} & & N_{1} & N_{2} \\ C_{11} & 0 & \\ N_{2}' \begin{bmatrix} C_{11} & 0 \\ 0 & C_{22} \end{bmatrix}}, \quad \mathbf{G} = {\begin{array}{*{20}c} N_{1}' & G_{11} & G_{12} \\ G_{21} & 0 \end{bmatrix}}, \\ \mathbf{B} = {\begin{array}{*{20}c} N_{1}' & B_{1} \\ N_{2}' & 0 \end{bmatrix}}, \quad \mathbf{L} = {\begin{array}{*{20}c} m & \\ N_{1} & L_{1} \\ N_{2} & 0 \end{bmatrix}}, \quad (2)$$

where $N_1 + N_2 = N'_1 + N'_2 = N$.

System matrices from the *time-domain modified nodal analysis* (MNA) circuit equations of RCL circuits take such forms. (*more later*)

• The objectives of SPMOR:

1. structurally preserves the block structure:

$$\mathbf{C}_{\mathbf{r}} = \begin{array}{c} n_{1}' & n_{2} \\ C_{\mathbf{r},11} & 0 \\ 0 & C_{\mathbf{r},22} \end{array} \right], \ \mathbf{G}_{\mathbf{r}} = \begin{array}{c} n_{1}' & n_{2} \\ G_{\mathbf{r},11} & G_{\mathbf{r},12} \\ G_{\mathbf{r},21} & 0 \end{array} \right],$$
(3)
$$\mathbf{B}_{\mathbf{r}} = \begin{array}{c} n_{1}' \\ n_{2}' \end{array} \left[\begin{array}{c} B_{\mathbf{r},1} \\ 0 \end{array} \right], \ \mathbf{L}_{\mathbf{r}} = \begin{array}{c} n_{1} \\ n_{2} \end{array} \left[\begin{array}{c} L_{\mathbf{r},1} \\ 0 \end{array} \right],$$
(3)

where $n_1 + n_2 = n'_1 + n'_2 = n$.

- 2. Each sub-block is a direct reduction from the corresponding sub-block in the original system.
- Advantages of SPMOR:
 - 1. Easily provable preservation of the original system properties, such as stability, passivity, ...
 - 2. Better numerical stability and accuracy

In the formulation of subspace projection, SPMOR objectives can be accomplished by picking the projection matrices

$$\mathcal{X} = \begin{bmatrix} n_1 & n_2 \\ X_1 \\ N_2 \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}, \quad \mathcal{Y} = \begin{bmatrix} n'_1 & n'_2 \\ Y_1 \\ N'_2 \begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix}.$$

Then

$$\begin{split} \mathcal{Y}^{\mathrm{T}} \mathbf{C} \mathcal{X} &= \begin{bmatrix} Y_{1}^{\mathrm{T}} & \\ & Y_{2}^{\mathrm{T}} \end{bmatrix} \begin{bmatrix} C_{11} & 0 \\ 0 & C_{22} \end{bmatrix} \begin{bmatrix} X_{1} & \\ & X_{2} \end{bmatrix} = \begin{bmatrix} C_{\mathrm{r},11} & 0 \\ 0 & C_{\mathrm{r},22} \end{bmatrix} = \mathbf{C}_{\mathrm{r}}, \\ \mathcal{Y}^{\mathrm{T}} \mathbf{G} \mathcal{X} &= \begin{bmatrix} Y_{1}^{\mathrm{T}} & \\ & Y_{2}^{\mathrm{T}} \end{bmatrix} \begin{bmatrix} G_{11} & G_{12} \\ G_{21} & 0 \end{bmatrix} \begin{bmatrix} X_{1} & \\ & X_{2} \end{bmatrix} = \begin{bmatrix} G_{\mathrm{r},11} & G_{\mathrm{r},12} \\ G_{\mathrm{r},21} & 0 \end{bmatrix} = \mathbf{G}_{\mathrm{r}}, \\ \mathcal{Y}^{\mathrm{T}} \mathbf{B} &= \begin{bmatrix} Y_{1}^{\mathrm{T}} & \\ & Y_{2}^{\mathrm{T}} \end{bmatrix} \begin{bmatrix} B_{1} \\ 0 \end{bmatrix} = \begin{bmatrix} B_{\mathrm{r},1} \\ 0 \end{bmatrix} = \mathbf{B}_{\mathrm{r}}, \\ \mathcal{X}^{\mathrm{T}} \mathbf{L} &= \begin{bmatrix} X_{1}^{\mathrm{T}} & \\ & X_{2}^{\mathrm{T}} \end{bmatrix} \begin{bmatrix} L_{1} \\ 0 \end{bmatrix} = \begin{bmatrix} L_{\mathrm{r},1} \\ 0 \end{bmatrix} = \mathbf{L}_{\mathrm{r}}. \end{split}$$

For the case when \mathcal{Y} is taken to be the same as \mathcal{X} , this idea is exactly the so-called "*split congruence transformations*" [Kerns and Yang'97].

A generic algorithm to generate the desired projection matrices \mathcal{X} and \mathcal{Y} :

 \bullet Compute the basis matrices \widetilde{X} and \widetilde{Y} such that

$$\mathcal{K}_k(\mathbf{G}^{-1}\mathbf{C},\mathbf{G}^{-1}\mathbf{B}) \subseteq \operatorname{span}\left\{\widetilde{X}\right\}$$

and

$$\mathcal{K}_j(\mathbf{G}^{-\mathrm{T}}\mathbf{C}^{\mathrm{T}},\mathbf{G}^{-\mathrm{T}}\mathbf{L}) \subseteq \operatorname{span}\left\{\widetilde{Y}\right\}.$$

• Partition \widetilde{X} and \widetilde{Y} as

$$\widetilde{X} = \begin{bmatrix} \widetilde{X}_1 \\ \widetilde{X}_2 \end{bmatrix}$$
 and $\widetilde{Y} = \begin{bmatrix} \widetilde{Y}_1 \\ \widetilde{Y}_2 \end{bmatrix}$

consistently with the block structures in G, C, L, and B, and

then perform

$$\widetilde{X} = \begin{bmatrix} \widetilde{X}_1 \\ \widetilde{X}_2 \end{bmatrix} \rightsquigarrow \mathcal{X} = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \quad \text{and} \quad \widetilde{Y} = \begin{bmatrix} \widetilde{Y}_1 \\ \widetilde{Y}_2 \end{bmatrix} \rightsquigarrow \mathcal{Y} = \begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix}$$

satisfying

span
$$\left\{ \widetilde{X} \right\} \subseteq \operatorname{span} \left\{ \mathcal{X} \right\}$$
 and span $\left\{ \widetilde{Y} \right\} \subseteq \operatorname{span} \left\{ \mathcal{Y} \right\}$ (4)

Remarks

- The *subspace embedding* task "∽→" can be accomplished as follows:
- There are a variety of ways to realize Step 1: Rank revealing QR decompositions, modified Gram-Schmidt process, or SVD.

- For maximum efficiency, one should make Z_i have as fewer columns as one can. Notice the smallest possible number is rank(Z̃_i), but one may have to add a few extra columns to make sure the total number of columns in all X_i and that in all Y_i are the same when constructing X and Y.
- There are numerically more efficient alternatives when further characteristics in the sub-blocks in G and C is known (*more later*)
- The first k + j moments of H(s) and the SPMOR transfer function $H_{\mathbf{r}}(s)$ match.

Proof: a direct consequence of the moment-matching theorem and the generic algorithm.

The *first-computing-then-splitting* can be combined into one to generate the desired \mathcal{X} and \mathcal{Y} directly, by taking advantage of a structural property of Krylov subspaces for certain block matrix. **Theorem.** Suppose that A and B admit the following partitioning

$$A = {}^{N}_{N} \left[{}^{N}_{\alpha I} {}^{N}_{0} \right], \quad B = {}^{N}_{N} \left[{}^{P}_{B_{1}}_{B_{2}} \right],$$

where α is a scalar. Let a basis matrix \widetilde{X} of the Krylov subspace $\mathcal{K}_k(A, B)$ be partitioned as

$$\widetilde{X} = {}^{N}_{N} \left[{}^{\widetilde{X}_{1}}_{\widetilde{X}_{2}} \right].$$

Then

$$\operatorname{span}{\widetilde{X}_2} \subseteq \operatorname{span}{B_2, \widetilde{X}_1}.$$

Remarks:

1. This theorem provides a theoretical foundation to simply compute \widetilde{X}_1 , then expand \widetilde{X}_1 to X_1 so that span $\{X_1\} = \text{span}\{B_2, \widetilde{X}_1\}$ and finally set

$$\mathcal{X} = \begin{bmatrix} X_1 \\ & X_1 \end{bmatrix}$$

- 2. The theorem was implicitly implied in [Su and Craig'91, Bai and Su'05] and explicitly stated in [Li and Bai'05] for more general cases.
- 3. For $A = \begin{bmatrix} A_{11} & A_{12} \\ \alpha I \end{bmatrix}$, X_1 can be computed directly by a structured Arnoldi procedure, such as SOAR.

- RCL and RCS circuit equations
- Transfer functions
- SPMOR version 1
- Towards a synthesizable reduced-order RCL system
 - Expanded RCL (RCS) equations
 - Transfer function
 - SPMOR version 2
 - Preserving I/O ports
 - Diagonalization
 - Reduced-order RCL equation synthesizable yet?
 - An example

mostly due to Y. Su and X. Zeng group at Fudan Univ., China

The MNA (*modified nodal analysis*) formulation of an RCL circuit network in frequency domain is of the form

$$\begin{cases} \left(s \begin{bmatrix} C & 0 \\ 0 & L \end{bmatrix} + \begin{bmatrix} G & E \\ -E^{\mathrm{T}} & 0 \end{bmatrix}\right) \begin{bmatrix} v(s) \\ i(s) \end{bmatrix} = \begin{bmatrix} B_v \\ 0 \end{bmatrix} u(s), \\ y(s) = \begin{bmatrix} D_v^{\mathrm{T}} & 0 \end{bmatrix} \begin{bmatrix} v(s) \\ i(s) \end{bmatrix}, \end{cases}$$

where

- C, L and G represent the contributions of the capacitors, inductors and resistors; and E is the incidence matrix for the inductances. B_v and D_v denote the incidence matrices for the input current sources and output node voltages;
- v(s) and i(s) denote N_1 nodal voltage and N_2 auxiliary branch currents;
- u and y are the input current sources and output voltages;

- When an RCL network is modeled with a 3-D extraction method for interconnection analysis, the resulted inductance matrix *L* is usually very large and dense.
- As an alternative approach, we can use the susceptance matrix $S = L^{-1}$, which is sparse after dropping small entries:
- RCS circuit equations:

$$\begin{cases} \left(s \begin{bmatrix} C & 0 \\ 0 & I \end{bmatrix} + \begin{bmatrix} G & E \\ -SE^{\mathrm{T}} & 0 \end{bmatrix}\right) \begin{bmatrix} v(s) \\ i(s) \end{bmatrix} = \begin{bmatrix} B_v \\ 0 \end{bmatrix} u(s), \\ y(s) = \begin{bmatrix} D_v^{\mathrm{T}} & 0 \end{bmatrix} \begin{bmatrix} v(s) \\ i(s) \end{bmatrix}. \end{cases}$$

• Eliminating the branch current variable i(s) of the RCL and RCS equations, we have the *second-order form*

$$\begin{cases} \left(sC + G + \frac{1}{s}\Gamma\right)v(s) = B_v u(s), \\ y(s) = D_v^{\mathsf{T}}v(s), \end{cases}$$

where

$$\Gamma = EL^{-1}E^{\mathrm{T}} = ESE^{\mathrm{T}}$$

• The transfer function H(s):

$$H(s) = D_v^{\mathrm{T}} \left(sC + G + \frac{1}{s} \Gamma \right)^{-1} B_v.$$

• Perform the shift " $s \to s_0 + \sigma$ " to get $H(s) = s D_v^{\mathrm{T}} (s^2 C + s G + \Gamma)^{-1} B_v$ $= (s_0 + \sigma) D_v^{\mathrm{T}} [\sigma^2 C + \sigma (2s_0 C + G) + (s_0^2 C + s_0 G + \Gamma)]^{-1} B_v$ $= (s_0 + \sigma) \mathbf{L}^{\mathrm{T}} (\sigma \mathbf{C} + \mathbf{G})^{-1} \mathbf{B},$ where

$$\mathbf{C} = \begin{bmatrix} G_0 & C \\ W & 0 \end{bmatrix}, \ \mathbf{G} = \begin{bmatrix} \Gamma_0 & 0 \\ 0 & -W \end{bmatrix}, \ \mathbf{L} = \begin{bmatrix} D_v \\ 0 \end{bmatrix}, \ \mathbf{B} = \begin{bmatrix} B_v \\ 0 \\ (5) \end{bmatrix},$$

and $G_0 = 2s_0C + G$, $\Gamma_0 = s_0^2C + s_0G + \Gamma$ and W is any *nonsingular* matrix.

- The SPRIM method [Freund'04] provides a SPMOR model for the RCL equations.
- The following is an alternative SPMOR model, referred to as *the SAPOR method* [Yang et al'04].
- For the system matrices C, G and B,

$$\mathbf{G}^{-1}\mathbf{C} = \begin{bmatrix} \Gamma_0^{-1}G_0 & \Gamma_0^{-1}C \\ -I & 0 \end{bmatrix}, \ \mathbf{G}^{-1}\mathbf{B} = \begin{bmatrix} \Gamma_0^{-1}B_v \\ 0 \end{bmatrix}.$$

• By using the block structure of G, and applying the SOAR, we can generate X_r with orthonormal columns such that

$$\mathcal{K}_k(\mathbf{G}^{-1}\mathbf{C},\mathbf{G}^{-1}\mathbf{B}) \subseteq \operatorname{span}\left\{ \begin{bmatrix} X_r \\ & X_r \end{bmatrix} \right\}$$

• The subspace projection technique can be viewed as a

change-of-variable:

 $v(s) \approx X_{\mathbf{r}} v_{\mathbf{r}}(s),$

where $v_{\mathbf{r}}(s)$ is a vector of dimension n.

• Substituting into the RCS equation, yields

$$\begin{cases} \left(sC_{\mathbf{r}} + G_{\mathbf{r}} + \frac{1}{s}\Gamma_{\mathbf{r}}\right)v_{\mathbf{r}}(s) = B_{\mathbf{r},v}u(s),\\ \widetilde{y}(s) = D_{\mathbf{r},v}^{\mathrm{T}}v_{\mathbf{r}}(s), \end{cases}$$

where

$$C_{\mathbf{r}} = X_{\mathbf{r}}^{\mathrm{T}} C X_{\mathbf{r}}, \ G_{\mathbf{r}} = X_{\mathbf{r}}^{\mathrm{T}} G X_{\mathbf{r}}, \ \Gamma_{\mathbf{r}} = E_{\mathbf{r}}^{\mathrm{T}} \Gamma E_{\mathbf{r}}, \ E_{\mathbf{r}} = X_{\mathbf{r}}^{\mathrm{T}} E,$$
and

$$B_{\mathbf{r},v} = X_{\mathbf{r}}^{\mathrm{T}} B_{v}, \ D_{\mathbf{r},v} = X_{\mathbf{r}}^{\mathrm{T}} D_{v}.$$

• The transfer function of the reduced system is given by

$$H_{\mathbf{r}}(s) = D_{\mathbf{r},v}^{\mathrm{T}} \left(sC_{\mathbf{r}} + G_{\mathbf{r}} + \frac{1}{s}\Gamma_{\mathbf{r}} \right)^{-1} B_{\mathbf{r},v}.$$

• By setting

$$\mathcal{X} = \mathcal{Y} = egin{array}{cc} & n & N_2 \ X_{\mathbf{r}} & \ & N_2 \ & & I \ \end{bmatrix},$$

The reduced second-order form corresponds to a reduced order SAPOR system of the original RCS equations:

$$\begin{cases} \left(s \begin{bmatrix} C_{\mathbf{r}} & 0 \\ 0 & I \end{bmatrix} + \begin{bmatrix} G_{\mathbf{r}} & E_{\mathbf{r}} \\ -SE_{\mathbf{r}}^{\mathrm{T}} & 0 \end{bmatrix} \right) \begin{bmatrix} v_{\mathbf{r}}(s) \\ \tilde{i}(s) \end{bmatrix} = \begin{bmatrix} B_{\mathbf{r},v} \\ 0 \end{bmatrix} u(s), \\ \tilde{y}(s) = \begin{bmatrix} D_{\mathbf{r},v}^{\mathrm{T}} & 0 \end{bmatrix} \begin{bmatrix} v_{\mathbf{r}}(s) \\ \tilde{i}(s) \end{bmatrix}. \end{cases}$$

Note that $\tilde{i}(s)$ is a vector of N_2 components, the same as the original auxiliary branch currents i(s).

- The SAPOR system preserves the block structures and the symmetry of system data matrices of the original RCS system.
- However, the matrix E_r in the SAPOR cannot be interpreted as an incidence matrix.
- Towards synthesis based on the reduced-order model, we shall reformulate the projection and the SAPOR system [Yang et al'08]

• Let

$$\widehat{i}(s) = E \, i(s).$$

Then the original RCS equations can be written as as an *expanded RCS (RCSe) equations*:

$$\begin{cases} \left(s \begin{bmatrix} C & 0 \\ 0 & I \end{bmatrix} + \begin{bmatrix} G & I \\ -\Gamma & 0 \end{bmatrix}\right) \begin{bmatrix} v(s) \\ \hat{i}(s) \end{bmatrix} = \begin{bmatrix} B_v \\ 0 \end{bmatrix} u(s), \\ y(s) = \begin{bmatrix} D_v^{\mathrm{T}} & 0 \end{bmatrix} \begin{bmatrix} v(s) \\ \hat{i}(s) \end{bmatrix} \end{cases}$$

- Note that the incidence matrix E in the original RCS equations is now the identity matrix I.
- The new current vector $\hat{i}(s)$ is of the size N_1 , typically $N_1 \ge N_2$. The order of RCSe equations is $2N_1$.

In the first-order form, the transfer function H(s) of the RCSe equations:

$$H(s) = \mathbf{L}^{\mathrm{T}}(s\mathbf{C} + \mathbf{G})^{-1}\mathbf{B},$$

where **G** and **C** are $2N_1 \times 2N_1$:

$$\mathbf{C} = \begin{bmatrix} C & 0 \\ 0 & I \end{bmatrix}, \ \mathbf{G} = \begin{bmatrix} G & I \\ -\Gamma & 0 \end{bmatrix},$$

and

$$\mathbf{B} = \begin{bmatrix} B_v \\ 0 \end{bmatrix}, \ \mathbf{L} = \begin{bmatrix} D_v \\ 0 \end{bmatrix}.$$

Let

$$\mathcal{X} = \mathcal{Y} = {N_1 \begin{bmatrix} n & n \\ X_{\mathbf{r}} \end{bmatrix}}.$$

Then by the change-of-variables

$$v(s) \approx X_{\mathbf{r}}^{\mathrm{T}} v_{\mathbf{r}}(s) \quad \text{and} \quad \widehat{i}(s) \approx X_{\mathbf{r}}^{\mathrm{T}} i_{\mathbf{r}}(s),$$

and using the projection procedure, we have the reduced-order RCSe equations

$$\begin{cases} \left(s \begin{bmatrix} C_{\mathbf{r}} & 0 \\ 0 & I \end{bmatrix} + \begin{bmatrix} G_{\mathbf{r}} & I \\ -\Gamma_{\mathbf{r}} & 0 \end{bmatrix} \right) \begin{bmatrix} v_{\mathbf{r}}(s) \\ i_{\mathbf{r}}(s) \end{bmatrix} = \begin{bmatrix} B_{\mathbf{r},v} \\ 0 \end{bmatrix} u(s), \\ \widetilde{y}(s) = \begin{bmatrix} D_{\mathbf{r},v}^{\mathrm{T}} & 0 \end{bmatrix} \begin{bmatrix} v_{\mathbf{r}}(s) \\ i_{\mathbf{r}}(s) \end{bmatrix} \end{cases}$$

Note that the reduced equations not only preserve the 2-by-2 block structure of the system data matrices G and C, but also preserve the identity of the incidence matrix.

٠

• Assume that the sub-blocks B_v and D_v in the input and output of the RCS equations are of the forms:

$$B_{v} = \begin{array}{c} p \\ p_{1} \\ N_{1}-p_{1} \end{array} \begin{bmatrix} B_{v1} \\ 0 \end{bmatrix}, \quad D_{v} = \begin{array}{c} p_{1} \\ N_{1}-p_{1} \end{bmatrix} \begin{bmatrix} D_{v1} \\ 0 \end{bmatrix}.$$

• Furthermore, assume that the incidence matrix *E* has the zero block on the top, conformal with the partition of the input and output matrices:

$$E = \frac{p_1}{N_1 - p_1} \begin{bmatrix} 0\\ \tilde{E} \end{bmatrix}.$$

This assumption means that there is no susceptance (inductor) directly connecting to the input and output nodes.

• let X_r be an orthonormal basis for the projection subspace Using partitioning-and-embedding steps, we have

$$X_{\mathbf{r}} = \begin{array}{c} n \\ p_1 \\ N_1 - p_1 \end{array} \begin{bmatrix} X_{\mathbf{r}}^{(1)} \\ X_{\mathbf{r}}^{(2)} \end{bmatrix} \rightsquigarrow \widehat{X}_{\mathbf{r}} = \begin{array}{c} p_1 \\ p_1 \end{bmatrix} \begin{bmatrix} n \\ I \\ X_2 \end{bmatrix},$$

where the columns of X_2 form an orthonormal basis for the range of $X_r^{(2)}$. For simplicity, we assume that there is no deflation, namely, $\operatorname{rank}(X_r^{(2)}) = \operatorname{rank}(X_2) = n$. Using the subspace projection with

$$\mathcal{X} = \mathcal{Y} = \left[egin{array}{ccc} p_1 + n & p_1 + n \ \widehat{X}_{\mathbf{r}} & \ & N_1 \end{array}
ight],$$

we have the reduced-order RCSe equations

$$\begin{cases} \left(s \begin{bmatrix} C_{\mathbf{r}} & 0\\ 0 & I \end{bmatrix} + \begin{bmatrix} G_{\mathbf{r}} & I\\ -\Gamma_{\mathbf{r}} & 0 \end{bmatrix}\right) \begin{bmatrix} v_{\mathbf{r}}(s)\\ i_{\mathbf{r}}(s) \end{bmatrix} = \begin{bmatrix} B_{\mathbf{r},v}\\ 0 \end{bmatrix} u(s), \\ \widetilde{y}(s) = \begin{bmatrix} D_{\mathbf{r},v}^{\mathrm{T}} & 0 \end{bmatrix} \begin{bmatrix} v_{\mathbf{r}}(s)\\ i_{\mathbf{r}}(s) \end{bmatrix}, \end{cases}$$

where $C_{\mathbf{r}} = \widehat{X}_{\mathbf{r}}^{\mathrm{T}} C \widehat{X}_{\mathbf{r}}$, $G_{\mathbf{r}} = \widehat{X}_{\mathbf{r}}^{\mathrm{T}} G \widehat{X}_{\mathbf{r}}$, $\Gamma_{\mathbf{r}} = \widehat{X}_{\mathbf{r}}^{\mathrm{T}} \Gamma \widehat{X}_{\mathbf{r}}$, and $B_{\mathbf{r},v}$ and $D_{\mathbf{r},v}$ preserve the original I/O structure:

$$B_{\mathbf{r},v} = \widehat{X}_{\mathbf{r}}^{\mathrm{T}} \begin{bmatrix} B_{v1} \\ 0 \end{bmatrix} = {p_1 \atop n} \begin{bmatrix} B_{v1} \\ 0 \end{bmatrix}, \quad D_{\mathbf{r},v} = \widehat{X}_{\mathbf{r}}^{\mathrm{T}} \begin{bmatrix} D_{v1} \\ 0 \end{bmatrix} = {p_1 \atop n} \begin{bmatrix} D_{v1} \\ 0 \end{bmatrix}.$$

Note that

$$\operatorname{span}\left\{ \begin{bmatrix} X_{\mathbf{r}} \\ & X_{\mathbf{r}} \end{bmatrix} \right\} \subseteq \operatorname{span}\left\{ \begin{bmatrix} \widehat{X}_{\mathbf{r}} \\ & \widehat{X}_{\mathbf{r}} \end{bmatrix} \right\}$$

• The reduced RCSe system has the same moment-matching property!

- Again for synthesis, consider the diagonalization of Γ in the RCSe equations.
- The "zero-block" assumption of the incidence matrix E implies that Γ is of the form

$$\Gamma = EL^{-1}E^{\mathrm{T}} = \frac{p_1}{N_1 - p_1} \begin{bmatrix} 0 & 0\\ 0 & \widetilde{\Gamma} \end{bmatrix}.$$

• Let $\widetilde{\Gamma}_{\mathbf{r}} = Q_2^{\mathrm{T}} \widetilde{\Gamma} Q_2$, then the reduced RCSe equations $\Gamma_{\mathbf{r}}$ has the same form

$$\Gamma_{\mathbf{r}} = \begin{array}{c} p_1 & n \\ p_1 \begin{bmatrix} 0 & 0 \\ 0 & \widetilde{\Gamma}_{\mathbf{r}} \end{bmatrix},$$

Note that $\widetilde{\Gamma}$ is symmetric semi-positive definite, so is $\widetilde{\Gamma}_r$.

• Let

$$\widetilde{\Gamma}_{\mathbf{r}} = \widetilde{V} \Lambda \widetilde{V}^{\mathrm{T}}$$

be the eigen-decomposition of $\widetilde{\Gamma}_{\mathbf{r}},$ where V is orthogonal and Λ is diagonal.

• Define

$$V = \begin{array}{c} p_1 + n \\ p_1 + n \end{array} \begin{bmatrix} p_1 + n & p_1 + n \\ \widehat{V} & \\ p_1 + n \end{bmatrix},$$

where

$$\widehat{V} = {\begin{array}{*{20}c} p_1 & n \\ p_1 & I \\ n & \widetilde{V} \end{array}} .$$

• Then by a congruence transformation using the matrix V, the

reduced-order RCSe equations is equivalent to the equations

$$\begin{cases} \left(s \begin{bmatrix} \widehat{C}_{\mathbf{r}} & 0\\ 0 & I \end{bmatrix} + \begin{bmatrix} \widehat{G}_{\mathbf{r}} & I\\ -\widehat{\Gamma}_{\mathbf{r}} & 0 \end{bmatrix}\right) \begin{bmatrix} \widehat{v}_{\mathbf{r}}(s)\\ \widehat{i}_{\mathbf{r}}(s) \end{bmatrix} = \begin{bmatrix} \widehat{B}_{\mathbf{r},v}\\ 0 \end{bmatrix} u(s), \\ \widehat{y}(s) = \begin{bmatrix} \widehat{D}_{\mathbf{r},v} & 0 \end{bmatrix} \begin{bmatrix} \widehat{v}_{\mathbf{r}}(s)\\ \widehat{i}_{\mathbf{r}}(s) \end{bmatrix}, \end{cases}$$

where $\widehat{v}_{\mathbf{r}}(s) = \widehat{V}^{\mathrm{T}} v_{\mathbf{r}}(s)$ and $\widehat{i}_{\mathbf{r}}(s) = \widehat{V}^{\mathrm{T}} i_{\mathbf{r}}(s)$. $\widehat{C}_{\mathbf{r}}$, $\widehat{G}_{\mathbf{r}}$ and $\widehat{\Gamma}_{\mathbf{r}}$ are $(p_1 + n) \times (p_1 + n)$ matrices:

$$\widehat{C}_{\mathbf{r}} = \widehat{V}^{\mathsf{T}} C_{\mathbf{r}} \widehat{V}, \quad \widehat{G}_{\mathbf{r}} = \widehat{V}^{\mathsf{T}} G_{\mathbf{r}} \widehat{V}, \quad \widehat{\Gamma}_{\mathbf{r}} = \widehat{V}^{\mathsf{T}} \Gamma_{\mathbf{r}} \widehat{V}.$$

Moreover with V being block diagonal, the input and output structures are preserved, too:

$$\widehat{B}_{\mathbf{r},v} = \widehat{V}^{\mathrm{T}} B_{\mathbf{r},v} = \begin{array}{c}p\\p_{1}\\n\end{array}\begin{bmatrix}B_{v1}\\0\end{bmatrix}, \quad \widehat{D}_{\mathbf{r},v} = \widehat{V}^{\mathrm{T}} D_{\mathbf{r},v} = \begin{array}{c}p\\p_{1}\\n\end{bmatrix}\begin{bmatrix}D_{v1}\\0\end{bmatrix}.$$

• We note that after the congruence transformation, $\widehat{\Gamma}_r$ is

diagonal

$$\widehat{\Gamma}_{\mathbf{r}} = \begin{array}{c} p_1 & n \\ p_1 & \left[\begin{array}{c} 0 & 0 \\ 0 & \Lambda \end{array} \right]$$

Therefore, to avoid large entries in the synthesized inductors for synthesized RCL equations, we partition the eigenvalue matrix Λ of $\tilde{\Gamma}_r$ into

$$\Lambda = \frac{\ell}{n-\ell} \begin{bmatrix} \Lambda_1 & \\ & \Lambda_2 \end{bmatrix},$$

where Λ_2 contains the $n - \ell$ smallest eigenvalues that are smaller than a given threshold ϵ in magnitude. and therefore set $\Lambda_2 = 0$.

The "susceptance" matrix is
$$\widehat{\Gamma}_{\mathbf{r}} = \begin{bmatrix} p_1 & \ell & n-\ell \\ 0 & & \\ & \ell & \\ & n-\ell \end{bmatrix}$$
.

• In summary, we derived the following *the synthesized RCL equations*:

$$\begin{cases} \left(s \begin{bmatrix} \widehat{C}_{\mathbf{r}} & 0 \\ 0 & \widehat{L}_{\mathbf{r}} \end{bmatrix} + \begin{bmatrix} \widehat{G}_{\mathbf{r}} & I \\ -I & 0 \end{bmatrix} \right) \begin{bmatrix} \widehat{v}_{\mathbf{r}}(s) \\ \widehat{i}_{\mathbf{r}}(s) \end{bmatrix} = \begin{bmatrix} B_{\mathbf{r},v} \\ 0 \end{bmatrix} u(s), \\ \widetilde{y}(s) = \begin{bmatrix} D_{\mathbf{r},v}^{\mathrm{T}} & 0 \end{bmatrix} \begin{bmatrix} \widehat{v}_{\mathbf{r}}(s) \\ \widehat{i}_{\mathbf{r}}(s) \end{bmatrix}, \end{cases}$$

where the inductance matrix \widehat{L}_r is given by

$$\widehat{L}_{\mathbf{r}} = \begin{array}{c} p_1 & \ell & n-\ell \\ p_1 & 0 \\ 0 & 1 \\ & & 1 \\ & & n-\ell \end{array} \begin{bmatrix} p_1 & \ell & n-\ell \\ 0 & 1 \\ 0 & 1 \\ 0 \end{bmatrix}$$

• **RCLSYN** (RCL equivalent circuit synthesis) tool [Yang et al'08]

- A 64-bit bus circuit network with 8 inputs and 8 outputs. The order of RCL equation N = 16963, the reduced order n = 640.
- SPICE transient and AC analysis:

• The CPU elapsed time for the transient and AC analysis are shown in the following table:

	Full RCL	Synthesized RCL	Speedup
Transient analysis	5007.59 (sec.)	90.16 (sec.)	$50 \times$
AC analysis	29693.02 (sec.)	739.29 (sec.)	$40 \times$

Further reading

The materials presented in this lecture are based on the following papers, and references therein:

- R.-C. Li and Z. Bai, *Structure-preserving model reduction* using a Krylov subspace projection formulation, Comm. Math. Sci. 3:179-199, 2005
- Z. Bai, R-C. Li and Y. Su, A Unified Krylov Projection Framework for Structure-Preserving Model Reduction. In "Model Order Reduction: Theory, Research Aspects and Applications", Springer Series of Mathematics in Industry, Vol.13. Schilders, Wilhelmus H.A.; van der Vorst, Henk A.; Rommes, Joost (Eds.) pp.75-93, 2008

Both papers are available on the class website.