
Background and Motivation

Zero Cost Capabilities
Retrofitting Effect Safety in Rust

George Berdovskiy

Cap<A, B, C> {
 path: Path
}

● Capabilities wrap paths

○ Cap wraps Path and CapBuf wraps PathBuf

● Implementation prevents crates from modifying capabilities, which are provided
by the user as function arguments, and a script prevents capability creation

● Three generic type parameters describe capability permissions

○ Represented by tuples of permission types → enforced by type system

● We introduce the intuition of a safe crate, which…
○ Doesn't create capabilities
○ Doesn't use std::fs, functions accessing the file system in std::path,

or unsafe crates
● These rules can be enforced with a script
● Thus, crates that compile (via the script) should be safe crates

Safe

DAVIS PL

std::fs

Crate A
Unsafe
Crate B

Unsafe
Crate C

Safe
Crate A

Unsafe
Crate B

The trusted program calls foo, passing a capability with view and read permissions
as an argument. This function is defined in the "suspicious crate" and only accepts
capabilities with at least read permissions.

Assume we've verified that the suspicious crate is safe. Therefore, it must use
Coenobita to access the file system. Because foo cannot create capabilities or
modify the argument cap, it can only pass cap to other functions that accept
capabilities with read permissions.

Therefore, foo can only read file system resources. Attempts to circumvent this
rule will result in compiler errors.

pub fn foo<A1: traits::Read, A2, A3, C>(cap: C)
where
 C: AsRef<Cap<A1, A2, A3>>
{
 let _result = fs::read(cap);
}

Suspicious Crate

pub fn read<A1: traits::Read, A2, A3, C>(cap: C) -> Result<Vec<u8>>
where
 C: AsRef<Cap<A1, A2, A3>>
{
 fs::read(cap.as_ref().to_path())
}

Coenobita

Trusted Program

use suspicious_crate::foo;
foo(cap!("some/path.txt" with (View, Read)));

We ported the crates walkdir and remove_dir_all to Coenobita for evaluation.
We focus our efforts on walkdir because it's more complex.

Running benchmarks on walkdir's test suite
indicates minimal difference in performance

between the original and ported crates.

walkdir
walkdir-coenobita

Many line modifications were required, but most were achieved using simple
search-and-replace commands and involved the addition of generic type parameters
or trait bounds -> Coenobita is practical.

Memory Safety
Ownership
Lifetimes

Effect Safety→
Supply Chain

Attacks

● Investigate whether it's possible to prevent supply chain attacks by retroactively
enforcing side effect safety

○ Accomplished using capabilities – unforgeable tokens representing file system
resources and permitted actions

● Three design objectives – static enforcement, zero-cost abstractions, and
unobtrusiveness

● We introduce Coenobita, a Rust library that prevents undesirable file system side
effects using capabilities

Design

Path

Example

impl<P1, P2, P4, P5, P6, P7, P8> traits::Read
for (P1, P2, Read, P4, P5, P6, P7, P8) {}

● Thus, crates can only access specific, immutable locations with specific,
immutable permissions that are checked by the compiler

○ Crates should only compile when all capability safety rules are followed!

Evaluation

File Original Lines Lines Added Lines Modified
lib.rs 1186 3 65

dent.rs 352 2 30

error.rs 262 25 20

Related Work

● Languages (and language extensions) enforcing capability safety…
○ Safe Haskell - David Terei, Simon Marlow, Simon Peyton Jones, David Mazières
○ Shill - Scott Moore, Christos Dimoulas, Dan King, Stephen Chong
○ Scala (language extension) - Martin Odersky, Aleksander Boruch-Gruszecki,

Edward Lee, Jonathan Brachthäuser, Ondřej Lhoták
○ E - Mark Samuel Miller

