CAV23

Incremental Dead State
Detection in Logarithmic Time

Caleb Stanford and Margus Veanes

UCDAVIS

o7.\Y o7.\V)

Artifact Artifact

Microsoft Evaluation |l Evaluation

* L & & ¢
Available Reusable

Research

Dead State Detection in Automata

Dead State Detection in Automata

Dead State Detection in Practice

Dead State Detection in Practice

Large or infinite state space
Hard to construct DFA up front

Dead State Detection in Practice

2,

What if the states are

\

explored one at a time?

\ Pl O YT)
Large or infinite state space s

Hard to construct DFA up front

Dead State Detection in Practice

2,

What if the states are

\

explored one at a time?

\ Pl O YT)
Large or infinite state space s

Hard to construct DFA up front

[PLDI 2021]

Existing Solutions

4 A
Q What if the states are
explored one at a time?
_ Y,

Best result in online graph algorithms: O(sqrt m) per edge
[Bender, Fineman, Gilbert, Tarjan 2015]

Existing Solutions

4 A
9 What if the states are
explored one at a time?
_ Y,

Best result in online graph algorithms: O(sqrt m) per edge
[Bender, Fineman, Gilbert, Tarjan 2015]

Our main result: O(log m) per edge

Talk Outline

1. Motivation
2. Guided Incremental Digraphs (GID)

o Broadly applicable data structure for dead state detection
3. Algorithms
4. Evaluation

O 110-530x speedup over [BFGT 20195]

[PLDI 2021]

Motivation in Z3 ZB

2020 internship JdlegeNei

Research

Boolean regex constraints:
s matches R1 and R2 and ...
And does not match R4, RS, ...

[PLDI 2021]
Motivation in Z3

2020 internship JdlegeNei

Research

"The total number of invocations of

Boolean regex constraints: 28 Zelkova ranges from a few million to
a7 ens of millions in a single day"

s matches R1 and R2 and ... t e

And does not match R4, RS, ... + this year at CAV

[PLDI 2021]

Motivation in Z3
s matches R1 and R2 and ... lé

And does not match R4, R5, ...

Exponential blowup e
Too expensive! =

Motivation in Z3

s matches R1 and R2 and ...

And does not match R4, RS, .

=y -
What if we explore the
states one at a time?
~ — e T /
Exponential blowup e L
Too expensive! = 'ﬁ

[PLDI 2021]

23

[PLDI 2021]

Regex Derivatives l 5

Derivatives:

R=aX | b((22)" N Z(2)*)

O

[PLDI 2021]

Regex Derivatives z 5

Derivatives:

R=aX | b((22)" N Z(2)*)

[PLDI 2021]

Regex Derivatives z 5

Derivatives:

R=aX | b((22)" N Z(2)*)

[PLDI 2021]

Regex Derivatives z 5

Derivatives:

R=aX | b((22)" N Z(2)*)

[PLDI 2021]

Regex Derivatives z 5

Derivatives:

R=aX | b((22)" N Z(2)*)

[PLDI 2021]

Regex Derivatives Z 3

Derivatives:

R=aX | b((22)" N Z(2)*)

Lazy decision procedure —
very fast in practice!

[PLDI 2021]

Regex Derivatives z 5

Derivatives:

R=aX | b((22)" N Z(2)*)

Lazy decision procedure —
very fast in practice!

How do we detect dead
states? &)

How do we detect
Dead State Detection dead states? &)

Maintaining a topological order under edge insertions

Alberto Marchetti-Spacc: — T
Dipartimento di Informatica e Sistemistica, Un A New Approach to Incremental Cycle Detection ly
and Related Problems

4 Michael A. Bender Jeremy T. Fineman
Incremental CVCIE Detectio Department of Computer Science Department of Computer Science
Com ponent Maintenance Stony Brook University Georgetown University
BERNHARD HAEUPLER, Massach{ ,,, = SSR00 o ionce Robert B, Tarjan
TELIKEPALLI KAVITHA, Tata Instit{ nerional Unioeroi of Sgapore o
ROGERS MATHEW, Indian Institute Department of Computer Science
SIDDHARTHA SEN, Princeton Unive Princeton University
ROBERT E. TARJAN, Princeton Unit .

Dead State Detection

How do we detect

-

dead states? &

Dipartimento di Informatica e SistemizNjca, Un

Incremental Cycle Detecti

Component Maintenanc

BERNHARD HAEUPLER
TELIKEPALLI KAVITH
ROGERS MATHEW #dian Institute
SIDDHARTHA SEM, Princeton Unive

ROBERT E. TARJAN, Princeton Unit

proach to Incremental Cycle Detection
and Related Problems

Michael A. Bender
artment of Computer Science
ony Brook University

Jeremy T. Fineman
Department of Computer Science
George SRS

0bé

Department ¢
Prince

Dead State Detection

state_graph.cpp

state_graph.h

O(m) per edge

Dead State Detection

state_graph.cpp

state_graph.h

O(m) per edge

Fast forward 3
years...

Defining the Problem

Almost every problem that you come across is befuddled with all

kinds of extraneous data of one sort or another; and if you can

bring this problem down into the main issues, you can see more
clearly what you’re trying to do.

—~Claude Shannon

Simplifying...

Simplifying...

CCCCCC

Guided Incremental Digraph (GID)

O

Outgoing
edges not
allowed!

Closed

Guided Incremental Digraph (GID)

Live: can reach a
terminal state
Dead: not live and

all reachable
.@ states are closed

Closed

Solving the Problem

Solving the Problem

BFS/DFS: O(m) per update

Solving the Problem
BFS/DFS: O(m) per update

Maintain the graph as a set
of SCCs [BFGT2015]

- O(sqrt(m)) per update

Key insight

What information do we need for non-dead states?

Key insight

What information do we need for non-dead states?

Key insight

What information do we need for non-dead states?

O—®

Key insight

O—0O—
O—CO

Directed rooted
forest

Dealing with cycles?

Dealing with cycles?

O—0O—O
O—0O—0<F

Dealing with cycles?

O—0O—

Dealing with cycles?

O—0O—

O(m) to check for cycle

Dealing with cycles?

Q—O ’@ <: In the paper: O(log m) with

Euler-Tour Trees

Clever reduction to undirected reachability for undirected forests

Are we done?

Asymptotic complexity: O(log m) amortized per graph update

Are we done?

Asymptotic complexity: O(log m) amortized per graph update

Asymptotic complexity is not enough in practice

- Complex data structures are difficult to implement
- ...and they impose data structure overheads

Euler Tour Trees 1510
LoC

Are we done?

Asymptotic complexity: O(log m) amortized per graph update

Asymptotic complexity is not enough in practice

- Complex data structures are difficult to implement
- ...and they impose data structure overheads

Euler Tour Trees

Solution: A second, /azy algorithm — efficient in practice

1510
LoC

Evaluation

Evaluation

How does it perform compared to state-of-the-art online graph algorithms??

In the paper:

- How does performance change with the graph class?
- How does it perform on graphs from the Z3 regex application?

== Naive = = Simple BFGT == = Alg2 = Alg3

Evaluation
—~ 10000
2}
Green: Log(m) E
algorithm GEJ 1000
=
Lazy o 100
; o)
algorithm ©
:?’ 10
1
100 1000 10000 100000 1000000

Benchmark Size

High-level takeaways

e Online graph algorithms are useful in formal methods
e Incremental dead state detection is a natural problem that arises in
practical verification tools

e Asymptotic complexity is not always enough

Summary

Guided Incremental Digraphs
- Closed states: no more outgoing edges
New algorithms: for dead state detection

- Inlog(m) time
-+ practical improvements

Publicly available on GitHub and crates.io

- https://github.com/cdstanford/qid O

https://github.com/cdstanford/gid

Future Work

Does this generalize to other problems like minimization?

Lazy decision procedures for other contexts

(e.g., LTL and Buchi automata)

BFGT x Alg2 * Alg 3

= Naive ¢ Simple

Results

N e n

Hy R & EEE

10000

x

» K

xlxthlxw
o »
99 o
b4 e
R T b L ¥
X X OUQ?uQ*X**
X K x&**
on - w“lx xﬁ*ﬂ**
I x % X Jowa ™
X
. x Samm | *ﬁniﬁix
P 4 ® “x ‘i S ~ g
L 4 x
® eax eelx %
= PSR
= “ "= I&O &xwxi‘ X%
| | H %
] X X
m ¢ X O MQM*
[o X 0-0 B
B X L 2
' - 4 ”x xm M
o % = L
L m==e n Kl!’*ﬁ.m
[| "lxxl xx‘x 4
. "Tan (48 ¥ |
=] -lfllll xmbm 4
B mme xXx 1
By
o o o
o o -
o <~
-—
(sw) swiy

10000 100000 1000000

1000

Results — Q2 and Q3

Regex

+» Naive = = Simple BFGT === == Alg2 = Alg3

80 T

60

40

20 ~

Benchmarks Solved

0 : ! :

1 10 100 1000 10000

Time (ms)

Basic

Random

-+ Naive = = Simple BFGT == == Alg2 = Alg3
90 +

©

() -
< .

(o]

77 i - Gl - /. L i e T
(]

=

@©

£

L

[&]

c

V]

m

1 10 100 1000 10000
Time (ms)
= Naive = = Simple BFGT == == Alg2 = Alg3

400 T

Benchmarks Solved
- N w
o o o
o o o
1 L 1

o
S 3
-4
<

1 10 100 1000 10000

Time (ms)

