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Our main result: O(log m) per edge 



Talk Outline

1. Motivation
2. Guided Incremental Digraphs (GID)

○ Broadly applicable data structure for dead state detection
3. Algorithms
4. Evaluation

○ 110-530x speedup over [BFGT 2015]
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2020 internship

Boolean regex constraints:
s matches R1 and R2 and …
And does not match R4, R5, … ⭐ + this year at CAV ⭐
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s matches R1 and R2 and …
And does not match R4, R5, …

         What if we explore the
         states one at a time?
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Basically a 
naive BFS/DFS
O(m) per edge

Fast forward 3 
years…
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Guided Incremental Digraph (GID)

Closed Open

Live: can reach a 
terminal state

Dead: not live and 
all reachable 
states are closed

��
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Solving the Problem

BFS/DFS: O(m) per update

Maintain the graph as a set 
of SCCs [BFGT2015]

- O(sqrt(m)) per update
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Key insight

Directed rooted 
forest
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Dealing with cycles?

Union-Find node

O(m) to check for cycle



Dealing with cycles?

In the paper: O(log m) with 
Euler-Tour Trees

Clever reduction to undirected reachability for undirected forests
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Are we done?

Asymptotic complexity: O(log m) amortized per graph update

Asymptotic complexity is not enough in practice

- Complex data structures are difficult to implement
- …and they impose data structure overheads

LoC

Solution: A second, lazy algorithm – efficient in practice 



Evaluation



Evaluation

How does it perform compared to state-of-the-art online graph algorithms?

In the paper:

- How does performance change with the graph class?
- How does it perform on graphs from the Z3 regex application?



Evaluation

Green: Log(m) 
algorithm

Orange: Lazy 
algorithm



High-level takeaways

● Online graph algorithms are useful in formal methods

● Incremental dead state detection is a natural problem that arises in 

practical verification tools

● Asymptotic complexity is not always enough



Summary

Guided Incremental Digraphs

- Closed states: no more outgoing edges

New algorithms: for dead state detection

- In log(m) time
- + practical improvements

Publicly available on GitHub and crates.io

- https://github.com/cdstanford/gid

https://github.com/cdstanford/gid




Future Work

Does this generalize to other problems like minimization?

Lazy decision procedures for other contexts

(e.g., LTL and Büchi automata)
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Results – Q2 and Q3

Basic

Random

Regex


