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Abstract: Domain-specific architectures of artificial neural networks (ANNs) have been developed to estimate salinity levels for planning at key
monitoring stations in the Sacramento-San Joaquin Delta, California. In this work, we propose three major enhancements to existing ANN archi-
tectures for purposes of training time reduction, estimation error reduction, and better feature extraction. Specifically, we design a novel multitask
ANN architecture with shared hidden layers for joint salinity estimation at multiple stations, achieving a reduction of 90% training and inference
time. As another major structural redesign, we replace predetermined preprocessing on input data by a trainable convolution layer. We further
enhance the multitask ANN design and training for salinity forecasting. Test results indicate that these enhancements substantially improve the
efficiency and expand the capacity of the current salinity modeling ANNs in the Delta. Our enhanced ANN design methodologies have the potential
for incorporation into the current modeling practice and provide more robust and timely information to guide water resource planning and man-
agement in the Delta. DOI: 10.1061/(ASCE)WR.1943-5452.0001445. © 2021 American Society of Civil Engineers.

Introduction

The Sacramento-San Joaquin Delta consists of a maze of inter-
connected channels that are central to California’s water supply
systems. Major streams like the Sacramento River, San Joaquin
River, and eastside tributaries enter the Delta (Fig. 1), and the
waters flow through the Delta in a complex network of intersecting
channels that ultimately flow west out to the Pacific Ocean or are
diverted for agricultural and municipal use inside and outside of
the Delta. The salinity of water in the channels (concentration of
salt measured, for example, in milligrams of salt per liter of stream

water) determines the suitability for fish and wildlife, growing
crops [the Delta has approximately 170,000 ha (420,000 acres)
of prime agricultural lands], and urban indoor/outdoor use. Water
salinities in the Delta channels are affected by many factors includ-
ing ocean tides, inflows to the Delta from inland rivers and streams,
and agricultural activities/practices within the Delta. Also, human
actions related to water usage, such as diverting to the Delta islands
for agricultural and urban use or exports from the Delta through the
State Water Project (SWP) and Central Valley Project (CVP) pump-
ing plants, would also change flows and salinities through the mix-
ing process.

To ensure safe water use, ecosystem sustainability, and eco-
nomic viability, state and federal regulatory agencies have estab-
lished several salinity criteria (maximum concentrations not to
be exceeded) spatially and temporally within the Delta. One such
regulatory example is the Water Right Decision 1641 (D1641) of
the California State Water Resources Control Board (SWRCB)
(SWRCB 2000), which specifies the threshold salinity values at
certain compliance locations during certain periods in a year. To
assist in the planning and management of the water resources in
the Delta, the California Department of Water Resources (CDWR)
has developed two key simulation models for use in planning stud-
ies: (1) CalSim, a water allocation model of the SWP and CVP
systems (Draper et al. 2004), and (2) Delta Simulation Model 2
(DSM2), a hydrodynamics and water quality model (CDWR
2019), which is developed based upon the mathematical flow-
salinity relationship model presented by Denton (1993) and Denton
and Sullivan (1993). Jayasundara et al. (2020) have given detailed
discussions of CalSim and DSM2 as tools used in water resource
management and their functionalities.

There are 12 key water quality monitoring stations in the Delta:
Emmaton, Jersey Point, Collinsville, Rock Slough, Antioch,
Mallard Island, Old River at Highway (HWY) 4, Martinez, Middle
River Intake, Victoria Intake, CVP Intake, and Clifton Court Fore-
bay (CCFB) Intake (Fig. 1). However, computational runtimes and
other programming factors limit simulations of CalSim and DSM2
concurrently during a planning.
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Artificial neural networks (ANNs) have been developed and
applied extensively in the field of water resources engineering to
model (Ranjithkumar and Robert 2021; Tung and Yaseen 2020;
Tealab 2018; Kang et al. 2017), for instance, groundwater level
(Chen et al. 2011), surface runoff (Swain et al. 2017), reservoir
operations (Chandramouli and Raman 2001), water demand (Bata
et al. 2020), leak detection (Bohorquez et al. 2020), and water sys-
tem control (Hajgató et al. 2020). ANNs have also been explored in
modeling salinity in groundwater (Banerjee et al. 2011), soil (Dai
et al. 2011; Jiang et al. 2019), oceans (Bhaskaran et al. 2010; Chen
and Hu 2017), rivers (Bowden et al. 2005; Hunter et al. 2018; Maier
and Dandy 1999), and estuarine environments (DeSilet et al. 1992;
Huang and Foo 2002; Sreekanth and Datta 2010; Le et al. 2019;
Zhou et al. 2020). ANNs have only been applied recently in salinity
modeling in the Delta (Chen et al. 2018; Rath et al. 2017; He et al.
2020; Jayasundara et al. 2020). Specifically, Chen et al. (2018)
proposed a one-dimensional hydrodynamic model emulator to
represent estuarine mixing and water quality in the northern reach
of the San Francisco Bay-Delta estuary, California, and Rath et al.
(2017) developed an ANN-incorporated hybrid model of salinity
in the same estuary. He et al. (2020) investigated the use of

multilayer perceptron (MLP) ANNs in estimating boundary salinity
in the Delta based on water flow and tidal stage.

Jayasundara et al. (2020), for the first time, have developed and
applied individual MLP ANNs consisting of one input layer, two
hidden layers, and one output layer in simulating salinity based on
seven variables in the Delta, including water control gate opera-
tions, water exports, and tidal stage, as well as flow and salinity
boundaries, to emulate DSM2 within CalSim 3, making runtimes
much more practical. However, it is not efficient to train and infer-
ence those 12 separate ANNs. In the context of our objective for
simultaneously estimating salinity levels at multiple monitoring
stations based on the same set of inputs, we can view this problem
as a special case of multitask learning (MTL). This formulation is
motivated by the fact that the salinities at the multiple monitoring
stations are all affected by the same set of hydrological measure-
ments within the same regional ecosystem.

MTL, in contrast to single-task learning (STL), is a machine
learning strategy where multiple tasks sharing commonalities are
solved simultaneously. As shown by Caruana (1993, 1995) and
Ruder (2017), the domain-specific information contained in input
data may allow one task to eavesdrop on features discovered for

Fig. 1. (Color) Locations of the 12 study salinity stations in the San Francisco Bay and Sacramento-San Joaquin Delta Estuary. The insert map shows
the location of the Bay-Delta Estuary in California. (Sources: Esri, DeLorme, HERE, Tom-Tom, Intermap, increment P Corp., GEBCO, USGS, FAO,
NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), swisstopo, MapmyIndia, and the GIS
User Community; Data from SWRCB 2000.)
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other related tasks and may lead the model to prefer some hypoth-
eses over others. By leveraging the domain-specific information,
MTL helps improve neural networks’ efficacy and generalizability.
One of the most commonly used MTL methods is known as hard
parameter sharing, which is achieved by a joint architecture that
requires multiple tasks to share some hidden layers while keeping
several task-specific layers toward the end of model for each task
(Caruana 1993). The idea of hard parameter sharing has been
applied to time-series prediction such as energy flux prediction
(Guijo-Rubio et al. 2020), rainfall amount prediction (Qiu et al.
2017), and water quality forecasting (Liu et al. 2020). We design
the MTL ANN for simultaneous estimation of salinity at multiple
monitoring stations, and this new paradigm enables the ANN to
better extract the underlying data features and generate better over-
all performance than the current STL model individually trained
and optimized for each monitoring station (Jayasundara et al.
2020). In addition, because MTL has been successfully applied
to time-series prediction tasks by Guijo-Rubio et al. (2020), Qiu
et al. (2017), and Liu et al. (2020), we test and analyze the predic-
tion capability of our proposed ANNs.

Generally, the current study stems from the Jayasundara et al.
(2020) study but extended all those previous studies in the Delta in
terms of

• improved ANN training efficiency by applying a joint MTL
approach,

• exploration of ANN-based salinity forecasting efficacy for
the Delta,

• improved ANN performance through systematic preprocessing
of input time series by using a trainable convolution layer, and

• expansion of ANN to discover the relationship between perfor-
mance and their size.

Methods

Similar to the approach described by Jayasundara et al. (2020), we
aim to improve salinity estimation by leveraging the seven hydrolog-
ical, water quality, and operation parameters, namely northern net
flows (Sacramento River and Eastside streams); San Joaquin River
flows; Delta cross-channel gate operation; net Delta consumptive
use; tidal energy; San Joaquin River inflow salinity at Vernalis;
and SWP and CVP exports via Banks pumping plant, Jones pumping
plant, and Contra Costa Canal (Fig. 2).Wewill estimate salinities at a
number of measurement points, which include Emmaton, Jersey
Point, Collinsville, and Rock Slough, among others.

The input data are the (preprocessed) seven input variables.
Following Jayasundara et al. (2020), each of the seven variables
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Fig. 2. (Color) ANN inputs and input locations. (Sources: Esri, DeLorme, HERE, TomTom, Intermap, increment P Corp., GEBCO, USGS, FAO,
NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), swisstopo, MapmyIndia, and the GIS
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© ASCE 04021069-3 J. Water Resour. Plann. Manage.

 J. Water Resour. Plann. Manage., 2021, 147(10): 04021069 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a,
 D

av
is

 o
n 

10
/0

1/
21

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



is preprocessed via an empirical convolution process that converts
the values of the input at the current day plus the antecedent
117 days into 18 values, including one value from each of the cur-
rent day plus the most recent 7 antecedent days along with 10 non-
overlapping 11-day averages. Fig. 3 outlines the pipeline to obtain
the estimated salinity levels of Jayasundara et al. (2020).

Network Inputs and Outputs

The complete pipeline in mathematical notation is given in Fig. 4.
We use subscript for matrix and vector indexing and superscript to
denote the variable. For example, xðmÞ

n;tr is the trth value for the mth
input parameter in the ANN’s input vector for day n. As explained
in the “Introduction” section, there are seven input parameters and
12 output parameters. For training and validation, we have access to
monthly input data and daily salinity data covering water years
1941–2015. In California, each water year cycle runs from October
1 to September 30 of the following calendar year. As described by
Jayasundara et al. (2020), CalSim can refine monthly data record
into daily by spline interpolation.

There is a total of N data samples (or days) in the data set. In
our problem, we select M ¼ 7 observation variables. Same as in
CalSim (Jayasundara et al. 2020), we pick T ¼ 118 and Tr ¼ 18
in the baseline case and preprocess the data as denoted in Fig. 5.

For input variable m on day n, we extract eight daily values

xðmÞ
n;i ¼ zðmÞ

n−iþ1 ð1Þ

where i ∈ f1; · · · ; 8g. We also compute a total of 10 successive but
nonoverlapping 11-day moving averages before the first daily data

xðmÞ
n;i ; i ∈ f1; · · · ; 8g to be stored in

xðmÞ
n;iþ8 ¼

1

11

X11
j¼1

zðmÞ
n−11i−jþ4 ð2Þ

where i ∈ f1; · · · ; 10g. Altogether, for the M variables in each day
n, we form M × Tr ¼ 7 × 18 ¼ 126 values as the M × Tr input
matrix xn to the ANNs.

Later for exploring a different ANN architecture to bypass this
rather ad hoc preprocessing, we would form a trainable convolution
layer instead of applying the aforementioned predetermined pre-
processing steps. In that case, those 118 daily values of each of
the seven variables are directly provided to the convolution layer.

The corresponding details will be described in the “Trained Input
Pre-Processing Via a Convolution Layer” section.

The target outputs of ANNs are the salinity levels at one or more
monitoring stations. Each STL ANN’s output is salinity level at one
single monitoring station, whereas each MTL ANN’s outputs are
salinity levels at all 12 monitoring stations.

Different from Jayasundara et al. (2020), the current work ran-
domly split 80% and 20% of this data set for training and valida-
tion, respectively.

Multitask Learning

The goals of ANNs are to predict salinity at multiple monitoring
stations that are physically related to one another in the Delta. It is
therefore natural that these ANNs can share some of the same fea-
tures of the underlying data inputs. To improve the ANN for indi-
vidual monitoring stations (Jayasundara et al. 2020), we explore the
MTL approach for the 12 monitoring stations under study.

As described by Caruana (1995), these interrelated multiple
tasks may be learned jointly by training a single ANN. The output
layers shall include more neurons, whereas the hidden layers are
shared by the monitoring stations. These hidden layers together
serve as a joint mechanism for feature extractions that can be
used more consistently to generate salinity estimates at different

Fig. 3. Complete pipeline for ANNs according to Jayasundara et al. (2020).

Fig. 4. Pipeline for ANNs with mathematical notations according to Jayasundara et al. (2020).

Direct mapping

Average

Fig. 5. (Color) Preprocessing diagram.
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monitoring stations. With MTL, an ANN can show better general
performance over multiple disjoint single-task ANNs. As shown in
Fig. 6, the MLP architecture proposed by Jayasundara et al. (2020)
consists of two fully connected (FC) hidden layers and one output
layer, with each layer containing eight neurons, two neurons, and
one neuron, respectively.

Based on the model in previous successful STL ANNs in Fig. 6,
we build the multitask ANN architecture, which is an MLP network
containing two hidden layers with sigmoid activation functions and
one output layer with a Leaky rectified linear unit (ReLU) (Maas
et al. 2013) activation function. As illustrated in Fig. 7, we increase
number of neurons by a factor of 12, which coincides with the num-
ber of monitoring stations, for all layers to build the multitask

ANN, that is, the two hidden layers and output layer in multitask
ANN contain 96, 24, and 12 neurons, respectively. We also ex-
plored various ANN sizes in the “ANN Size” section.

Trained Input Preprocessing via a Convolution Layer

As discussed previously, Jayasundara et al. (2020) utilized eight
newest daily values together with 10 nonoverlapping moving aver-
ages of the daily values immediately before the eight daily values as
input data for salinity estimation (Fig. 5).

It should be recognized that the reported direct daily mappings
and moving window averages are special cases of convolution
processing, except that the existing preprocessing is not optimized
through data training. Understanding the shortcomings of such a
heuristic preprocessing, we propose instead to include a trainable
convolution layer for data preprocessing in our novel ANN archi-
tecture. Mathematically, the convolution layer would implement

the following data processing through the training weights fðmÞ
j;i :

xðmÞ
n;i ¼

XT
j¼1

zðmÞ
n−jþ1 × f ðmÞ

j;i ð3Þ

where n ∈ f1; : : : ;Ng; m ∈ f1; : : : ;Mg; and i ∈ f1; : : : ;Trg.
Clearly, by appropriately setting the convolution weights fðmÞ

j;i ,
the convolution layer is capable of delivering daily value mapping
and sliding window averaging. Moreover, this convolution layer
is trainable in conjunction with the additional layers in the ANN.
The inclusion of the convolution layer within the ANN allows the
weights in this layer and other ANN layers be jointly optimized to
achieve better overall performance.

By including the convolution layer, the two respective novel ar-
chitectures of single-task and multitask ANNs with a convolution
layer are shown in Fig. 8. There are Tr ¼ 18 filters in a convolution
layer such that the convolution layers are able to extract at least the
same eight daily values and 10 average values in the predetermined
preprocessing. The complete pipeline with proposed convolution
layer and the MTL ANN can be found in Fig. 9.

Fig. 6. Architecture of a single-task ANN.

Fig. 7. Architecture of a multitask learning ANN.

(a) (b)

Fig. 8. (a) STL; and (b) MTL ANN architectures with a convolution layer.

Fig. 9. Complete pipeline for proposed MTL ANNs.
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Salinity Forecasting

The ability to forecast salinity at key monitoring stations with lead
time up to several days can present an important opportunity and
advantage to the water operations in the Delta. This can be espe-
cially important for real-time operators of the SWP and CVP res-
ervoirs to ensure that adequate released water reaches the Delta to
ensure regulatory compliance at the salinity monitoring stations; for
example, it takes approximately 5 days for water released from the
Shasta reservoir (a CVP facility) and 3 days for water released from
the Lake Oroville reservoir (a SWP facility) to reach the Delta. The
existing ANN studies have not tackled this challenging problem.
From a physical point of view, the dynamics between the input
hydrological parameters and salinity level measurements provide
a strong motivation to suggest the possible success of salinity fore-
casting. Successful forecasting can also provide vital insight into
the development of future models.

In this work, we investigate and explore the proposed MTL
ANN for salinity forecasting at the 12 monitoring stations. We uti-
lize the same architecture to test the performance on salinity pre-
diction tasks. In this case, with a set of inputs for day n, a MTL
ANN learns to predict the salinity levels ynþi; i ∈ f1; · · · ; 7g on
day nþ i.

Optimizer

Jayasundara et al. (2020) adopted both the Levenberg-Marquardt
(LM) (Marquardt 1963; Levenberg 1944) optimization algorithm
and Bayesian regularization (Foresee and Hagan 1997) to update
weights and biases in ANNs. However, as mentioned byWilamowski
et al. (2001), the demand for large memory to compute Jacobian
matrices and the need for inverting matrices are the major drawbacks
of the LM algorithm. When the number of trainable parameters in
ANN increases, the computational complexity of LM algorithm
grows exponentially. In this paper, we utilize one of the modern op-
timizers, the Adam optimizer (Kingma and Ba 2014), to train the
ANNs. The Adam optimizer is computationally efficient and re-
quires little memory. As a result, the Adam optimizer is well-suited
for machine learning problems with complex network architecture
(as proposed in this paper) and/or large data sets.

ANN Size

The number of hidden layers and neurons in these layers deter-
mines the number of trainable parameters and the potential capabil-
ity of an ANN. There is a trade-off between ANN complexity and
performance. Generally, performance on the training data set usu-
ally improves with the increase of the ANN size before the problem
of overfitting occurs due to limited data because a larger ANN is
capable of learning a more complex nonlinear function. Mean-
while, as the ANN gets deeper and/or wider, the probability of
overfitting increases, and the computation complexity grows. To
find the architecture that fits this specific problem, we vary the
depth and width of multitask ANNs and observe how their perfor-
mance changes on the test data set.

Results and Analysis

Implementation

We implement the newly developed ANNs using the popular
open-source library, Tensorflow 2.2.0 (Abadi et al. 2015), with
Python 3.6.9. We conduct the experiments through web browser
on Google Colaboratory, which is a cloud-based Jupyter notebook

environment with a Tesla T4 GPU. We normalize inputs and out-
puts to the range [0.1, 0.9] by linearly converting the ith daily value
of the kth input variable in the nth data sample xðmÞ

n;i to

x̂ðmÞ
n;i ¼

xðmÞ
n;i −

�
min

k¼1; : : : ;N
xðmÞ
k;i

�

�
max

k¼1; : : : ;N
xðmÞ
k;i

�
−
�

min
k¼1; : : : ;N

xðmÞ
k;i

� × 0.8þ 0.1 ð4Þ

We apply the same normalization to outputs yn representing the
salinity at a monitoring station on day n

ŷn ¼
yn −

�
min

k¼1; : : : ;N
yk
�

�
max

k¼1; : : : ;N
yk
�
−
�

min
k¼1; : : : ;N

yk
� × 0.8þ 0.1 ð5Þ

The cost function used for training is the mean squared error
(MSE). For the LM optimizer, we adopt the same settings as
Jayasundara et al. (2020), where the starting learning rate is 0.005,
the decay factor is 10, and the training takes 150 epochs. For the
Adam optimizer, the learning rate is determined using a grid search.
The starting learning rate is 0.01, and it is scaled by 0.1, 0.01,
0.001, and 0.0005 at epochs 80, 120, 160, and 180, respectively,
and the training takes 200 epochs.

Experimental Results and Discussions

We evaluate the performance of the newly proposed ANN models
by calculating the unitless normalized mean square error (NMSE),
which is computed on the normalized salinity outputs ŷn based on
the validation data set. We compare the performance of several
ANN architectures.

To begin, the basic model is a three-layer STL ANN with pre-
processed input data, consisting of two hidden layers and one output
layer, as shown in Fig. 6. We train this baseline ANN using both the
LM algorithm (STL-LM) and the Adam optimizer (STL-Adam), to
illustrate the effects of optimizers. Both STL-LM and STL-Adam
configurations are used as baseline results for comparison.

In our proposed ANNs based on the novel MTL strategy, we
consider two different architectures: (1) a basic three-layer MTL
ANN with the predetermined data preprocessing used in the base-
line model using the Adam optimizer (3-MTL) for training; and
(2) a four-layer MTL ANN with a replacement of fixed data pre-
processing by a trainable convolution layer. We consider two ini-
tializations for the trainable convolution layer parameters: random
(4-MTL-R) and using the predetermined preprocessing parameters
(4-MTL-P) according to Eqs. (1)–(3).

Results from each of the five configurations are labeled, respec-
tively, by STL-LM, STL-Adam, 3-MTL, 4-MTL-R, and 4-MTL-P.
Table 1 presents the NMSE results of the five different ANN con-
figurations. Correspondingly, Table 2 evaluates their respective
training and inference time (complexity). From the performance
comparison, we make the following observations:
• With predetermined data processing, the LM algorithm outper-

forms the Adam optimizer in training STL ANN to generate
lower NMSE values than STL-Adam and 3-MTL do at all study
stations, as indicated in Table 1. However, the LM algorithm
requires eight times longer training time (complexity) when
compared with both STL and MTL trained with the Adam
optimizer, as indicated in Table 2.

• Using our newly proposed MTL architectures with a trainable
convolution layer, training with the Adam optimizer can substan-
tially improve the NMSE performance over STL. In particular,
the 4-MTL-P results are distinctly better (with smaller NMSE
values) when comparing with STL-Adam at all 12 stations.
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The 4-MTL-P scenario outperforms STL-LM at 9 out of the 12
stations.

• The proposed 4-MTL architecture not only improves the salinity
estimation performance in providing generally lower NMSE
values, but also requires much shorter training time (from 8.31 h
of STL-LM to 319 s of 4-MTL-P) as well as much faster infer-
ence (from 8.52 to 1.3 ms). Therefore, applying MTL to multi-
station salinity estimation tasks can clearly improve training and
inference efficiency.

• In 4-MTL, a trainable convolution layer significantly reduces
NMSE because this data processing layer can learn to extract
data features and adapt to wider MTL ANN architecture through
training. Our predetermined initialization helps reduce the prob-
ability of being trapped in a local minimum.

• From Table 1, Antioch, Mallard Island, and Martinez are the
three outliers in 4-MTL-P with slightly higher NMSE values
than their counterparts from the STL-LM scenario. The reason
is that stations located further west are more influenced by ocean
tides of high salinity and are less effected by the input flows.
Indeed, one can see from Fig. 1 that all these three stations are
in the western part of the Delta.

Further ANN Structure Considerations

We further investigate the effect of the proposed MTL ANN size
and depth. Given the success of the 4-layer MTL ANNs, we in-
crease its depth and width.

Starting with the 4-MTL-P ANN consisting of one convolution
layer, two hidden layers, and one output layer, we design 10 sets of
neuron partitions in the hidden layers, and the output layer contains
12 neurons in all cases. For the four-layer configuration, the 10 sets
of neuron partitions for the two hidden layers are provided in Fig. 10.

Table 1. Resulting NMSE × 104 of different ANN architectures for
salinity estimation

Results
STL-LM
(baseline)

STL-Adam
(baseline)

3-
MTL

4-
MTL-R

4-
MTL-P

Optimizer LM Adam Adam Adam Adam
Emmaton 3.2 9.03 10.03 4.25 2.63
Jersey Point 5.35 14.78 16.18 5.74 3.28
Collinsville 5.09 15.92 15.56 6.20 3.86
Rock Slough 5.34 13.33 17.95 6.55 3.69
Antioch 1.84 7.85 9.73 3.50 2.60
Mallard Island 2.18 8.25 9.59 3.28 2.68
Old River at HWY 4 5.01 18.99 21.03 5.27 2.71
Martinez 0.61 3.15 6.66 2.53 1.63
Middle River Intake 5.21 16.71 17.72 5.20 2.66
Victoria Intake 6.12 15.41 16.47 5.33 2.88
CVP Intake 5.11 21.32 18.95 6.97 3.94
CCFB Intake Gate 5.64 20.57 19.38 6.23 3.32

Note: Both inputs are outputs of ANNs are normalized. Best results are
bolded.

Table 2. Training and inference times of different ANN architectures

Model information

Architecture

STL-LM STL-Adam 4-MTL-P

Number of parameters 981 981 16,962
Optimizer LM Adam Adam
Training time (s/model) 2,493 315 319
Inference time (ms/sample) 0.71 0.71 1.3
Number of models needed 12 12 1
Total training time 8.31 h 1.05 h 319 s
Total inference time for all
12 stations (ms/day)

8.52 8.52 1.3

Fig. 10. Numbers of neurons for expanded ANNs. Activation functions are not included in the diagrams.
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We further increased the number of hidden layers to the MTL
ANN by one to obtain a five-layer ANN architecture (5-MTL-P)
and select nine sets of partitions for the three hidden layers in
5-MTL-P. In another test, we add yet another hidden layer to
form a six-layer MTL ANN (6-MTL-P). We select three sets of
neuron partitions for the four hidden layers in 6-MTL-P. The de-
tailed neuron partitions among the hidden layers are also shown
in Fig. 10.

The NMSE results for the 4-MTL-P, 5-MTL-P, and 6-MTL-P
ANNs are illustrated in Fig. 11. We observe that, in general, the
NMSE performance improves with increasing neural network size.
However, for the 12 monitoring stations, deeper ANNs with more
fully connected layers in both five-layer and six-layer ANNs do not
necessarily outperform a four-layer ANN using similar number of
parameters. Fig. 11 also illustrates that an expanded MTL model
achieves comparable performance to the STL-LM baseline model
for all monitoring stations.

Salinity Forecasting

Physically, the salinity levels at the monitoring stations are im-
pacted by antecedent (up to months) Delta inflows. Therefore, it
would be probable that one can forecast the salinity levels based
on current and antecedent inflow data. Hence, in addition to the
same day salinity estimation results obtained thus far, we further
explore the efficacy of our ANN model for salinity forecasting days
ahead in time at the monitoring stations.

To investigate the prediction accuracy of our proposed 4-MTL
ANN, we train seven forecasting models based on the 4-MTL-P
architecture as in Fig. 8(b). The implementation is similar to the
salinity estimation model and is very simple. We apply the same
MTL ANN architectures except that their training is based on
the forecasting error. Specifically, to train a MTL ANN to forecast
salinity levels by i days, we simply train the ANN model by using
the same input measurement data but by advancing the output salin-
ity level by i days when calculating the MSE cost function.

Fig. 11. (Color) NMSE values for 12 monitoring stations versus number of parameters in three MTL ANNs with different layers. Red dashed lines
mark NMSE obtained by the STL-LM baseline in Table 1.
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Changing the same simple training model by advancing the output
measurement by i days for i ¼ 1; : : : ; 7, we can test the efficacy of
an ith day forecasting model.

The best experimental results are obtained using the 4-MTL-P
configuration. The forecasting results from 4-MTL-P are depicted
in Fig. 12 as we vary i ¼ 0; 1; : : : ; 7 using the red line. The base-
line i ¼ 0 estimation results from 4-MTL-P is also highlighted as a
blue dashed line for comparison. From the results, we make the
following observations respecting the forecasting ANN:
• Our 4-MTL-P ANN forecasting tends to show more accurate

forecasting in short term, typically in 1- or 2-day forecasting.
Such result implies that there is a decent correlation between
upstream inflows and Delta salinity up to 2 days. After that,
the correlation tends to weaken. This is most likely because
of physical distance between where flows are measured and
salinity monitoring stations.

• In most cases with the exception of Emmaton, the NMSE values
of forecasts with lead time of 1 day are smaller than or fairly
close to their corresponding counterparts of the same-day salin-
ity estimation. Emmaton differs from other stations in that it is
located on the Sacramento River, which has significantly high
runoff than other rivers (e.g., San Joaquin river and eastern tribu-
taries). The lasting impacts of flow on salinity in the Sacramento
River is not as obvious as those on other rivers.

Adaptive Estimation and Forecasting Models

Our test results suggest a novel adaptive hybrid ANN model in
which the forecasting objectives can be set uniquely for different
monitoring stations according to their physical response times. In
other words, depending on the geophysical distance between input
and output locations, the training objective function should consist

Fig. 12. (Color) NMSE values for 12 monitoring stations versus lead time (days) with a 4-MTL-PANN. Blue dashed lines mark NMSE obtained by
the 4-MTL-P case in Table 1.
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of forecasting errors defined with different forecasting lead times
for different monitoring stations.

Such an adaptive ANN model can be fully incorporated within
the proposed MTL framework. In fact, the only adaptive parameters
that we need to adjust are the lead times used in the MSE cost func-
tion when training the ANN. Based on the results in Fig. 12, for
each monitoring station location, we vary the number of days to
forecast based on their base forecasting performance. With the
4-MTL-P ANN architecture as defined in Fig. 8(b), we manually
initialize the convolution filters in an ANNmodel during training to
estimate salinity at Emmaton and forecast the remaining 11 sta-
tions. The final test results of the adaptive hybrid ANN model
are given in Table 3. As expected, 8 of the 12 monitoring stations
achieved improved performance. The sum NMSE of all 12 mon-
itoring stations is also lower than the pure estimation.

It would be natural to adjust the forecasting lead times for differ-
ent monitoring stations to drive down the sum NMSE further. Such
fine-tuning would require a large number of experiments but does
not change the basic principles and the contributions of our work
reported here.

Discussions and Conclusions

Implications

This study has both scientific and practical implications. From a
scientific standpoint, we propose the following outcomes:
• The study introduces the concept of MTL into salinity modeling

via ANNs in the Delta for the first time. This enables estimation
of salinity at multiple locations in a single ANN model, with no
need to develop different STL ANNs for different locations as
done by Jayasundara et al. (2020).

• In addition, this study is the first to examine and demonstrate the
capability of ANNs in salinity forecasting in the Delta. This lays
the foundation for further methodical exploration on this front.

• This study proposes a novel way of preprocessing ANN input
data via a trainable convolution layer. Compared with the cur-
rent empirical preprocessing method used by Jayasundara et al.
(2020), this new method is modular and thus portable to addi-
tional input data.
Those scientific advances are not only applicable in modeling

salinity, but also other important environmental variables in the

Delta, including turbidity, dissolved oxygen concentration, and
water temperature, among others. Additionally, their potential ap-
plications are not only limited to the Delta area, but also to other
estuarine environments worldwide.

Meanwhile, from a practical point of view, we present the fol-
lowing implications:
• The study indicates that the MTL-based ANN proposed in this

study is much more efficient compared with the traditional
STL-based ANNs in terms of training time and inference time
(Table 2). This is particularly appealing to CDWR’s current
modeling practice in water resources planning studies. In a spe-
cific planning scenario, the current modeling practice involves a
process of iteratively running the planning model and the salin-
ity emulator (i.e., current ANNs) until all salinity compliance
objectives are met. Using a faster emulator instead is expected
to expedite the modeling process and allow more inclusive plan-
ning scenarios to be assessed.

• The study exemplifies the feasibility applying the proposed
ANNs in salinity forecasting. In practice, DSM2 is routinely
utilized in forecasting salinity in the Delta to inform decision
making. The proposed ANNs have the potential to supplement
the current forecasting practice for that purpose.

Future Work

This study indicates that the proposed MTL-based ANN outper-
forms the current STL-based ANNs in most cases (Table 1). How-
ever, for three stations in western Delta (Martinez, Mallard Island,
and Antioch), the STL-based ANNs yield slightly better estimation.
We attribute the probable cause to the fact that the tide plays a more
important role than upstream freshwater inflows at these stations.
Currently, the tidal energy (the difference between daily maximum
and minimum stages at Martinez) serves as the proxy for tidal im-
pact in the input data. However, it is not a direct measurement of the
salinity level. As illustrated previously (He et al. 2020), sea level at
the Golden Gate Bridge (downstream end of the Bay-Delta Estuary
in Fig. 1) is a better surrogate for the salinity source of the Delta. It
is also shown that incorporating sea level as an additional input
feature to ANNs can improve salinity estimation at Martinez
(He et al. 2020). One potential future enhancement to the proposed
ANN is to incorporate sea level at the Golden Gate Bridge as an
additional input.

The study also shows that the forecasting skill of the proposed
ANN decreases with increasing lead time (Fig. 12). This is ex-
pected because the lasting influence of current day’s input data
(predictors) on salinity (predictand) becomes weaker further into
the future. To improve forecasting skills, forecasted input informa-
tion (e.g., forecasts on flows, tidal energy, and gate operations) can
be applied to drive the proposed ANN. This is a potential future
direction to be explored.

Additionally, the ANNs examined in the current study use input
data in the last 118 days because salinity relates to antecedent (up to
months) flows in the Delta. The deep learning architecture long
short-term memory (LSTM) architecture has shown special poten-
tial in simulating variables with such a long memory with their pre-
dictors (He et al. 2020). This type of deep learning networks will be
considered in our future work.

Finally, this study showcases the success of applying proposed
ANNs in salinity modeling in the Delta. There are a wide range of
other variables (e.g., precipitation, runoff volume, snow melt, river
stage, water temperature, and turbidity) elsewhere that are critical to
water resources planning and management practices. The ANNs
developed in the current study can be readily adapted to simulate
or forecast those variables in the future.

Table 3. Resulting NMSE × 104 of 4-MTL-PANNs for salinity estimation
with and without forecasting

Monitoring station
Estimation

only
Joint estimation
and forecast

Emmaton 2.63 (0) 2.69 (0)
Jersey Point 3.28 (0) 3.25 (1)
Collinsville 3.86 (0) 3.94 (1)
Rock Slough 3.69 (0) 3.52 (1)
Antioch 2.60 (0) 2.68 (2)
Mallard Island 2.68 (0) 2.65 (1)
Old River at HWY 4 2.71 (0) 2.68 (1)
Martinez 1.63 (0) 1.54 (1)
Middle River Intake 2.66 (0) 2.65 (1)
Victoria Intake 2.88 (0) 2.79 (2)
CVP Intake 3.94 (0) 3.90 (1)
CCFB Intake Gate 3.32 (0) 3.34 (1)
Total 35.87 35.64

Note: Numbers in parentheses represent the forecast time in days for that
station. Best results are bolded.
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Concluding Remarks

This study develops enhancements to the Delta salinity modeling
ANNs for the purposes of training time reduction, estimation error
reduction, and better feature extraction. The enhancements include
structural redesign on two fronts: (1) incorporation of the MTL ar-
chitecture, and (2) addition of a convolution layer in input data pre-
processing. The updated ANNs are further adapted to conduct
salinity forecasting, which has rarely been investigated previously.
The enhanced ANNs have the potential to be incorporated into the
current modeling practice and provide more robust and timely in-
formation to guide water resources planning and management in
the Delta.
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code for training and evaluating the ANNs; input and output data
used in ANN training and evaluation.
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Notation

The following symbols are used in this paper:
M = number of input hydrological variables denoted in Fig. 2;
N = number of data samples, or days, in data set;
T = number of days of data used for estimation;
Tr = dimension of data after preprocessing;
xn = preprocessed time series with size RM×Tr for day n;
yn = ANN-estimated salinity level for one or more locations on

day n; and
zn = time series used for estimating salinity level on day n, size

is IRM×T .
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