
RISC-V Console: A Containerized RISC-V Based Game Console
Emulator for Education

Christopher Nitta
Department of Computer Science
University of California, Davis

Davis, CA, USA
cjnitta@ucdavis.edu

Aaron Kaloti
Department of Computer Science
University of California, Davis

Davis, CA, USA
apksingh@ucdavis.edu

Shuotong Wang
Department of Electrical and

Computer Engineering
University of California, Davis

Davis, CA, USA
vstwang@ucdavis.edu

ABSTRACT
The rapid transition to online education due to the COVID-19
pandemic left many instructors needing to redesign their course
projects as students no longer had access to physical hardware.
This paper describes the development of an open-source container-
ized RISC-V based game console emulator that replaced physi-
cal hardware for use in course projects. The tool was initially
designed and used in a graduate operating systems course and
then subsequently used in a lower division computer organiza-
tion and machine-dependent programming course. The container
provides a full toolchain with gcc compiler, RISC-V game console
emulator with integrated debugger, example program, and input
recording/auto-run tool designed for auto-grading. The use of a
container reduced the barrier to entry for the students allowing
them to get up and running in a relatively short period of time.
Given the successful deployment of the tool in the previous courses,
the tool was used both again in the lower division course and in
the upper division undergraduate operating systems course this
past fall.

CCS CONCEPTS
• Social and professional topics → Computer science edu-
cation; Computational science and engineering education;
• Computing methodologies → Simulation tools.

KEYWORDS
RISC-V, emulator, autograder
ACM Reference Format:
Christopher Nitta, Aaron Kaloti, and ShuotongWang. 2022. RISC-V Console:
A Containerized RISC-V Based Game Console Emulator for Education. In
Proceedings of the 27th ACM Conference on Innovation and Technology in
Computer Science Education Vol. 1 (ITiCSE 2022), July 8–13, 2022, Dublin,
Ireland. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3502718.
3524791

1 INTRODUCTION
The rapid transition to online education due to the COVID-19
pandemic left many instructors needing to redesign their course

This work is licensed under a Creative Commons
Attribution International 4.0 License.

ITiCSE 2022, July 8–13, 2022, Dublin, Ireland.
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9201-3/22/07.
https://doi.org/10.1145/3502718.3524791

projects as students no longer had access to physical hardware on
campus. Given the availability of relatively inexpensive hardware
such as the Rasperry Pi one might expect an instruction could
request the students to purchase their own hardware; the fact that
students were spread throughout the world during the pandemic
removed the student purchase of hardware as a viable option. Many
full system emulators exist such as QEMU [1], VirtuaBox, and even
full system simulators such as gem5 [7] are available; however, each
system comes with their disadvantages, such as speed of simulation,
lack of desired I/O, etc. It was the challenges presented from online
education combined with a lack of an ideal solution that led to the
development of the RISC-V Console Emulator (RVCE).

Since the development of the RVCE it has been used in multiple
offerings of a lower division computer organization and machine-
dependent programming course as well as upper division and grad-
uate level operating systems courses at our institution. Currently,
there are plans to continue using the RVCE in future offerings of
the courses. The details of the RVCE design and capabilities are
provided in this paper. The remainder of this paper is organized
as follows. Section 2 provides some background on the rationale
for the development of the RVCE, which is followed by the work
most related to this effort in Section 3. A description of the RVCE
design and features appears in Section 4. Section 5 discusses course
experiences with the RVCE. We conclude in Section 6 and provide
comments on planned feature improvements.

2 BACKGROUND
In preparing for ECS 251 Operating Systems, we looked to revamp a
term long group project using a Rasperry Pi with one that used only
software tools and could be completed individually. The project
was reworked from having a group of students develop an OS
and network connected application to a project where individual
students would design their own OS for a theoretical cartridge
based game console. In an effort to promote open systems and to
align with other courses offered in the department we decided that
the emulated processor should be RISC-V [12] based. RISC-V was
designed with research and education in mind, but is growing in
industry use. Faculty in our department have been adopting RISC-
V for their courses when appropriate as the base Instruction Set
Architecture (ISA) is small and real systems are being built using
the RISC-V ISA. Initially QEMU[1] was planned for the basis of
the game console emulator; however, after further investigation
this plan was abandoned in favor of developing emulated hardware
from scratch. The design of QEMU (as well as other emulators)
is to support more general purpose systems that have Memory

Session: Digital tools ITiCSE 2022, July 8–13, 2022, Dublin, Ireland

145

https://doi.org/10.1145/3502718.3524791
https://doi.org/10.1145/3502718.3524791
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3502718.3524791

Management Units (MMUs) and to support real existing hardware.
We desired to have a system that only supported machine mode, and
had non-standard hardware such as a palletized video controller.
The desire to support non-standard simplified hardware was driven
by a concern that real hardware would likely push students to
just design a simplified Linux in order to be able to reuse existing
open-source drivers. In addition, since the system was designed
to have a single application running at a time removing the MMU
would simplify the OS implementation, a concern due to the shorter
10-week term at our institution.

3 RELATEDWORK
The work that is most related to RVCE that we are aware of differ
from our work in one of several ways: it emulates a processor other
than RISC-V, it was not designed with the intent of primarily being
educational use, or its design has a different purpose. There have
been many emulators designed and used over the decades; however,
we will briefly discuss the differences between the µARM [9] and
µMPS [4–6] line of work. The µARM emulator is an ARM7tdmi-
based system emulator/architecture that was designed for the pur-
pose of being appropriate for undergrad education. JaeOS [9] was
presented along with µARM as a system framework students to
work on their own operating systems. Kaya [6] is an OS designed
for teaching OS and runs on µMPS a MIPS R3000 emulator. Sup-
port for multiple processors was added to µMPS2 [5], and more
recently the µMPS3 [4] (a non-backward compatible redesign) was
released along with the publication of the Pandos Project. RVCE
differs from µARM and µMPS most obviously in that they emulate
ARM and MIPS respectively as opposed to RISC-V, but also RVCE
is focused on more of an embedded system instead of a general
purpose machine.

As stated previously QEMU/RISC-V [10] was considered as the
basis for the emulator. The existing support for RISC-V on QEMU is
focused on the products available from SiFive Inc. Since the existing
configurations were designed with the actual hardware boards in
mind, we believed that modifying QEMU/RISC-V to meet our vision
would have been a greater development effort than our ground up
solution. The RISC-V support on QEMU was also not designed
with students being the expected user (unlike the µMPS work). The
RVCE was designed with students in mind.

There are at least two other RISC-V emulators/simulators de-
signed for education; however, the two that we are aware of Web-
RISC-V [3] and DINO CPU [8] are not suitable for needs of ECS 251.
WebRISC-V is a web-based pipeline simulation of a RISC-V imple-
mentation. The microarchitectural details provided by WebRISC-V
are unnecessary for needs of ECS 251, and are better suited for a
computer architecture course. Along the lines of WebRISC-V, the
DINO CPU is a pipelined implementation of RISC-V designed for
teaching computer architecture courses. While the DINO CPU has
a single cycle version, the implementation in Chisel and the amount
of simulated detail of the DINO CPU makes the performance of
emulating a system similar to RVCE infeasible.

4 RISC-V CONSOLE EMULATOR DESIGN
The RVCE was designed with the goal of providing a cross-platform
compatible game console emulator with students being the primary

user. The RVCE is completely open-source and is available at https:
//github.com/UCDClassNitta/riscv-console. Considering that the
RVCE was designed to be used by students to develop software, a
full development toolchain was also necessary to be packaged in
with the repository. This remainder of this section describes the
RVCE emulated hardware, the container and toolchain packaging,
and the auto-grading support.

4.1 Hardware Emulator
The RVCE is designed to compile and run on a Linux environment
that supports GTK+3 [11]. The RVCE code is written in C++ using
the 2014 standard and gtk+-3.0 is the only package dependency at
this time. While the RVCE source may be compiled directly on OS-
X, Windows, Cygwin or other systems if the appropriate packages
are installed, it will compile and run within the Docker container
described later in Section 4.2. The RVCE can be run in one of two
modes, either normal or debug mode. In normal mode, the RVCE
provides only the video display, controller buttons, power/reset
buttons, and buttons to load firmware and cartridge Executable
and Linkable Format (ELF) files. In debug mode, the RVCE also
provides displays for CPU registers, Control and Status Registers
(CSRs), instruction disassembly, and memory window. Figure 1
shows a screenshot of the RVCE in debug mode. The black box
with “Hellow World!X" in it in the upper left is the video display,
directly below it are the buttons for the multi-button control pad
(w, x, a, d for up, down, left, and right, and u, i, j, k for buttons 1 -
4), and the power/reset and load buttons. Figure 2 illustrates what
the multi-button controller might look like if fabricated; the letters
on the RVCE buttons are the currently mapped keys so that the
keyboard keys can be utilized as buttons instead of requiring the
mouse the press the buttons. The left side of the window constitutes
what is displayed in normal mode. The addition debug section
on the right is only available in debug mode. The CPU registers
are displayed at the top right-hand side of the window with the
instruction disassembly, and CSRs below. The memory window
is on the bottom right with buttons to quickly reposition to the
base of the firmware (FW button), cartridge (CTR button), chipset (CS
button), video memory (VID button), global pointer (GP button) or
the top of the stack (SP button). In debug mode breakpoints can be
set/cleared by double-clicking on an instruction in the disassembly
window. The Run toggle button will run the system, this button is
also responsible for stopping the system when it is running. The
debugger allows for single stepping via the Step button, and also
allows for recording of all controller inputs via the Record button.
Recording of inputs was designed with auto-grading in mind, auto-
grading is discussed further in Section 4.3.

4.1.1 RISC-V Processor. The main emulated processor of the RVCE
is a RISC-V RV32EM [12]. The processor is the same as the base
RV32I except that it has only 16 registers instead of 32. In addition,
the processor supports the M standard extension Integer Multipli-
cation and Division, and the ZiCSR Control and Status Register
extensions. The RVCE supports only Machine privilege mode, so
that “game" will be able to directly access all emulated hardware.
Currently, the RVCE decodes and executes each instruction for
the RV32EM and is capable of emulating in excess of 20MHz on

Session: Digital tools ITiCSE 2022, July 8–13, 2022, Dublin, Ireland

146

https://github.com/UCDClassNitta/riscv-console
https://github.com/UCDClassNitta/riscv-console

Figure 1: Screenshot of RISC-V Console Emulator in Debug Mode

Figure 2: Theoretical Emulated Multi-button Controller

a 2.4Ghz Intel Core i9-9980HK. While the 2.4Ghz Intel Core i9-
9980HK may be a relatively high performance processor by today’s
standards, in our experience students did not have issues with em-
ulation speed on their machines. Dynamic binary translation could
dramatically increase the emulated speed; however, for the pur-
poses of the instruction the current emulated speed is more than
enough to maintain real-time performance.

4.1.2 Memory. The main components of the memory mapped em-
ulated hardware are the flash memory, RAM, chipset, cartridge and
video controller. Table 1 shows the layout of memory within the
emulated system. The firmware flash, cartridge ROM, and main
memory RAM are all 16MiB in size; while RAM can contain the en-
tirety of either the flash or ROM, execution from RAM is disallowed.
The firmware flash is designed to be accessed in a single cycle, so
migration of instructions to RAM is not necessary. The game car-
tridges consist of ROM and will hold the “game” application on

Table 1: RISC-V Console Emulator Memory Layout

Base Address Size Description
0x00000000 0x1000000 (16MiB) Firmware Flash
0x20000000 0x1000000 (16MiB) Cartridge ROM
0x40000000 0x40 (64B) Chipset Registers
0x50000000 0x100000 (1MiB) Video Controller
0x70000000 0x1000000 (16MiB) RAM

them. When inserted into the system (ELF file is loaded) the ROM is
mapped directly into memory and can be read in a single cycle just
as flash memory can. The insertion or removal of a cartridge can
generate an interrupt through the chipset, and the current status
can be determined through a memory mapped register.

4.1.3 Chipset. The console has a chipset that controls the inter-
rupts and system timer as well as provides access to read the status
of the controller buttons. Table 2 shows the layout of registers
within the chipset. The Machine Time and Machine Time Compare
are 64 bit registers (mtime and mtimecmp) defined in the RISC-V
Privileged Spec [13]. The Cartridge Status register specifies if the
cartridge is inserted or not, and contains the entry point to the
cartridge application; this means that the ELF e_entry [2] can be
used instead of requiring that the entry point always be at a fixed
location. The console chipset has two integrated DMA channels
that are each capable of transferring up to 16,777,215 bytes in a
transfer request. Once initiated the DMA channel will transfer up
to 32-bits per CPU cycle until the transfer has been completed. In
addition to the DMA channels, the Machine Time clock as well

Session: Digital tools ITiCSE 2022, July 8–13, 2022, Dublin, Ireland

147

Table 2: Chipset Memory Layout

Base Address Size Description
0x40000000 0x4 (4B) Interrupt Enable Register
0x40000004 0x4 (4B) Interrupt Pending Register
0x40000008 0x8 (8B) Machine Time
0x40000010 0x8 (8B) Machine Time Compare
0x40000018 0x4 (4B) Controller Status Register
0x4000001C 0x4 (4B) Cartridge Status Register
0x40000020 0x20 (32B) DMA Registers
0x40000024 0x4 (4B) Machine Clock Period Register
0x40000028 0x4 (4B) Video Clock Period Register

as the video controller clock period can be controlled through the
chipset registers.

4.1.4 Video Controller. The video controller is responsible for ren-
dering the graphics for the console. The video controller has 1MiB
of memory and renders a 512 × 288 (16:9 aspect ratio) screen. The
video controller has two modes: a text mode and a graphics mode.
The default of the video controller is to start in text mode that pro-
vides 64 × 36 characters each of 8 × 8 pixels. The video controller
has a built-in MSX font that is loaded into the font memory upon
reset. The text mode is capable of rendering up to 256 different
characters, but by default the MSX font only supports the printable
ASCII characters from ‘!’ to ‘∼’. The graphics mode provides sup-
port for five “background" full resolution images, 64 large sprites
(each up to 64 × 64 pixels in size), and 128 small sprites (each up to
16 × 16 pixels in size). All images support 256 unique colors from a
32-bit RGBA palette. There are four background palettes and four
sprite palettes, so all images displayed do not need to share a global
palette.

4.2 Container and Toolchain
The RVCE and toolchain have been set up to run within a Docker
container. The decision to containerize the project was driven by a
desire to have students up and running with very few commands;
in addition, containerizing the toolchain allows for a common plat-
form for all students to work within. In order to get up and running
one will need Docker, X-11 support and a bash shell on their ma-
chine. PowerShell on Windows is also supported for those that
don’t have a bash shell. Using a single bash script rvconsole.sh
(or rvconsole.ps1 for PowerShell) one can start the entire pro-
cess. During the first run of the script, the base RISC-V Docker
image riscv_base that has the RISC-V build toolchain will be
pulled. This process can take a noticeable amount of time, poten-
tially on the order of minutes as it is pulling several GB; fortu-
nately, this should only have to be done once. Once the base im-
age is pulled the RISC-V development environment Docker image
riscv_console_dev will be built. The riscv_console_dev image
builds upon the riscv_base image and should build quickly. The
riscv_console_dev image adds the necessary packages for buil-
ing the RVCE within the container. Once the riscv_console_dev
image is built the script will launch a container name riscv_-
console_run. When the container is launched the current direc-
tory is mounted as the /code directory of the container allowing

for source files to be edited on the host machine as well as within
the container. Once the container is up and running, the user will
be a bash shell prompt within the container and can exit using
exit command. Subsequent runs of rvconsole.sh will restart the
riscv_console_run container assuming no changes have been
made to the Docker files.

The Docker container that is created with rvconsole.sh script
is designed to have all packages necessary to compile the RVCE. The
script is also designed to allow X11 forwarding out of the container
so that the RVCE can be compiled and run inside the container.
Once at the /code# prompt, one can launch the RVCE by running
the runsim.sh bash script within the container. If the RVCE has
not already been built, the script will build the application.

4.3 Auto-grading Support
The RVCE supports auto-grading using two main parts: input
recording, and auto-running. The purpose of the input recording
allows for an instructor to run a working example, and to record
the inputs while running the example. The auto-runner allows for
running the RVCE using inputs that were previously recorded, this
allows for testing of students code.

4.3.1 Input Recording. The first is the recording of input described
earlier in Section 4.1. The recorder is integrated into the RVCE
debug mode and can be activated by clicking the Record toggle
button. Once pressed, the RVCE will be switched into recording
mode and will store all button actions along with the absolute cycle
number since Run toggle button was pressed. When the Record
toggle button is depressed again the user will be prompted of where
to save the file. The input recording is output in JSON format.

4.3.2 Auto-Runner. Auto-Runner allows for the RVCE to run on
previously recorded inputs. The auto-runner does not launch the
GUI, but runs as a command line program only. The auto-runner
takes in two optional arguments: input JSON file path, and out-
put JSON file path. The auto-runner program by default will use
input.json and output.json file in current directory if no argu-
ment is specified. In addition to supporting all inputs, the auto-
runner also supports outputting the status of registers and memory.
While it is possible to manually construct an input JSON file since
they human-readable, we envision that most instructors would opt
to record input and potentially make small alterations if needed.
The ability to output registers, and sections of memory (including
video memory) allows for instructors to compare the resulting state
of the RVCE after running a student’s program without needing to
manually load each student’s program through the RVCE GUI one
at a time.

5 COURSE EXPERIENCE
As stated previously while preparing for ECS 251 we looked to
replace the group project that used actual hardware with one that
could be completed individually. The RVCE was developed so that
students in ECS 251 could design their own embedded OS to sup-
port future cartridge based games. Despite development of RVCE
continuing into the term in which it was first being used, we found
that the development environment turned out to be quite reliable

Session: Digital tools ITiCSE 2022, July 8–13, 2022, Dublin, Ireland

148

considering the wide range of systems students were using. In ad-
dition, the feedback from the students were quite favorable with
course evaluations showing comments such as “Project was a great
way to get us to understand OS”, “Project helped me learn a lot
about operating systems”, and “project is fun”.

Given the successful deployment of the RVCE in ECS 251, we
decided to use it in ECS 50 Computer Organization and Machine-
Dependent Programming for one of the assignments the following
term. Initially the plan had been to cover more on RISC-V and to use
the RVCE for multiple assignments; however, due to too much time
being spent on x86-64 we ended up using RVCE for only a single I/O
assignment. The students were tasked with making several modifi-
cations to the C code example provided in the repository. To make
the modifications, the students had to sufficiently understand how
the example program worked as they were tasked with changing
the control from the direction buttons to the numbered buttons. We
felt that it provided a great way for students to experience writing
I/O related code in a “high-level” language.

This past fall we focused primarily on RISC-V and then switched
to x86-64 later on in ECS 50. This change meant that the students
received much more exposure to I/O and interrupts using the RVCE.
The two initial RISC-V assignments were small, basic assignments
that had the students write small programs or functions. The third
RISC-V assignment utilized I/O and interrupts allowing for more
exposure to hardware that students had received prior to the use
of RVCE. Initially the plan was to have the students implement a
game; however, the assignment was not quite ready in time for use
this past fall. Given the flexibility of the RVCE, many games could
be the basis for assignments and we plan to develop multiple for
use in future courses.

In addition to using RVCE in ECS 50 this past fall, we also used
it in our upper division undergraduate ECS 150 Operating Systems
and Systems Programming course. The previous assignments that
built a “VM” layer on top of Linux were reworked to run on the
RVCE. The previous assignments utilized multiple processes in or-
der to provide the illusion of hardware working in parallel; however,
this approach limited the ability to autograde the assignments. The
previous assignments also were limited in that they did not have
the students interact with hardware. The reworked assignments for
ECS 150 had the students develop support for threads, synchroniza-
tion mechanisms, memory management of the heap, and ultimately
support for the graphics hardware.

In both ECS 50 and ECS 150 there was a desire to increase the
exposure to interfacing with hardware and to increase a knowl-
edge of RISC-V. To assess the student’s perception of the RVCE
we surveyed both courses about the assignments, the RVCE, and
their confidence of working on real hardware. There were 90 and
115 respondents to the survey, corresponding to response rates
of 79% and 85% of the enrolled students in ECS 50 and ECS 150
respectively. The survey questions utilized a five point Likert scale
ranging from Strongly Disagree to Strongly Agree. Figure 3 shows
the results of the survey statement “My knowledgeable of RISC-
V has improved because of the assignments that used the RVCE.”
Overall the students agreed that their knowledge increased because
of the assignments using RVCE. Figure 4 shows the results for the
survey statement “The RVCE aided in my understanding of RISC-V.”
Like the previous statement the students agreed that the RVCE

0%
10%
20%
30%
40%
50%
60%
70%

Strongly
Disagree

Disagree Neither
Agree/

Disagree

Agree Strongly
Agree

Pe
rc

en
t o

f R
es

po
nd

en
ts

My knowledgeable of RISC-V has improved because of
the assignments that used the RVCE.

ECS50 ECS150 ALL

Figure 3: ECS 50 & ECS 150 Survey Results (Assignments)

0%
10%
20%
30%
40%
50%
60%
70%
80%

Strongly
Disagree

Disagree Neither
Agree/

Disagree

Agree Strongly
Agree

Pe
rc

en
t o

f R
es

po
nd

en
ts

The RVCE aided in my understanding of RISC-V.
ECS50 ECS150 ALL

Figure 4: ECS 50 & ECS 150 Survey Results (RVCE)

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%

Strongly
Disagree

Disagree Neither
Agree/

Disagree

Agree Strongly
Agree

Pe
rc

en
t o

f R
es

po
nd

en
ts

I feel more confident about working on real hardware
because of the assignments that used the RVCE.

ECS50 ECS150 ALL

Figure 5: ECS 50 & ECS 150 Survey Results (Hardware)

aided in their understanding; however, the ECS 50 students found
that it aided them more than the ECS 150 students. The fact that
ECS 50 is a requirement for ECS 150 it is not necessarily surpris-
ing that ECS 150 students agreed less with the statement as they
may have learned more about RISC-V during their ECS 50 course.
Figure 5 shows the results of the survey statement “I feel more
confident about working on real hardware because of the assign-
ments that used the RVCE.” Students agreed that they felt more
confident about working on real hardware; however, the strength
of the agreement was not as strong as for the other two statements.
The survey results indicate that the students generally believe that
the assignments utilizing the RVCE increased their comfort with
working on hardware and aided in increasing their knowledge of
RISC-V.

6 CONCLUSIONS AND FUTUREWORK
The successful deployment of RVCE in multiple courses and span-
ning from lower division to graduate level leads us to believe that
is a suitable for university level computer science education. As

Session: Digital tools ITiCSE 2022, July 8–13, 2022, Dublin, Ireland

149

stated previously we plan to continue using it in future offerings of
our courses and have identified features for further expansion. The
features that we have identified for future expansion and believe
are worthy of mentioning here fall into three categories: increased
auto-grading support, increased platform support, and additional
emulated hardware.

The first and most likely highest priority feature that we would
like to provide is to add a GUI dialog to specify any output com-
mands. Currently, the output commands specified in the input JSON
files must be added manually after recording. Being able to quickly
select the registers and/or memory sections that the instructor
would like to compare would greatly aid in the workflow. Along the
lines of auto-grading support we believe that adding a Dockerfile
and associated scripts to aid in Gradescope programming assign-
ment integration would be greatly beneficial to the community. The
Gradescope integration is likely slated to be developed during the
fall term as the current plan is to utilize the RVCE in more courses.
The last feature associated with auto-grading is to add support for
outputting screen rendering in graphics mode. The actual image
rendered to the screen can be accomplished in many ways, for
example background 0 or 1 could be used with the other disabled
and the resulting image would be the same with the contents of the
video memory being vastly different. If an instructor is attempting
to assess the contents actually displayed on the screen the current
output capabilities would make that difficult. Additionally, we have
considered if the screen rendering output should be as hex in the
output JSON file, or if the image should be rendered to a PNG. We
plan to further investigate this over the coming year.

Currently, Windows, OS-X, and Linux are supported through
the use of a Docker container; however, Docker requires superuser
access on Linux in order to run, likely preventing students from
running it on shared instructional systems. We plan to add support
through a Singularity container as well; this would provide the
ability for students to launch the container on shared systems in
which they have limited access rights. In addition, it could be highly
beneficial to add support for a native GUI on Windows and OS-X
so that students may directly install the RVCE.

The other features we would like to add are related to additional
emulated hardware. The first piece of hardware we believe could
be beneficial is a UART type device. By providing a UART interface
that was connected to a standard in and out would provide users
another debug interface that could be utilized during development.
In addition, by having a UART type interface that is connected
to the host system, users of the RVCE could in theory network
instantiations and actually have multiplayer games. The final piece
of emulated hardware that we see would improve the RVCE is to
add audio support. Due to difficulties in connecting audio to Docker
containers on some platforms, this remains a larger development
effort that it may initially appear; however, we hope to eventually
support this and the other features.

7 ACKNOWLEDGMENTS
We would like to acknowledge the 45 graduate students in ECS
251, 222 undergraduate students in ECS 50, and 136 undergraduate
students in ECS 150 who were the first users of RVCE. Specifically

we would like to thank Xiaoyi “Eric” Li who discovered and fixed
so many of RVCE’s early bugs.

REFERENCES
[1] Fabrice Bellard. 2005. QEMU, a Fast and Portable Dynamic Translator. In 2005

USENIX Annual Technical Conference (USENIX ATC 05). USENIX Association, Ana-
heim, CA. https://www.usenix.org/conference/2005-usenix-annual-technical-
conference/qemu-fast-and-portable-dynamic-translator

[2] TIS Committee. 1995 [Online].. Tool Interface Standard (TIS) Executable and
Linking Format (ELF) Specification. https://refspecs.linuxfoundation.org/elf/elf.
pdf

[3] Roberto Giorgi and Gianfranco Mariotti. 2019. WebRISC-V: A Web-Based
Education-Oriented RISC-V Pipeline Simulation Environment. In Proceedings
of the Workshop on Computer Architecture Education (WCAE’19). Association
for Computing Machinery, New York, NY, USA, Article 3, 6 pages. https:
//doi.org/10.1145/3338698.3338894

[4] Mikey Goldweber, Renzo Davoli, andMattia Biondi. 2021. The Pandos Project and
the µMPS3 Emulator. In Proceedings of the 26th ACM Conference on Innovation
and Technology in Computer Science Education V. 1 (ITiCSE ’21). Association for
Computing Machinery, New York, NY, USA, 122–128. https://doi.org/10.1145/
3430665.3456331

[5] Michael Goldweber, Renzo Davoli, and Tomislav Jonjic. 2012. Supporting Op-
erating Systems Projects Using the µMPS2 Hardware Simulator. In Proceedings
of the 17th ACM Annual Conference on Innovation and Technology in Computer
Science Education (ITiCSE ’12). Association for Computing Machinery, New York,
NY, USA, 63–68. https://doi.org/10.1145/2325296.2325315

[6] Michael Goldweber, Renzo Davoli, and Mauro Morsiani. 2005. The Kaya OS
Project and the <i>µ</i>MPS Hardware Emulator. In Proceedings of the 10th
Annual SIGCSE Conference on Innovation and Technology in Computer Science
Education (ITiCSE ’05). Association for Computing Machinery, New York, NY,
USA, 49–53. https://doi.org/10.1145/1067445.1067462

[7] Jason Lowe-Power, Abdul Mutaal Ahmad, et al. 2020. The gem5 Simulator:
Version 20.0+. arXiv:cs.AR/2007.03152

[8] Jason Lowe-Power and Christopher Nitta. 2019. The Davis In-Order (DINO) CPU:
A Teaching-Focused RISC-V CPU Design. In Proceedings of the Workshop on Com-
puter Architecture Education (WCAE’19). Association for Computing Machinery,
New York, NY, USA, Article 2, 8 pages. https://doi.org/10.1145/3338698.3338892

[9] Marco Melletti, Michael Goldweber, and Renzo Davoli. 2015. The JaeOS Project
and the µARM Emulator. In Proceedings of the 2015 ACM Conference on Inno-
vation and Technology in Computer Science Education (ITiCSE ’15). Association
for Computing Machinery, New York, NY, USA, 3–8. https://doi.org/10.1145/
2729094.2742596

[10] SiFive. 2019 [Online].. Simulating with QEMU. https://sifive.github.io/freedom-
e-sdk-docs/userguide/qemusimulation.html

[11] GTK Development Team. 2018 [Online].. Gtk – 3.0: The GTK toolkit. https:
//docs.gtk.org/gtk3/

[12] AndrewWaterman and Krste Asanović. 2019 [Online].. The RISC-V Instruction Set
Manual Volume I: Unprivileged ISA. https://github.com/riscv/riscv-isa-manual/
releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf

[13] Andrew Waterman and Krste Asanović. 2019 [Online].. The RISC-V Instruction
Set Manual Volume II: Privileged Architecture. https://github.com/riscv/riscv-isa-
manual/releases/download/Ratified-IMFDQC-and-Priv-v1.11/riscv-privileged-
20190608.pdf

Session: Digital tools ITiCSE 2022, July 8–13, 2022, Dublin, Ireland

150

https://www.usenix.org/conference/2005-usenix-annual-technical-conference/qemu-fast-and-portable-dynamic-translator
https://www.usenix.org/conference/2005-usenix-annual-technical-conference/qemu-fast-and-portable-dynamic-translator
https://refspecs.linuxfoundation.org/elf/elf.pdf
https://refspecs.linuxfoundation.org/elf/elf.pdf
https://doi.org/10.1145/3338698.3338894
https://doi.org/10.1145/3338698.3338894
https://doi.org/10.1145/3430665.3456331
https://doi.org/10.1145/3430665.3456331
https://doi.org/10.1145/2325296.2325315
https://doi.org/10.1145/1067445.1067462
https://arxiv.org/abs/cs.AR/2007.03152
https://doi.org/10.1145/3338698.3338892
https://doi.org/10.1145/2729094.2742596
https://doi.org/10.1145/2729094.2742596
https://sifive.github.io/freedom-e-sdk-docs/userguide/qemusimulation.html
https://sifive.github.io/freedom-e-sdk-docs/userguide/qemusimulation.html
https://docs.gtk.org/gtk3/
https://docs.gtk.org/gtk3/
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMFDQC-and-Priv-v1.11/riscv-privileged-20190608.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMFDQC-and-Priv-v1.11/riscv-privileged-20190608.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMFDQC-and-Priv-v1.11/riscv-privileged-20190608.pdf

	Abstract
	1 Introduction
	2 Background
	3 Related Work
	4 RISC-V Console Emulator Design
	4.1 Hardware Emulator
	4.2 Container and Toolchain
	4.3 Auto-grading Support

	5 Course Experience
	6 Conclusions and Future Work
	7 Acknowledgments
	References

