
Incremental Dead State
Detection in Logarithmic Time

Caleb Stanford and Margus Veanes

CAV23

Dead State Detection in Automata

Dead State Detection in Automata

Dead State Detection in Practice

Dead State Detection in Practice

Large or infinite state space
Hard to construct DFA up front

Dead State Detection in Practice

Large or infinite state space
Hard to construct DFA up front

 What if the states are
explored one at a time?

Dead State Detection in Practice

Large or infinite state space
Hard to construct DFA up front

 What if the states are
explored one at a time?

[PLDI 2021]

Existing Solutions

Best result in online graph algorithms: O(sqrt m) per edge
 [Bender, Fineman, Gilbert, Tarjan 2015]

 What if the states are
explored one at a time?

Existing Solutions

Best result in online graph algorithms: O(sqrt m) per edge
 [Bender, Fineman, Gilbert, Tarjan 2015]

 What if the states are
explored one at a time?

Our main result: O(log m) per edge

Talk Outline

1. Motivation
2. Guided Incremental Digraphs (GID)

○ Broadly applicable data structure for dead state detection
3. Algorithms
4. Evaluation

○ 110-530x speedup over [BFGT 2015]

Motivation in Z3
[PLDI 2021]

Boolean regex constraints:
s matches R1 and R2 and …
And does not match R4, R5, …

2020 internship

Motivation in Z3
[PLDI 2021]

2020 internship

Boolean regex constraints:
s matches R1 and R2 and …
And does not match R4, R5, … ⭐ + this year at CAV ⭐

Motivation in Z3

Exponential blowup
Too expensive!

[PLDI 2021]

s matches R1 and R2 and …
And does not match R4, R5, …

Motivation in Z3

Exponential blowup
Too expensive!

[PLDI 2021]

s matches R1 and R2 and …
And does not match R4, R5, …

 What if we explore the
 states one at a time?

Regex Derivatives
[PLDI 2021]

Derivatives:

R = aΣ | b((ΣΣ)* ∩ Σ(ΣΣ)*)

Regex Derivatives
[PLDI 2021]

R

Derivatives:

R = aΣ | b((ΣΣ)* ∩ Σ(ΣΣ)*)

Regex Derivatives
[PLDI 2021]

R1 = Σ

Derivatives:

R = aΣ | b((ΣΣ)* ∩ Σ(ΣΣ)*)

Regex Derivatives
[PLDI 2021]

R2 = (ΣΣ)* ∩ Σ(ΣΣ)*

Derivatives:

R = aΣ | b((ΣΣ)* ∩ Σ(ΣΣ)*)

Regex Derivatives
[PLDI 2021]

R3 = Σ(ΣΣ)* ∩ (ΣΣ)*

Derivatives:

R = aΣ | b((ΣΣ)* ∩ Σ(ΣΣ)*)

Regex Derivatives
[PLDI 2021]

Lazy decision procedure –
very fast in practice!

Derivatives:

R = aΣ | b((ΣΣ)* ∩ Σ(ΣΣ)*)

Regex Derivatives
[PLDI 2021]

Lazy decision procedure –
very fast in practice!

How do we detect dead
states? 🤔

Derivatives:

R = aΣ | b((ΣΣ)* ∩ Σ(ΣΣ)*)

Dead State Detection
How do we detect
dead states? 🤔

Dead State Detection
How do we detect
dead states? 🤔

Dead State Detection

Basically a
naive BFS/DFS
O(m) per edge

Dead State Detection

Basically a
naive BFS/DFS
O(m) per edge

Fast forward 3
years…

Defining the Problem

Simplifying…

Simplifying…

Simplifying…

Closed Open

Guided Incremental Digraph (GID)

Closed Open

Outgoing
edges not
allowed!

Guided Incremental Digraph (GID)

Closed Open

Live: can reach a
terminal state

Dead: not live and
all reachable
states are closed

��

Solving the Problem

Solving the Problem

BFS/DFS: O(m) per update

Solving the Problem

BFS/DFS: O(m) per update

Maintain the graph as a set
of SCCs [BFGT2015]

- O(sqrt(m)) per update

Key insight

What information do we need for non-dead states?

Key insight

What information do we need for non-dead states?

Only need one of these two paths!

Key insight

What information do we need for non-dead states?

Key insight

Directed rooted
forest

Dealing with cycles?

Dealing with cycles?

Dealing with cycles?

Union-Find node

Dealing with cycles?

Union-Find node

O(m) to check for cycle

Dealing with cycles?

In the paper: O(log m) with
Euler-Tour Trees

Clever reduction to undirected reachability for undirected forests

Are we done?

Asymptotic complexity: O(log m) amortized per graph update

Are we done?

Asymptotic complexity: O(log m) amortized per graph update

Asymptotic complexity is not enough in practice

- Complex data structures are difficult to implement
- …and they impose data structure overheads

LoC

Are we done?

Asymptotic complexity: O(log m) amortized per graph update

Asymptotic complexity is not enough in practice

- Complex data structures are difficult to implement
- …and they impose data structure overheads

LoC

Solution: A second, lazy algorithm – efficient in practice

Evaluation

Evaluation

How does it perform compared to state-of-the-art online graph algorithms?

In the paper:

- How does performance change with the graph class?
- How does it perform on graphs from the Z3 regex application?

Evaluation

Green: Log(m)
algorithm

Orange: Lazy
algorithm

High-level takeaways

● Online graph algorithms are useful in formal methods

● Incremental dead state detection is a natural problem that arises in

practical verification tools

● Asymptotic complexity is not always enough

Summary

Guided Incremental Digraphs

- Closed states: no more outgoing edges

New algorithms: for dead state detection

- In log(m) time
- + practical improvements

Publicly available on GitHub and crates.io

- https://github.com/cdstanford/gid

https://github.com/cdstanford/gid

Future Work

Does this generalize to other problems like minimization?

Lazy decision procedures for other contexts

(e.g., LTL and Büchi automata)

Results

Results – Q2 and Q3

Basic

Random

Regex

