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1 BACKGROUND ANDMOTIVATION
Over the last several years, the Rust programming language has gathered a following among
software developers for its robust memory safety features. These features are attractive because
memory safety vulnerabilities are widespread, especially in C and C++ codebases. Four years ago,
the Chromium security team reported that memory safety problems were responsible for around
70% of the browser’s severe security bugs [14]. By enforcing ownership and lifetime rules, Rust
eliminates a broad category of security vulnerabilities.

Nevertheless, the Rust language remains susceptible to potentially harmful side effects in untrusted
code. Some languages mitigate this vulnerability using type systems, encapsulation, and abstraction.
Haskell prevents most harmful side effects by confining them within monads like IO, and Safe
Haskell eliminates them entirely by closing loopholes involving unsafe functions [15]. Therefore,
Safe Haskell is impervious to supply chain attacks, which occur when programmers use malicious
packages or libraries in their codebases. However, because Haskell is purely functional, it’s not the
ideal choice in contexts where performance is critical, including most low-level systems software.

Rust is more suited for such purposes, but since it doesn’t guard against harmful side effects,
it’s vulnerable to supply chain attacks. We wish to investigate whether it’s possible to prevent
them by retroactively enforcing side effect safety. Our goal is to accomplish this using capabilities,
unforgeable tokens that represent resources and the actions their holders can take. Capabilities
have been studied numerous times in the context of programming languages; prominent examples
include the E language for robust distributed systems [11], Shill for secure script execution [12], and
an extension to Scala that limits polymorphic effects [13]. We have three specific design objectives:

(1) Capabilities should be enforced statically asmuch as possible tominimize runtime overhead,
excluding aspects of object capabilities that require dynamic enforcement, like revocation.

(2) Capabilities should be zero-cost, consuming no more computational resources than their
standard library equivalents.

(3) Capabilities should be as unobtrusive as possible.

To accomplish these goals, we introduce Coenobita, a Rust library that prevents undesirable side
effects using capabilities. To make the problem tractable, we currently focus only on file system
side effects, but plan to consider others in future work. Coenobita replaces standard library file
system data structures, traits, and functions with capability-safe versions. For example, instead of
using Path or PathBuf directly, we wrap it with Capability<A, B, C>, where the generic type
parameters represent permissions associated with the underlying file system resource. We take
advantage of Rust’s type and trait systems to prevent crates with rule violations from compiling.
Coenobita is developed under an open source license and will be made available through GitHub.

2 DESIGN
Coenobita leverages Rust’s powerful type and trait systems to enforce capability safety. Its core data
structure is Capability<A, B, C>, which wraps PathBuf and associates it with three generic type
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pub fn read<P1: traits::Read, P2, P3>(

cap: &Capability<P1, P2, P3>

) -> io::Result<Vec<u8>> {

fs::read(cap.get_path())

}

(a)

// Creating and using a capability

let result = read(

&cap!("some/path.txt" with (Read, Write, Append))

);

(b)

Fig. 1. (a) Function taking a capability and (b) capability creation using cap!

parameters. These parameters represent intransitive resource permissions, intransitive descendant
permissions, and transitive descendant permissions respectively. The first type describes allowed
actions on the resource itself. The second type describes actions permitted on the resource’s
immediate descendants. The third describes allowed actions on any descendant of a resource. Each
permission set communicates whether holders of this capability are permitted to create, view, read,
write, append, copy, move, or delete the referenced resource and its children.

2.1 Zero-Cost
Coenobita’s abstractions aim to be zero-cost. In other words, they should have the same performance
as their standard library counterparts. Coenobita achieves this by making it possible to statically
enforce capability safety rules during compilation, leaving runtime unaffected. One reason
for that is the use of empty structures and wrappers that require the same amount of memory as
their wrapped value. Another reason is that programs with invalid capability interactions fail to
compile until the violations are resolved because of unsatisfied trait bounds, missing type arguments,
mismatched types, and other errors.

Due to clever inlining and optimization on behalf of the Rust compiler, Coenobita’s functions
and data structures typically simplify to their wrapped standard library equivalents. In other
words, a compiled program using std::fs will have nearly identical performance using Coenobita
instead. For instance, the compiler will simplify both std::fs::read and coenobita::fs::read
to std::fs::read’s internal logic, which can be determined by inspecting the call graph.

2.2 Safety
Programmers create capabilities using the cap! macro, which takes a resource path and chosen
permissions, as in Figure 1. This macro expands to the initialization of a Capability struct, which
would be tedious to write manually. For untrusted crates to be free from harmful side effects, we
must prevent them from creating capabilities.

To solve this problem, we plan to implement a simple program that parses untrusted crates and
disallows compilation if they use cap! or manually initialize capabilities. The program will also
prevent crates that import std::fs or std::path from being compiled since they are unsafe.

3 EVALUATION
To evaluate Coenobita’s practicality and effectiveness, we conducted two case studies porting
popular Rust crates walkdir and remove_dir_all to Coenobita. Our evaluation seeks to address
three questions: (Q1) Is Coenobita feasible as a drop-in replacement for std::fs in Rust crates,
(Q2) what is the programming overhead, and (Q3) what is the performance overhead?

Our case studies followed this general process: we replaced PathBuf and Pathwith Capability<A,
B, C> or a reference to Capability. Since functions in Coenobita and std::fs have otherwise
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Fig. 3. Comparison of corresponding function runtime between walkdir and coenobita-walkdir

identical signatures, rewriting calls to functions in std::fs was unnecessary in most cases. Thus,
we believe Coenobita is feasible as a drop-in replacement for fs in practical Rust crates (Q1).

3.1 Programming Overhead
Implementing capability safety with Coenobita requires few additional lines. In both crates, line ad-
ditions were usually the result of implementations requiring specific permission trait bounds. Many
lines needed modification as seen in Figure 2, but since most edits were made using simple search
and replace commands in Vim, we believe Coenobita introduces only minor programming
overhead (Q2).

3.2 Performance Overhead
File Lines Changed
lib.rs 138
dent.rs 46
error.rs 58

Fig. 2. Number of lines changed
in each file of walkdir, including
additions and formatting

We evaluated performance overhead for the modified walkdir and
remove_dir_all crates by running benchmarks on their provided
test cases. Our results showed that Coenobita doesn’t signifi-
cantly increase runtime performance (Q3). Figure 3 compares
runtimes for all 46 tests in walkdir’s test suite. All benchmarks ran
on a MacBook Pro 2021 using macOS Monterey 12.5.1 equipped
with an Apple M1 Pro processor and 16 GB of memory.

4 RELATEDWORK
The concept of capabilities first arose in discussions involving access control, including works by
Henry M. Levy on secure computer systems [9] and Butler W. Lampson on operating systems and
confinement [8] [7]. Early ideas on the subject were unified into the object-capability model by Mark
S. Miller in his dissertation on the robust composition of distributed systems and the E language [11].
Few projects have explored the potential of capabilities in Rust aside from the cap-std crate, which
only provides coarse-grained capabilities at the directory level, lacking fine-grained control at the
file level [1].

Aside from the E language, capabilities as a tool for enforcing safety in language design have
also been used in Shill, a modified version of Racket that adapts capabilities and introduces the
concept of contracts [12]. The Safe Haskell language extension is broader in focus but has significant
conceptual overlap and could easily implement capabilities [15]. Most investigations into Rust
safety involve, for example, sandboxing and isolating unsafe code [2–6, 10] or proving its memory
safety [3, 4] but do not emphasize language design and do not consider more general side effects.
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