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Our main result: O(log m) per edge




Talk Outline

1. Motivation
2. Guided Incremental Digraphs (GID)

o Broadly applicable data structure for dead state detection
3. Algorithms
4. Evaluation

O 110-530x speedup over [BFGT 20195]
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Motivation in Z3

2020 internship  JdlegeNei

Research

"The total number of invocations of

Boolean regex constraints: 28 Zelkova ranges from a few million to
a7 ens of millions in a single day"

s matches R1 and R2 and ... t e

And does not match R4, RS, ... + this year at CAV
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Fast forward 3
years...



Defining the Problem

Almost every problem that you come across is befuddled with all

kinds of extraneous data of one sort or another; and if you can

bring this problem down into the main issues, you can see more
clearly what you’re trying to do.

—~Claude Shannon
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Guided Incremental Digraph (GID)

Live: can reach a
terminal state
Dead: not live and

all reachable
.@ states are closed

Closed
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Solving the Problem
BFS/DFS: O(m) per update

Maintain the graph as a set
of SCCs [BFGT2015]

- O(sqrt(m)) per update
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Key insight
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Directed rooted
forest
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O(m) to check for cycle




Dealing with cycles?

Q—O ’@ <: In the paper: O(log m) with

Euler-Tour Trees

Clever reduction to undirected reachability for undirected forests
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Are we done?

Asymptotic complexity: O(log m) amortized per graph update

Asymptotic complexity is not enough in practice

- Complex data structures are difficult to implement
- ...and they impose data structure overheads

Euler Tour Trees

Solution: A second, /azy algorithm — efficient in practice

1510
LoC
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Evaluation

How does it perform compared to state-of-the-art online graph algorithms??

In the paper:

- How does performance change with the graph class?
- How does it perform on graphs from the Z3 regex application?
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High-level takeaways

e Online graph algorithms are useful in formal methods
e Incremental dead state detection is a natural problem that arises in
practical verification tools

e Asymptotic complexity is not always enough



Summary

Guided Incremental Digraphs
- Closed states: no more outgoing edges
New algorithms: for dead state detection

- Inlog(m) time
-+ practical improvements

Publicly available on GitHub and crates.io

- https://github.com/cdstanford/qid O



https://github.com/cdstanford/gid




Future Work

Does this generalize to other problems like minimization?

Lazy decision procedures for other contexts

(e.g., LTL and Buchi automata)
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Results — Q2 and Q3

Regex
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