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Abstract: Salinity in estuarine environments has been traditionally simulated using process-based
models. More recently, data-driven models including artificial neural networks (ANNs) have been
developed for simulating salinity. Compared to process-based models, ANNs yield faster salinity
simulations with comparable accuracy. However, ANNs are often purely data-driven and not con-
strained by physical laws, making it difficult to interpret the causality between input and output data.
Physics-informed neural networks (PINNs) are emerging machine-learning models to integrate the
benefits of both process-based models and data-driven ANNs. PINNs can embed the knowledge of
physical laws in terms of the partial differential equations (PDE) that govern the dynamics of salinity
transport into the training of the neural networks. This study explores the application of PINNs
in salinity modeling by incorporating the one-dimensional advection–dispersion salinity transport
equation into the neural networks. Two PINN models are explored in this study, namely PINNs
and FoNets. PINNs are multilayer perceptrons (MLPs) that incorporate the advection–dispersion
equation, while FoNets are an extension of PINNs with an additional encoding layer. The exploration
is exemplified at four study locations in the Sacramento–San Joaquin Delta of California: Pittsburg,
Chipps Island, Port Chicago, and Martinez. Both PINN models and benchmark ANNs are trained
and tested using simulated daily salinity from 1991 to 2015 at study locations. Results indicate that
PINNs and FoNets outperform the benchmark ANNs in simulating salinity at the study locations.
Specifically, PINNs and FoNets have lower absolute biases and higher correlation coefficients and
Nash–Sutcliffe efficiency values than ANNs. In addition, PINN models overcome some limitations of
purely data-driven ANNs (e.g., neuron saturation) and generate more realistic salinity simulations.
Overall, this study demonstrates the potential of PINNs to supplement existing process-based and
ANN models in providing accurate and timely salinity estimation.

Keywords: flow–salinity relationship; machine learning; multilayer perceptron; physics-informed
neural networks

1. Introduction

Salinity is a critical variable in estuarine environments as it impacts the quality of
freshwater withdraws and affects fish migration patterns, spawning habitat, and survivabil-
ity, among others [1–5]. Salinity management in estuarine environments is thus important
to maintain desirable water quality, protect aquatic habitats, support economic (e.g., agri-
culture and industry) development, and mitigate climate change-induced impacts (e.g., sea
water intrusion).

Salinity modeling reflects global causes such as the United Nations Sustainable De-
velopment Goals (SDGs) and the pursuit of net-zero emissions. By employing advanced
modeling techniques, researchers and policymakers can better understand and manage
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salinity levels, contributing to achieving net-zero emissions goals (SDG 13 [6]) and ensuring
clean water and sanitation (SDG 6 [7]). These modeling efforts are particularly impor-
tant for estuarine environments with enormous environmental and economic significance,
including the Sacramento–San Joaquin Delta (Delta) of California, United States (U.S.).

The Delta is the hub of the complex water system of California, a top-five economy
in the world. It is bounded by the two largest river systems in the State: the Sacramento
River on the North and the San Joaquin River on the South which collectively contribute
freshwater to the Delta. Tides from the Pacific Ocean on the west bring salty sea water
into the Delta. Freshwater is pumped from the Delta to support over 25 million people
and 15,000 km2 of farmlands [8]. Managing water resources in the Delta (e.g., by the
Ghyben–Herzberg relationship [9,10] for the saltwater intrusion behavior) is crucial to
maintaining the balance between freshwater and saltwater and ensuring the availability
of safe drinking water and irrigation for agriculture. The Delta is also an important biodi-
versity hotspot that provides a habitat for over 750 species of plants and animals [11,12].
State and federal regulatory requirements on maximum allowable salinity levels have been
imposed at compliance locations across the Delta to ensure the quality of water (suitable for
drinking and agricultural use) and protect endangered species [13,14]. Understanding the
spatial and temporal variations in the Delta is foremost to comply with these regulations.
Models have been traditionally developed and applied to gain that understanding.

Salinity simulation models applied in the Delta can be categorized into three types:
empirical models, process-based models, and data-driven models. Empirical models were
among the earliest methods used for salinity simulation in the Delta. The Minimum Delta
Outflow (MDO) procedure [15] translates the salinity values in the Delta to determine the
Delta outflow required to meet the requirements of water management practices and to
quickly test proposed new standards. The G-model [16,17] is another empirical model that
captures salinity transport in the Delta. It incorporates the antecedent Delta outflow and the
Delta salinity relationship, which is described by the 1-dimensional advection–dispersion
equation. This equation is a partial differential equation that models the spatial and
temporal variations of salinity with respect to the outflow. By incorporating antecedent
outflow information, the G-model has shown improvements in Delta salinity estimation
and improved the accuracy of water supply estimates to MDO.

Although similar to empirical models, process-based models are more comprehensive
and simulate Delta salinity with detailed physical processes. A popular one-dimensional
process-based model is the Delta Simulation Model II (DSM2) [18] which can calculate
flow, stages, flow velocities, and various mass transport processes [19]. In particular,
DSM2 has made a significant contribution to the salinity transport process by explicitly
solving the advection–dispersion equation in its modeling procedures [20–24]. DSM2
solves the advection–dispersion equation to simulate the salinity transport process in the
Delta. Although there exist multi-dimensional models (e.g., TRIM2D [25], RMA10 [26],
UnTrim [27], and SCHISM [28]), DSM2 is arguably the most commonly used process-based
model to simulate Delta salinity and inform water quality operations and decisions within
the Delta due to its fewer input data preparation and computing resources requirements [29]
and its best-understood performance over decades [30].

Data-driven machine-learning models are prevalent in numerous scientific domains,
including forecasting the performance and energy yield of solar farms [31] and in pre-
dicting the remaining usable life of lithium-ion batteries [32]. In Delta salinity simulation,
machine-learning models are increasingly used as well due to recent advancements in com-
puting power, which enable superior computational efficiency compared to empirical and
process-based models. These models rely mainly on data, with little to no physical process
information used. In the Delta, data-driven models are often used to either implement
empirical models or to emulate process-based models. For example, Multilayer perceptron
(MLP) ANNs were introduced in [19] to emulate DSM2 within CalSim [33,34], an opera-
tional water resources planning and simulation model, to estimate salinity at 12 locations in
the Delta. In [35], the ANN model in [19] was further enhanced using a multitask-designed
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approach, with a salinity output for each location. Various deep learning architectures
were considered in [29] to emulate DSM2 in salinity modeling, estimating salinity at 28
locations using MLP, Long-Short-Term Memory (LSTM), Gated Recurrent Unit (GRU),
and Residual Network (ResNet). Additionally, two novel deep learning models, Res-LSTM
and Res-GRU, were developed in [36] to model salinity in the Delta. All these ANN-based
machine-learning models showed improvements in salinity estimation compared to DSM2,
while achieving significant reductions in training and inference time.

However, despite their strong predictive skills and efficiency in training, ANN-based
machine-learning models rely solely on data and do not take into account the underlying
physical processes of the data. With enough input variables, these models can capture
correlations and produce correct results, but the entire learning process is a black-box,
making it difficult to interpret their results and determine the causality between input and
output data [37]. Moreover, the quality of these models depends heavily on the quantity
and quality of the training data, and inference or prediction of untrained variables is not
possible due to the limitation of these models to only output the training targets. All these
limitations hinder the ability of data-driven models to make hypotheses and interpretations
of the physical processes, which are critical for water management practices and planning.

Different approaches to integrating knowledge of physical processes into machine-
learning models have been studied to overcome these limitations in the field of water
resources engineering. One approach is the use of physics-based models, where the physi-
cal constraints are enforced in the models’ architecture. For example, depth-temperature-
density physical constraints were hard-coded in the neural network architecture for quanti-
fying uncertainty in lake temperature modeling [38]. Mass-conserving LSTM architecture
has also been explored in predicting peak flows in rainfall-runoff modeling [39] and in pre-
dicting the salinity of navigable waterways in Belgium [40]. In [41], differentiable, learnable,
process-based models with embedded ANN that respect mass balances were proposed to
predict untrained hydrologic variables. One popular approach to enforcing the physical
constraints is the physics-informed neural network (PINN), which embeds the governing
equations of the underlying physical processes into the loss function of a machine-learning
model. Specifically, PINNs are artificial neural networks that are designed to solve ordinary
and partial differential equations [42,43]. In recent years, PINNs have made significant
impacts in many scientific applications, with the number of PINN papers quintupling
between 2019 and 2020 and doubling in 2021 compared to 2020 [44]. Particularly in water
engineering, PINNs have been studied to predict water surface profiles in a river [45] and
to analyze soil-water infiltration processes for different soil types [46].

The current study aims to address the above-mentioned limitations of ANN-based
machine-learning models using PINN models. In our proposed PINN models, we impose
the underlying physical law governing flow–salinity relationships, namely the advec-
tion–dispersion equation, into artificial neural networks. By enforcing the physical law via
the advection–dispersion equation, our proposed PINN models respect the flow–salinity
relationships and further enhance salinity estimation accuracy. Our PINN-based machine-
learning models can be viewed as a pathway between process-based modeling and machine-
learning modeling in the Delta salinity modeling, as they maintain predictive accuracy and
training efficiency due to their neural network architecture while respecting underlying
physical laws by incorporating the advection–dispersion equation. To the best of our
knowledge, no applications of PINN for salinity modeling in the Delta have been explored
in the literature.

The rest of the paper is organized as follows. In Section 2, we present the methodology
of our study, including locations, dataset, machine-learning model architectures, and eval-
uation metrics. In Section 3, we present the performance results of the machine-learning
models of our study, demonstrating salinity estimation improvements of PINN models to
benchmark ANNs. Then, we discuss the scientific and practical implications of our study
and future research directions in Section 4 and conclude our paper in Section 5.
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2. Materials and Methods
2.1. Study Locations and Dataset

The performance of the proposed machine-learning models in simulating salinity is
exemplified at locations in the western part of the Sacramento–San Joaquin Delta (Delta) of
California (Figure 1). Spanning through hundreds of kilometers of waterways in Northern
California, the Delta is formed by the confluence of the Sacramento River from the north and
San Joaquin River from the south and serves as a transition zone between the freshwater
of the rivers and saltwater of the Pacific Ocean. In particular, freshwater inflows from
the rivers travel westward through the Suisun Bay and exit through San Francisco Bay.
Due to their proximity to the Pacific Ocean on the west, the four study locations of interest—
Martinez, Port Chicago, Chipps Island, and Pittsburg—are more influenced by seawater
than freshwater, unlike the locations in the northern or interior parts of the Delta.

Figure 1. The four study salinity stations—Martinez, Port Chicago, Chipps Island, and Pittsburg—in
the Sacramento–San Joaquin Delta Estuary. The insert map illustrates the DSM2 model domain in
the Delta.

Historical daily outflow values and DSM2-simulated daily salinity values at four loca-
tions from 1 January 1991 to 31 December 2015 are used as input and output, respectively,
to train and test the machine-learning models in this study. Outflow is measured in cubic
feet per second, while salinity is measured in electrical conductivity (EC) and is represented
by micro-Siemens per cm (µS/cm), which reflects the amount of salt dissolved in water.
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2.2. Data Preprocessing
2.2.1. Normalization

We denote Q(j)
i as the i-th daily outflow value at the j-th location,

j ∈ {Martinez, Port Chicago, Chipps Island, Pittsburg},

and S(j)
i as the target salinity value on day i at location j. We normalize the outflow inputs

and the salinity outputs to the range [0, 1] by min-max normalization [47]. Specifically,
denoting Nj as the total number of daily samples at location j, we normalize Q(j)

i to

Q(j)
i ←−

Q(j)
i −

(
min

j
min

k=1,...,Nj
Q(j)

k

)
(

max
j

max
k=1,...,Nj

Q(j)
k

)
−
(

min
j

min
k=1,...,Nj

Q(j)
k

) (1)

where we keep the notation Q(j)
i as the normalized output value of the i-th daily outflow

value at the j-th location for simplicity. We apply a similar normalization procedure to the
salinity output values as we do to the outflow input values in (1).

2.2.2. Input Memory

Previous study [48] on the DSM2 model showed that the daily salinity depends on the
long-term memory of contributing parameters. Similarly, the G-model’s [16,17] success in
salinity estimation is attributed to its ability to account for the effects of antecedent outflow
on salinity. To account for long-term input memory, recent studies on salinity modeling
in the Delta using artificial neural networks [19,29,35,36] have followed the practice of
aggregating 118 antecedent daily values into 18 values for the current day input variables.
We adopt this same practice in our study for preprocessing the input outflow to account
for antecedent outflows. Specifically, for each normalized daily outflow Q(j)

i we form an

outflow data vector Q(j)
i ∈ R18 by keeping the outflow values of the current day plus the

most recent 7 antecedent days as-is, along with 10 successive 11-day averages of the prior
110 days. In other words, we define Q(j)

i as

Q(j)
i = [Q(j)

i , . . . , Q(j)
i−7, Q(j)

(i−8)→(i−18), . . . , Q(j)
(i−107)→(i−117)]

T , (2)

where Q(j)
i1→i2

denotes the average of the normalized outflow values from day i1 to i2.
By reducing the 118 antecedent daily outflow values into 18 values, we avoid unnecessary
increases in the complexity of the machine-learning models proposed in our study while
accounting for antecedent outflow memory.

2.3. Neural Network Architectures

In this work, we present/study three machine-learning models: a conventional multi-
layer perceptrons (MLP) network, referred to as ‘ANN’, which takes preprocessed outflow
data vectors as inputs and outputs target salinity values; a PINN that incorporates the
location variable x and the time variable t as additional inputs and embeds the advec-
tion–dispersion equation into the loss function; and an extension of the PINN, referred
to as ‘FoNet’, which includes an additional input encoding layer to transform inputs to
a higher-dimensional feature space via high-frequency functions. To demonstrate the
improvement in salinity estimation by the proposed PINN and FoNet models, we keep the
three models simple using fully connected networks. This way, we can directly demon-
strate the impact of the inclusion of the causality information between input and output
data, specifically the advection–dispersion equation for flow–salinity relationships, into the
machine-learning models for salinity modeling in the Delta.
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2.3.1. Artificial Neural Networks (ANN)

We consider a conventional MLP network, which has been extensively studied in Delta
salinity modeling with varying input and output sizes and parameter choices [2,19,24,29,35,36,49].
In this study, we adopt an MLP network with four hidden layers. Its input variables are the
daily outflow vector, represented as Q = [Q1, Q2, . . . , Q18]

T , and its output is the estimated
salinity value Ŝ. Concisely, the network estimated salinity value on the i-th day at the
j-th location is Ŝ(Q(j)

i ; θ). The notation θ denotes the trainable parameters, weights, and
biases of the hidden layers, in the neural network. The number of neurons in the hidden
layers and the choice of activation functions are selected by random hyperparameter search,
which will be discussed in Section 2.4.1. The architecture of the ANN is shown in Figure 2.
The loss function of the ANN is defined as

L(θ) = ∑
i,j
(Ŝ(Q(j)

i ; θ)− S(j)
i )2, (3)

i.e., the widely used mean squared error (MSE) loss function [47]. The ANN is trained by
computing an optimal θ∗ that minimizes L(θ).

Figure 2. Architecture of the ANN model. The ANN consists of an input layer of 18 variables
corresponding to the outflow vector, four hidden layers with varying activation functions and
numbers of neurons, and an output layer for salinity estimation. For k ∈ {1, 2, 3, 4}, σk and nk denote
the activation function and the number of neurons at the k-th hidden layer, respectively. The choices
of σk and nk are achieved by random hyperparameter search, as discussed in Section 2.4.1. The model

is trained using daily outflow data vectors Q(j)
i and salinity values S(j)

i at training locations, and the
training process involves minimizing the mean squared error between the model-estimated salinity
values and the corresponding data salinity values using the loss function (3).

2.3.2. Physics-Informed Neural Networks (PINN)

We propose a novel machine-learning model in salinity estimation in the Delta, using
PINN. Our PINN embeds the advection–dispersion equation into its loss function, therefore
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incorporating the flow–salinity relationships into the machine-learning model. The one-
dimensional advection–dispersion equation for salinity transport is [16,17]:

A
∂S
∂t
−Q

∂S
∂x

=
∂

∂x

(
KA

∂S
∂x

)
, (4)

where A(x) is the estuary cross-sectional area, S(x, t) is the concentration of salt (i.e.,
salinity in this study), Q(x, t) is the volumetric flowrate (i.e., outflow in this study), K(x, t)
is the longitudinal dispersion coefficient, x is the longitudinal distance (increasing in the
upstream direction), and t is the time. Under various assumptions on the initial and
boundary conditions and the spatial and temporal dependencies of the flowrate and
the dispersion coefficient, different studies have developed techniques for deriving an
analytical solution of the advection–dispersion Equation (4). We refer the readers to [50]
and references there-within for these various techniques. In this study, the flowrate is
spatiotemporally dependent, driven by the data, and the cross-sectional area A and the
dispersion coefficient K are assumed to be constants for simplicity.

The PINN model, similar to the ANN, is an MLP network, but with two hidden layers
instead of four. Two hidden layers are sufficient for the PINN to obtain adequate results,
whereas the ANN requires a deeper network structure. The hyperparameters are selected by
random hyperparameter search, which will be discussed in Section 2.4.1. The architecture
of the PINN is shown in Figure 3. Besides the number of hidden layers, there are two major
differences between the ANN and the PINN models. First, in addition to the outflow data
vector, the PINN has two additional input variables: longitudinal distance x and time t.
For each day i and each location j, data values x(j)

i and t(j)
i are created for the longitudinal

distance and time variables, respectively. Both variables are normalized: x(j)
i with respect

to the distance between the westernmost location, Martinez, and the easternmost location,
Pittsburg, and t(j)

i with respect to the number of days between 1 January 1991 and 31
December 2015. The estimated salinity on the i-th day at the j-th location by the PINN is
denoted as Ŝ(x(j)

i , t(j)
i , Q(j)

i ; θ). The other major difference is in the loss function. In addition
to the MSE loss function, the PINN seeks to minimize the advection–dispersion loss
function, which ensures that the data satisfy the advection–dispersion Equation (4) and
consequently the flow–salinity relationships, i.e., the loss function of the PINN is defined
as the sum of the two loss functions:

L(θ) = ∑
i,j
(Ŝ(x(j)

i , t(j)
i , Q(j)

i ; θ)− S(j)
i )2

+ ∑
i,j

(
A

∂Ŝ
∂t

∣∣∣∣
(x(j)

i ,t(j)
i ,Q(j)

i ;θ)
−Q(j)

i
∂Ŝ
∂x

∣∣∣∣
(x(j)

i ,t(j)
i ,Q(j)

i ;θ)
− KA

∂2Ŝ
∂x2

∣∣∣∣
(x(j)

i ,t(j)
i ,Q(j)

i ;θ)

)2

.
(5)

In (5), Q(j)
i is the normalized daily outflow on the i-th day at the j-th location and

corresponds to the first component of the outflow data vector Q(j)
i . The derivatives of the

network outputs with respect to the network inputs can be computed efficiently using
automatic differentiation with backpropagation [51].
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Figure 3. Architecture of the PINN model. The PINN consists of an input layer of 20 variables corre-
sponding to the location, the time, and the outflow vector, two hidden layers with varying activation
functions and numbers of neurons, and an output layer for salinity estimation. For k ∈ {1, 2}, σk and
nk denote the activation function and the number of neurons at the k-th hidden layer, respectively.
The choices of σk and nk are achieved by random hyperparameter search, as discussed in Section 2.4.1.

The model is trained using daily location x(j)
i and time t(j)

i values, daily outflow data vectors Q(j)
i ,

and salinity values S(j)
i at training locations, and the training process involves minimizing the sum of

mean squared error between the model-estimated salinity values and the corresponding data salinity
values and the advection–dispersion loss term using the loss function (5).

2.3.3. Physics-Informed Fourier Networks (FoNet)

Neural networks are known to favor low-frequency solutions, a phenomenon known
as spectral bias [52]. One way to alleviate this issue is to add an encoding layer that trans-
forms the inputs to a higher-dimensional feature space via high-frequency functions [52–54].
Our FoNet model includes an encoding layer in our PINN model, where the input encoding
layer is trainable. Specifically, denoting the input variables concisely as x = [x, t, Q]T ∈ R20,
the encoding layer is a Fourier feature mapping [54] that encodes x as[

sin(2πW f x)
cos(2πW f x)

]
∈ R2n1 , (6)

where W f ∈ Rn1×20 is a trainable frequency matrix. The output of the encoding layer (6)
then passes through the rest of the network. The hyperparameters, including the frequency
matrix’s projection dimension size n1 as well as the number of neurons and the choice of the
activation functions, are selected by hyperparameter search that will be further discussed
in Section 2.4.1. The architecture of the FoNet is summarized in Figure 4. The trainable
parameters θ include the frequency matrix W f and weights and biases of the hidden layers.
The FoNet is trained by minimizing the same loss function (5) as the PINN.
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Figure 4. Architecture of the FoNet model. The FoNet consists of an input layer of 20 variables
corresponding to the location, the time, and the outflow vector, an encoding layer with a frequency
matrix, two hidden layers with varying activation functions and numbers of neurons, and an output
layer for salinity estimation. W f denotes a trainable frequency matrix in the encoding layer that
maps the input variables to a higher-dimensional feature space. For k ∈ {1, 2}, σk and nk denote the
activation function and the number of neurons at the k-th hidden layer, respectively. The choices
of W f , σk, and nk are achieved by random hyperparameter search, as discussed in Section 2.4.1.

The model is trained using daily location x(j)
i and time t(j)

i values, daily outflow data vectors Q(j)
i ,

and salinity values S(j)
i at training locations, and the training process involves minimizing the sum of

mean squared error between the model-estimated salinity values and the corresponding data salinity
values and the advection–dispersion loss term using the loss function (5).

It should be pointed out that we considered an ANN model with two hidden layers,
the same number of layers as PINN and FoNet models, as well as an ANN model with three
hidden layers. However, these ANN models did not perform well in our study. As a result,
we opted for a deeper ANN model with four hidden layers, which exhibited improved
performance. In Table A1 in Appendix A.1, we provide a performance comparison between
the two-layered, three-layered, and four-layered ANN models on the Fold 1 test dataset at
the untrained location Port Chicago as an example.

2.4. Hyperparameter Search and Data Split
2.4.1. Hyperparameter Search

Proper selection of hyperparameters (i.e., the number of neurons and the activation
functions) is crucial to achieving optimal model performance. We perform random hyper-
parameter searches for the machine-learning models to obtain the optimal hyperparameters.
The search space for the number of neurons in each hidden layer for each model is set
as follows:

• ANN—the number of neurons in hidden layers 1 and 2, denoted as n1 and n2, respec-
tively, lie in the range of [4, 8, 12, . . . , 32], and the number of neurons in hidden layer 3
and 4, denoted as n3 and n4, lie in the range of [2, 4, 6, . . . , 16].

• PINN—n1 lies in the range of [4, 8, 12, . . . , 32] and n2 lies in the range of [2, 4, 6, . . . , 16].
• FoNet—n1, which represents the projection dimension size of the frequency matrix,

lies in the range of [4, 8, 12, . . . , 32], and n2 and n3, the number of neurons in hidden
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layer 1 and 2, respectively, lie in the ranges of [4, 8, 12, . . . , 32] and [2, 4, 6, . . . , 16],
respectively.

The possible activation functions for all three models include ReLu, Tanh, ELU, and Sig-
moid functions. Each model is subject to 50 random hyperparameter searches, and the
combination of hyperparameters with the smallest loss function value is selected as the opti-
mal hyperparameter. We list these optimal hyperparameter combinations in Appendix A.2.

2.4.2. Data Split

To measure the salinity estimation capabilities of the machine-learning models, we use
the Blocked Cross-Validation [55] procedure. Similar to k-fold cross-validation, the Blocked
Cross-Validation partitions the dataset into k blocks of equal size, and leaves one block
for testing and the other k− 1 blocks for training. The difference is that there is no initial
random shuffling of the data, so the natural temporal ordering is preserved within each
block. We consider the Blocked Cross-Validation with 5 blocks for the DSM2-simulated
25-year salinity dataset in the range from 1 January 1991 to 31 December 2015, resulting
in 80% of the dataset for training and 20% for testing. However, we do not use any of the
data at the Port Chicago location for training. Instead, the salinity value at Port Chicago
will only be used for testing to evaluate the models’ performance at an untrained location.
The procedure of the Blocked Cross-Validation is illustrated in Figure 5 where we numbered
the folds to reference them later.

Figure 5. The Blocked Cross-Validation.

2.5. Evaluation Metrics

We use the following four statistical metrics to evaluate the performance of the
machine-learning models: the square of the correlation coefficient r2 [56], percentage
bias [57], root mean standard deviation ratio (RSR) [58], and the Nash–Sutcliffe efficiency
coefficient (NSE) [59]. Their formulas are shown in Table 1, where S stands for the salinity
value and S stands for the average salinity value of the dataset. t represents an arbitrary day
in the dataset, T is the total number of samples in the dataset, σ is the standard deviation,
and the subscripts ‘ref’ and ‘ML’ designate the target values (DSM2-simulated) and the
machine-learning model-estimated values, respectively. r2 measures the linear-relation
strength between the model-estimated salinity and the target salinity, percent bias quan-
tifies how much the model under- or overestimates the salinity, RSR is a standardized
representation of the root mean squared error (RMSE) between model outputs and targets,
and NSE quantifies the predictive capacity of the models with the global mean of target
sequences. For r2 and NSE, a value closer to 1 indicates better performance, while for bias
and RSR, a value close to 0 indicates better performance.
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Table 1. Evaluation metrics.

Name Definition Formula

r2 Squared Correlation
Coefficient

(
∑T

t |(St
re f−Sre f )(St

ML−SML)|
Tσre f σML

)2

Bias Percent Bias ∑T
t (St

ML−St
re f )

∑T
t St

re f
× 100%

RSR RMSE-observations standard
deviation ratio

√
∑T

t (St
re f−St

ML)
2√

∑T
t (St

re f−Sre f )2

NSE Nash–Sutcliffe Efficiency
coefficient 1− ∑T

t (St
re f−St

ML)
2

∑T
t (St

re f−Sre f )2

2.6. Implementation Details

The experiments are conducted using Python 3.9.16 and the machine-learning models
are built and trained using the TensorFlow 2.10.1 library. The programming codes are
executed in Google Colaboratory, a hosted Jupyter notebook service that provides access to
GPUs. For all three machine-learning models, Adam optimizer [60] with a constant learning
rate of 0.01 is used for training. To prevent overfitting of the models, the batch size is set to
128 and the training process is limited to 5000 epochs. Furthermore, if the loss function on
the test set does not decrease for consecutive 50 epochs, the training process stops.

3. Results

In this section, we present the performance results of our three machine-learning
models, namely the ANN, PINN, and FoNet models. We evaluate the performance of these
models quantitatively using four statistical evaluation metrics described in Section 2.5,
and qualitatively by visually inspecting the time series plots and the scatter plots. In the
first subsection, we present the results on the three trained locations Martinez, Chipps
Island, and Pittsburg, and in the second subsection, we present the results on the untrained
(independent) location Port Chicago.

3.1. Performance Results on Trained Locations

To compare the performance of our three machine-learning models (ANN, PINN,
and FoNet) and assess their generalizability, we use a 5-fold Blocked Cross-Validation
and evaluate four statistical metrics (r2, percentage bias, RSR, and NSE) for each fold and
location. These metrics help us quantify the accuracy, precision, and goodness of fit of the
models to the data. In Figure 6, we present the box and whisker plots of these metrics of the
folds for each model on the training data (left column) and test data (right column) at the
three locations (Martinez, Chipps Island, and Pittsburg) used for model training. The box
and whisker plots show the distribution of the metric values for each model and provide a
visual comparison of their performance.

The box and whisker plots in Figure 6 demonstrate a clear improvement in perfor-
mance for the physics-informed models (PINN and FoNet) over the standard model (ANN).
For all four considered metrics and at all three locations, the PINN and FoNet models
outperform the ANN model by a significant margin. The PINN and FoNet models attain
smaller percent bias and RSR values and larger correlation coefficient r2 and NSE values
than the ANN models. In particular, at Pittsburg, the improvement is prominent as the
PINN and FoNet models achieve NSE values of around 0.93 on test data, compared to
around 0.55 for the ANN model. The PINN and FoNet models perform similarly at loca-
tions Martinez and Chipps Island, but at Pittsburg, FoNet has a slight edge over PINN in
estimating salinity, with slightly lower variance in its metric values. The exact values of the
metrics for each fold are shown in the tables in Appendix A.3. Overall, there is no evidence
of overfitting for any of the models, as they perform similarly on the training and test data.
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(a) Train r2 (b) Test r2

(c) Train Bias (%) (d) Test Bias (%)

(e) Train RSR (f) Test RSR

(g) Train NSE (h) Test NSE
Figure 6. Box and whisker plots of evaluation metrics r2, percentage bias, RSR, and NSE for the
training (left column, panels (a,c,e,g)) and test (right column, panels (b,d,f,h)) data of the machine-
learning models ANN, PINN, and FoNet at each of the three trained locations Martinez, Chipps
Island, Pittsburg. For a box and whisker plot, the orange line represents the median value of the
5 metric values corresponding to 5 folds in the Blocked Cross-Validation; the box represents the
interquartile range from the 25th percentile to the 75th percentile; the top bar represents the maximum
metric value within 1.5 times the interquartile range above the 75th per percentile and the bottom
bar represents the minimum metric values within 1.5 times the interquartile range below the 25th
percentile; the open circles correspond to outliers.

We visually inspect the time series plots of the estimated salinity values of our three
machine-learning models in comparison to the target salinity values (DSM2-simulated).
For better visibility we consider two models at a time, along with DSM2-simulated salinity
values, first comparing the estimated salinity values of ANN and PINN models and then
those of PINN and FoNet models. Furthermore, we show the time series plots for test data
only to more closely examine the performance of the models for a shorter time span of
five years rather than 20 years for training data. Here, in this section, we display the time
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series plots for Fold 2, i.e., the test data being 1 January 1996 to 31 December 2000, as an
exemplary time series plots of the Blocked Cross-Validation procedure. The rest of the time
series plots of the folds from the procedure are available in Appendix A.4.

Figure 7 displays the daily time series plots of DSM2-simulated salinity values in
blue along with the daily time series plots of estimated salinity values by the ANN and
PINN models in green and orange, respectively, at the three locations (Martinez, Chipps
Island, and Pittsburg) used for model training. Both machine-learning models perform
well in estimating the overall seasonal salinity patterns throughout the five years, but PINN
estimates the target salinity values more accurately than ANN overall. PINN outperforms
ANN in estimating high peak salinity values. Specifically, at Martinez, PINN estimates the
high salinity values more closely to target salinity than ANN, which tends to underestimate
them. Similarly, at Chipps Island, PINN follows the temporal pattern of high salinity more
closely than ANN, which tends to overestimate these peak values. At Pittsburg, ANN
produces estimates that are quite noisy and overshoot the target salinity frequently, while
PINN can estimate salinity more closely to the target in its estimations. Similar to the time
series plots of Figure 7, Figure 8 illustrates the daily time series plots of PINN and FoNet
models in orange and black, respectively, along with DSM2-simulated salinity values in
blue. FoNet model performs quite similarly to PINN model but achieves slightly better
evaluation metrics. Visual inspection of the time series plots in Figure 8 indicates that
FoNet estimates low salinity values more accurately than PINN.

(a)

(b)

(c)
Figure 7. Time series plots of DSM2-simulated (in blue) versus ANN (in green) and PINN (in orange)
estimated salinity at each of the three trained locations (a) Martinez, (b) Chipps Island, (c) Pittsburg
on Fold 2 test data, which correspond to 1 January 1996 to 31 December 2000. Detailed values of four
evaluation metrics of ANN and PINN are marked at each location.
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(a)

(b)

(c)
Figure 8. Time series plots of DSM2-simulated (in blue) versus PINN (in orange) and FoNet (in black)
estimated salinity at each of the three trained locations (a) Martinez, (b) Chipps Island, (c) Pittsburg
on Fold 2 test data, which correspond to 1 January 1996 to 31 December 2000. Detailed values of four
evaluation metrics of PINN and FoNet are marked at each location.

Figure 9 shows scatter plots comparing the estimated salinity values of the three
models to the target salinity values (DSM2-simulated). The first, second, and third rows
correspond to locations Martinez, Chipps Island, and Pittsburg, respectively, and the first,
second, and third columns correspond to the ANN, PINN, and FoNet models, respectively.
Each dot on a scatter plot represents a salinity data point in the testing dataset of one
of the five folds, with its x-coordinate value being the model’s estimated salinity value
and its y-coordinate value being the target salinity value. The scatter plots reveal that the
ANN models tend to either underestimate or overestimate the salinity values. Specifically,
the ANN model underestimates salinity values at Martinez, overestimates salinity values
at Chipps Island, and overestimates salinity values more significantly at Pittsburg. This
suggests that the ANN model shifts from underestimation to overestimation from the west-
ernmost to the easternmost location. In contrast, the physics-informed models, PINN and
FoNet, do not exhibit such location-dependent underestimation/overestimation behaviors.
Both models seem to perform similarly at all three locations. At Pittsburg, FoNet estimates
the target salinity slightly more accurately than PINN; the latter overestimates some of the
salinity values in the mid-range while the former does not. The averaged statistical metrics
of the test datasets of the 5 folds, displayed in each scatter plot, confirm these observations.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Figure 9. Scatter plots of target salinity (DSM2-simulated) vs. model-estimated salinity on the test
datasets of all five folds. (a) ANN at Martinez (b) PINN at Martinez (c) FoNet at Martinez (d) ANN
at Chipps Island (e) PINN at Chipps Island (f) FoNet at Chipps Island (g) ANN at Pittsburg (h) PINN
at Pittsburg (i) FoNet at Pittsburg. Detailed 5-fold averaged values of four evaluation metrics are
marked at each scatter plot.

3.2. Performance Results on Independent Untrained Location

In this subsection, we evaluate the three machine-learning models at an untrained
location, Port Chicago. By validating a model at an untrained location we can measure its
predictive capacity at an unknown location for the testing time period at hand.

Figures 10 and 11 illustrate the comparison of the four evaluation metrics (r2, percent-
age bias, RSR, NSE) for the three models on the Port Chicago test datasets of the five folds
in scatter plots. Figure 10 compares the performance of ANN and PINN, while Figure 11
compares the performance of PINN and FoNet. Each dot in a scatter plot corresponds to
one of the five folds. The scatter plots in Figure 10 show that PINN outperforms ANN,
as it achieves higher r2 and NSE values, and lower RSR values for all five folds. Although
PINN obtains a slightly higher percent bias than ANN for a couple of folds, the percentage
biases are smaller for PINN in the other three folds. The scatter plots in Figure 11 indicate
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that PINN performs slightly better than FoNet at Port Chicago, as PINN achieves smaller
percent bias and RSR, and larger NSE than FoNet for most of the five folds. Appendix A.3
contains tables with the exact values of the metrics for each fold.

(a) Test r2 (b) Test Bias (%) (c) Test RSR (d) Test NSE

Figure 10. Scatter plots for each of the four evaluation metrics: (a) r2 (b) percent bias (c) RSR (d) NSE
for ANN and PINN models. A dot corresponds to a fold’s test dataset results such that its x-coordinate
value is the PINN evaluation result and y-coordinate value is the ANN evaluation result.

(a) Test r2 (b) Test Bias (%) (c) Test RSR (d) Test NSE

Figure 11. Scatter plots for each of the four evaluation metrics: (a) r2 (b) percent bias (c) RSR
(d) NSE for PINN and FoNet models. A dot corresponds to a fold’s test dataset results such that its
x-coordinate value is the FoNet evaluation result and y-coordinate value is the PINN evaluation result.

The time series plots in Figure 12 compare the estimated salinity values of our three
models to the target salinity values (DSM2-simulated). Once again, for better visibility, we
consider two models at a time: the top time series plots show DSM2-simulated salinity
values (in blue) with estimated salinity values of ANN (in green) and PINN (in orange),
and the bottom time series plots show DSM2-simulated salinity values (in blue) with
estimated salinity values of PINN (in orange) and FoNet (in black). These time series
correspond to the test dataset of Fold 5, spanning from 1 January 2011 to 31 December
2015, at Port Chicago. Visual inspection indicates that ANN is less accurate than PINN and
FoNet in estimating salinity at Port Chicago. Particularly for high salinity values in 2015,
the performance of ANN drops as it noticeably underestimates the salinity. In contrast,
both PINN and FoNet outperform ANN, and show similar levels of accuracy in salinity
estimation. Appendix A.5 provides additional time series plots for the other folds.
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(a)

(b)
Figure 12. Time series plots at Port Chicago on Fold 5 test data, which correspond to 1 January 2011
to 31 December 2015. (a) Time series plots of DSM2-simulated (in blue) versus ANN (in green) and
PINN (in orange) estimated salinity (b) Time series plots of DSM2-simulated (in blue) versus PINN
(in orange) and FoNet (in black) estimated salinity. Detailed values of four evaluation metrics of the
models are marked on the plots.

Figure 13 displays a comparison of the estimated salinity values of the three models
(ANN, PINN, FoNet) to the target salinity values (DSM2-simulated) at Port Chicago in
scatter plots. Each dot on a scatter plot represents a salinity data point in the testing dataset
of one of the five folds, with its x-coordinate value being the model’s estimated salinity
value and its y-coordinate value being the target salinity value. All three models show no
clear bias towards underestimation or overestimation at Port Chicago. However, ANN
deviates from the target salinity more frequently than PINN and FoNet, especially for
salinity values in the mid-to-high range. The salinity estimations of PINN and FoNet are
quite similar. The averaged statistical metrics of the test datasets of the 5 folds are displayed
in each scatter plot and confirm these observations. In particular, smaller NSE and larger
RSR values for ANN indicate its under-performance in comparison to PINN and FoNet.
PINN and FoNet have similar values in their four evaluation metrics.

(a) (b) (c)
Figure 13. Scatter plots of target salinity (DSM2-simulated) vs. model-estimated salinity on the Port
Chicago test datasets of all five folds. (a) ANN (b) PINN (c) FoNet. Detailed 5-fold averaged values
of four evaluation metrics are marked at each scatter plot.
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4. Discussion
4.1. Implications

Our study has significant scientific implications. For the first time, we introduce
flow–salinity modeling in the Delta using physics-informed neural network (PINN) models
and demonstrate their potential to bridge the gap between process-based models and
data-driven models. As machine-learning models with neural network structures, PINN
models can efficiently simulate salinity, such as data-driven artificial neural network (ANN)
models, while incorporating the advection–dispersion equation that governs the underlying
physical laws of the flow–salinity relationship, such as process-based models. Furthermore,
the PINN models we develop can be applied to other estuarine environments where
flow–salinity modeling is of interest.

Our study also demonstrates the practical advantages of using PINN models, which
offer comparable efficiency to data-driven ANN models while improving the accuracy
of salinity simulations in the Delta. In terms of statistical metrics r2, bias, RSR, and NSE,
the PINN models outperform the ANN model across the board. This is particularly
appealing to real-time operations and long-term planning which both require desirable
estimates on the salinity levels.

4.2. Limitations and Future Work

Although this study demonstrates the improved salinity estimation capabilities of
physics-informed neural networks compared to conventional neural networks, it is limited
to only four locations which all lie within the flat estuary waterway in the western part
of the Delta. There are other important locations of ecological significance in the interior
parts of the Delta, where salinity values are less significant due to less impact of seawater
and waterways between locations are irregularly shaped, making it difficult to apply the 1-
dimensional advection–dispersion equation. In future studies, we plan to explore different
methodologies of PINN models to model salinity at these locations. We acknowledge
that our PINN models are simplified by assuming constant values for the estuary cross-
sectional area A and longitudinal dispersion coefficient K in the advection–dispersion
equation. In reality, these parameters can vary both spatially and temporally. However, we
emphasize that they were treated as constants in our PINN model for the sake of simplicity.
Our main focus was to conduct a proof-of-concept study of the PINN model and compare it
with a simpler ANN model. Moreover, we currently lack advection–dispersion coefficient
data which are not available from field observations, as it varies with the cross-sectional area.
Obtaining the advection–dispersion coefficient data from modeling is an ongoing research
effort for us. In future studies, we plan to incorporate space-variant cross-sectional area and
advection–dispersion coefficients as additional variables in our PINN models. Furthermore,
while the DSM2-simulated salinity values are suitable for validating our proof-of-concept
models, they are generally less noisy than historical observed data, which can make it
easier for the models to train on. To further strengthen the salinity estimation capabilities
of our PINN models, we plan to evaluate them on historically observed salinity data.

In this study, we explore a machine-learning model called FoNet, a variation of a
simple PINN model with an MLP architecture. However, there are other variations of
PINN models with different neural network architectures. For instance, the long short-
term memory (LSTM) architecture has been explored in predicting salinity in navigable
waterways in Belgium [40]. There are extensions of FoNet, such as the Spatio-temporal
Fourier Feature Network [61], which aims to tackle differential equations exhibiting multi-
scale behaviors by applying multiple Fourier feature encodings initialized with different
frequencies to input variables. We plan to explore these and other variations of PINN
models in the future.

5. Conclusions

Salinity modeling in the Sacramento–San Joaquin Delta of California has traditionally
relied on two separate approaches: process-based models and data-driven models. In this
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study, novel machine-learning models based on the framework of physics-informed neural
networks are developed and applied in estimating salinity in the study locations in the
Delta. These models integrate the flow–salinity relationships of process-based models with
the computational efficiency of data-driven artificial neural network models. Specifically,
the advection–dispersion equation, which describes the flow–salinity relationship, is em-
bedded into the loss function of a multilayer perceptron. The findings of the study show
that these new models outperform a benchmark artificial neural network in accurately
estimating salinity levels in the study locations in the Delta. The efficiency and improved
accuracy in this proof-of-concept study indicate the promising potential of these proposed
models for salinity estimation in the Delta.
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Appendix A

Appendix A.1. ANN: Number of Layer Choices

Table A1. ANN performance for 2, 3, 4 layers on Fold 1 test dataset at Port Chicago. The best
performing values are highlighted in bold fonts.

ANN

Evaluation Metrics 2 Layers 3 Layers 4 Layers

r2 0.958 0.965 0.968
Bias −6.491 −6.242 −5.302
RSR 0.338 0.313 0.307
NSE 0.886 0.902 0.906

Appendix A.2. Hyperparameter Choices

Table A2. ANN hyperparameters choices.

Fold1 Fold2 Fold3 Fold4 Fold5

Hidden Layer # Neuron Activation # Neuron Activation # Neuron Activation # Neuron Activation # Neuron Activation

hidden 1 32 elu 32 relu 32 relu 32 tanh 32 relu
hidden 2 32 elu 8 relu 24 relu 24 relu 4 tanh
hidden 3 8 tanh 14 relu 16 elu 2 elu 6 elu
hidden 4 14 sigmoid 6 tanh 4 sigmoid 14 relu 12 elu

https://data.cnra.ca.gov/dataset/dsm2-v8-2-1
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Table A3. PINN hyperparameters choices.

Fold1 Fold2 Fold3 Fold4 Fold5

Hidden Layer # Neuron Activation # Neuron Activation # Neuron Activation # Neuron Activation # Neuron Activation

hidden 1 24 relu 32 relu 24 elu 32 tanh 28 tanh
hidden 2 12 tanh 16 tanh 12 sigmoid 16 tanh 8 sigmoid

Table A4. FoNet hyperparameters choices.

Fold1 Fold2 Fold3 Fold4 Fold5

Hidden Layer # Neuron Activation # Neuron Activation # Neuron Activation # Neuron Activation # Neuron Activation

encoding 24 28 32 16 8
hidden 1 32 tanh 16 tanh 12 tanh 28 elu 16 tanh
hidden 2 10 elu 4 sigmoid 16 relu 8 tanh 10 tanh

Appendix A.3. Detailed Values for Box and Whisker Plots

Table A5. r2 values of three machine-learning models on training datasets. The best performing
values are highlighted in bold fonts.

Fold1 Fold2 Fold3 Fold4 Fold5 Average

Station Name ANN PINN FoNet ANN PINN FoNet ANN PINN FoNet ANN PINN FoNet ANN PINN FoNet ANN PINN FoNet

Martinez 0.938 0.961 0.961 0.927 0.957 0.952 0.951 0.967 0.972 0.923 0.963 0.969 0.928 0.965 0.961 0.933 0.963 0.963
Port Chicago 0.948 0.966 0.965 0.932 0.960 0.956 0.956 0.970 0.974 0.933 0.966 0.974 0.935 0.968 0.965 0.941 0.966 0.967
Chipps Island 0.951 0.966 0.968 0.929 0.959 0.962 0.954 0.973 0.977 0.935 0.969 0.977 0.935 0.970 0.968 0.941 0.967 0.970

Pittsburg 0.853 0.962 0.974 0.852 0.953 0.969 0.878 0.975 0.978 0.829 0.968 0.979 0.841 0.975 0.967 0.851 0.967 0.974

Table A6. r2 values of three machine-learning models on test datasets. The best performing values
are highlighted in bold fonts.

Fold1 Fold2 Fold3 Fold4 Fold5 Average

Station Name ANN PINN FoNet ANN PINN FoNet ANN PINN FoNet ANN PINN FoNet ANN PINN FoNet ANN PINN FoNet

Martinez 0.937 0.961 0.959 0.937 0.960 0.961 0.908 0.944 0.948 0.912 0.954 0.954 0.924 0.957 0.954 0.924 0.955 0.955
Port Chicago 0.937 0.957 0.960 0.956 0.962 0.965 0.925 0.951 0.952 0.924 0.957 0.959 0.926 0.960 0.958 0.934 0.958 0.959
Chipps Island 0.933 0.950 0.960 0.964 0.965 0.963 0.937 0.958 0.959 0.930 0.960 0.965 0.920 0.962 0.960 0.937 0.959 0.961

Pittsburg 0.820 0.939 0.948 0.879 0.962 0.961 0.845 0.964 0.970 0.778 0.979 0.979 0.787 0.970 0.960 0.822 0.963 0.963

Table A7. Bias values of three machine-learning models on training datasets. The best performing
values are highlighted in bold fonts.

Fold1 Fold2 Fold3 Fold4 Fold5 Average

Station Name ANN PINN FoNet ANN PINN FoNet ANN PINN FoNet ANN PINN FoNet ANN PINN FoNet ANN PINN FoNet

Martinez −21.874 −11.528 −6.950 −14.911 −0.411 5.117 −18.398 −0.163 −0.957 −22.276 −2.386 −4.792 −12.369 1.730 2.825 −17.966 −2.552 −0.952
Port Chicago −9.017 −7.348 −1.886 −1.727 3.670 13.094 −5.759 5.394 6.369 −9.957 2.978 3.245 2.156 4.105 6.845 −4.861 1.760 5.534
Chipps Island 8.201 −6.066 −6.773 15.562 4.887 4.238 10.801 −0.191 −2.297 6.214 −1.454 −3.619 21.264 1.520 5.597 12.408 −0.261 −0.571

Pittsburg 22.011 12.007 −6.960 33.481 23.983 −0.474 16.016 0.540 0.009 20.395 0.451 −0.707 56.357 0.077 5.697 29.652 7.412 −0.487

Table A8. Bias values of three machine-learning models on test datasets. The best performing values
are highlighted in bold fonts.

Fold1 Fold2 Fold3 Fold4 Fold5 Average

Station Name ANN PINN FoNet ANN PINN FoNet ANN PINN FoNet ANN PINN FoNet ANN PINN FoNet ANN PINN FoNet

Martinez −16.656 4.032 7.369 −22.031 −9.393 −3.583 −20.185 0.082 0.136 −18.697 1.616 −0.127 −17.627 −1.453 −1.595 −19.039 −1.023 0.440
Port Chicago −5.302 4.666 12.357 −5.369 −1.848 5.702 −5.585 6.715 9.091 −6.101 6.982 8.034 −6.320 −0.046 1.420 −5.735 3.294 7.321
Chipps Island 8.857 0.543 3.183 17.131 2.280 −1.999 14.103 1.209 −0.441 10.938 3.023 1.459 8.761 −1.709 −0.323 11.958 1.069 0.376

Pittsburg 22.409 17.181 −4.021 59.230 26.537 −0.388 30.237 −0.126 1.059 35.788 −0.841 −1.473 32.283 2.453 1.040 35.989 9.041 −0.757

Table A9. RSR values of three machine-learning models on training datasets. The best performing
values are highlighted in bold fonts.

Fold1 Fold2 Fold3 Fold4 Fold5 Average

Station Name ANN PINN FoNet ANN PINN FoNet ANN PINN FoNet ANN PINN FoNet ANN PINN FoNet ANN PINN FoNet

Martinez 0.448 0.279 0.239 0.399 0.222 0.251 0.388 0.197 0.181 0.465 0.214 0.205 0.353 0.205 0.223 0.411 0.224 0.220
Port Chicago 0.280 0.229 0.199 0.288 0.224 0.312 0.246 0.204 0.201 0.314 0.204 0.186 0.285 0.202 0.233 0.283 0.213 0.226
Chipps Island 0.276 0.231 0.225 0.383 0.244 0.219 0.286 0.181 0.165 0.291 0.194 0.173 0.419 0.185 0.213 0.331 0.207 0.199

Pittsburg 0.501 0.262 0.200 0.603 0.398 0.187 0.439 0.165 0.153 0.513 0.188 0.154 0.832 0.163 0.207 0.578 0.235 0.180
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Table A10. RSR values of three machine-learning models on test datasets. The best performing
values are highlighted in bold fonts.

Fold1 Fold2 Fold3 Fold4 Fold5 Average

Station Name ANN PINN FoNet ANN PINN FoNet ANN PINN FoNet ANN PINN FoNet ANN PINN FoNet ANN PINN FoNet

Martinez 0.409 0.239 0.263 0.396 0.255 0.207 0.484 0.247 0.244 0.457 0.222 0.219 0.471 0.228 0.236 0.443 0.238 0.234
Port Chicago 0.307 0.255 0.299 0.241 0.225 0.206 0.327 0.254 0.279 0.303 0.243 0.248 0.321 0.212 0.220 0.300 0.238 0.250
Chipps Island 0.334 0.284 0.241 0.302 0.227 0.204 0.385 0.212 0.214 0.342 0.210 0.192 0.340 0.204 0.211 0.340 0.227 0.212

Pittsburg 0.608 0.370 0.273 0.708 0.355 0.217 0.581 0.194 0.176 0.734 0.149 0.150 0.698 0.183 0.204 0.666 0.250 0.204

Table A11. NSE values of three machine-learning models on training datasets. The best performing
values are highlighted in bold fonts.

Fold1 Fold2 Fold3 Fold4 Fold5 Average

Station Name ANN PINN FoNet ANN PINN FoNet ANN PINN FoNet ANN PINN FoNet ANN PINN FoNet ANN PINN FoNet

Martinez 0.799 0.922 0.943 0.841 0.951 0.937 0.850 0.961 0.967 0.784 0.954 0.958 0.875 0.958 0.950 0.830 0.949 0.951
Port Chicago 0.921 0.948 0.960 0.917 0.950 0.902 0.940 0.958 0.960 0.901 0.958 0.966 0.919 0.959 0.946 0.920 0.955 0.947
Chipps Island 0.924 0.947 0.949 0.853 0.940 0.952 0.918 0.967 0.973 0.916 0.962 0.970 0.824 0.966 0.955 0.887 0.957 0.960

Pittsburg 0.749 0.931 0.960 0.636 0.842 0.965 0.807 0.973 0.977 0.737 0.965 0.976 0.307 0.973 0.957 0.647 0.937 0.967

Table A12. NSE values of three machine-learning models on test datasets. The best performing
values are highlighted in bold fonts.

Fold1 Fold2 Fold3 Fold4 Fold5 Average

Station Name ANN PINN FoNet ANN PINN FoNet ANN PINN FoNet ANN PINN FoNet ANN PINN FoNet ANN PINN FoNet

Martinez 0.833 0.943 0.931 0.843 0.935 0.957 0.766 0.939 0.941 0.792 0.951 0.952 0.778 0.948 0.944 0.802 0.943 0.945
Port Chicago 0.906 0.935 0.911 0.942 0.950 0.958 0.893 0.935 0.922 0.908 0.941 0.939 0.897 0.955 0.952 0.909 0.943 0.936
Chipps Island 0.889 0.919 0.942 0.909 0.948 0.958 0.851 0.955 0.954 0.883 0.956 0.963 0.885 0.958 0.956 0.883 0.947 0.955

Pittsburg 0.630 0.863 0.925 0.498 0.874 0.953 0.663 0.962 0.969 0.461 0.978 0.978 0.512 0.966 0.958 0.553 0.929 0.957

Appendix A.4. Time Series Plots at Three Trained Locations

(a) (b)

(c) (d)

(e) (f)

Figure A1. Time series plots of DSM2-simulated (in blue) versus ANN (in green) and PINN (in
orange) and FoNet (in black) estimated salinity at each of the three trained locations Martinez, Chipps
Island, Pittsburg on Fold 1 test data, which correspond to 1 January 1991 to 31 December 1995.
DSM2, ANN, PINN: (a) Martinez (c) Chipps Island (e) Pittsburg; DSM2, PINN, FoNet: (b) Martinez
(d) Chipps Island (f) Pittsburg. Detailed values of four evaluation metrics of the models are marked
at each location.
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(a) (b)

(c) (d)

(e) (f)

Figure A2. Time series plots of DSM2-simulated (in blue) versus ANN (in green) and PINN (in
orange) and FoNet (in black) estimated salinity at each of the three trained locations Martinez, Chipps
Island, Pittsburg on Fold 3 test data, which correspond to 1 January 2001 to 31 December 2005.
DSM2, ANN, PINN: (a) Martinez (c) Chipps Island (e) Pittsburg; DSM2, PINN, FoNet: (b) Martinez
(d) Chipps Island (f) Pittsburg. Detailed values of four evaluation metrics of the models are marked
at each location.

(a) (b)

(c) (d)

(e) (f)

Figure A3. Time series plots of DSM2-simulated (in blue) versus ANN (in green) and PINN (in
orange) and FoNet (in black) estimated salinity at each of the three trained locations Martinez, Chipps
Island, Pittsburg on Fold 4 test data, which correspond to 1 January 2006 to 31 December 2010.
DSM2, ANN, PINN: (a) Martinez (c) Chipps Island (e) Pittsburg; DSM2, PINN, FoNet: (b) Martinez
(d) Chipps Island (f) Pittsburg. Detailed values of four evaluation metrics of the models are marked
at each location.
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(a) (b)

(c) (d)

(e) (f)

Figure A4. Time series plots of DSM2-simulated (in blue) versus ANN (in green) and PINN (in
orange) and FoNet (in black) estimated salinity at each of the three trained locations Martinez, Chipps
Island, Pittsburg on Fold 5 test data, which correspond to 1 January 2011 to 31 December 2015.
DSM2, ANN, PINN: (a) Martinez (c) Chipps Island (e) Pittsburg; DSM2, PINN, FoNet: (b) Martinez
(d) Chipps Island (f) Pittsburg. Detailed values of four evaluation metrics of the models are marked
at each location.

Appendix A.5. Time Series Plots at Port Chicago, an Independent Test Location

(a) (b)

Figure A5. Time series plots of DSM2-simulated (in blue) versus ANN (in green) and PINN (in
orange) and FoNet (in black) estimated salinity at untrained location Port Chicago on Fold 1 test data,
which correspond to 1 January 1991 to 31 December 1995. (a) DSM2, ANN, PINN (b) DSM2, PINN,
FoNet. Detailed values of four evaluation metrics of the models are marked at each location.

(a) (b)

Figure A6. Time series plots of DSM2-simulated (in blue) versus ANN (in green) and PINN (in
orange) and FoNet (in black) estimated salinity at untrained location Port Chicago on Fold 2 test data,
which correspond to 1 January 1996 to 31 December 2000. (a) DSM2, ANN, PINN (b) DSM2, PINN,
FoNet. Detailed values of four evaluation metrics of the models are marked at each location.
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(a) (b)

Figure A7. Time series plots of DSM2-simulated (in blue) versus ANN (in green) and PINN (in
orange) and FoNet (in black) estimated salinity at untrained location Port Chicago on Fold 3 test data,
which correspond to 1 January 2001 to 31 December 2005. (a) DSM2, ANN, PINN (b) DSM2, PINN,
FoNet. Detailed values of four evaluation metrics of the models are marked at each location.

(a) (b)

Figure A8. Time series plots of DSM2-simulated (in blue) versus ANN (in green) and PINN (in
orange) and FoNet (in black) estimated salinity at untrained location Port Chicago on Fold 4 test data,
which correspond to 1 January 2006 to 31 December 2010. (a) DSM2, ANN, PINN (b) DSM2, PINN,
FoNet. Detailed values of four evaluation metrics of the models are marked at each location.
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