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Abstract. Learning the parameters (conditional and margimababilities) from a data set is a common
method of building a belief network. Consider thiation where we have many complete (no missing
values), same-sized data sets randomly selected fne population. For each data set we learn the
network parameters using only that data set. I susituation there will be no uncertainty (posteri
distribution) over the parameters in each graplvaver, how will the parameters learnt differ frowtal

set to data set? In this paper we show the paramstienatesacrossthe data sets converge to a Gaussian
distribution with a mean equal to the populatiowé) parameters. This result is obtained by additai
forward application of the central limit theorem belief networks. We empirically verify the central
tendency of the learnt parameters and show thapdhe@meters’ variance can be accurately estimated b
Efron’s bootstrap sampling approach. Learning mldtinetworks from bootstrap samples allows the
calculation of each parameter's expected valuep@sstandard belief networks) and also its second
moment, the variance. Having the expectation andawmee of each parameter has many potential
applications. In this paper we discuss initial rapés to explore their use to obtain confidencerirais
over belief network inferences and the use of Cbleby's bound to determine if it is worth gathering
more data for learning

Introduction

Bayesian belief networks are powerful inference tools that foawel many practical applications [ A belief
network is a model of a real world situation with each ndde .(N,) in the network/graphQ®) representing an
event. An edge/connectior;(... §) between nodes is a directional link showing that an event inflaasrce
causes the value of another. As each node value can be modelexhdsma variableX; ... X.), the graph is
effectively a compact representation of the joint probabilityrilistion over all combinations of node values.
Figure 1 shows a belief network modeling the situation that eelsteoking, cancer and other relevant
information. Building belief networks is a challenging task that can engaished by knowledge engineering
or automatically producing the model from data, a process commonly known as le2jrning [

Learning graphical models from a training data set is a poppjaoach where domain expertise is lacking.
The training data contains the occurrence (or otherwise) of thesefee many situations with each situation
termed a training example, instance or observation. For example rémegpars for the Cancer network shown
in Figure 1 could be learnt from many patient records that contdieedcturrence or not of the events. The
four commonly occurring situations of learning belief netwo{safe different combinations of a) learning
with complete (or incomplete) data and b) learning with known (or unkngvaph structure. Learning with
complete data indicates that the training data contains no misaimgs, while incomplete data indicates for
some training examples, pieces of information of the world situatiere wnknown. With known graph
structure the learning process will attempt to estimate thanyers of the random variables while with
unknown structure the graph structure is also learnt. There exstsety of learning algorithms for each of
these situations [1][3]. In this paper we shall focus on the situatimre the data is complete and graph
structure is specified. In this simplest situation there is no posterior digtrilmwter the model space as there is
no uncertainty due to latent variables or missing values. Thisralus to focus on the uncertainty due to
variations in the data. In future work we hope to generalize ounfisdor other learning situations. Without
loss of generality and for clarity we shall focus on Boolean networks.

Learning the parameters of the graph from the training@ates records involves counting the occurrences
of each node value (for parentless nodes) across all recordsctdat@lthe marginal probabilities or
combination of values (for nodes with parents) and normalizing to deréveonditional probabilities. Now
consider having many randomly drawn data sbts..( D ) all of sizes from which we learn mode#, ... 8.
Each model places a probability distribution over the event spaceh wghall combinations of node values.
How will these parameters vary from model to model? We shraver this question by considering a
probability distribution over thparameters for each node. We shall call these random varialgs {Qn}.
Note thatQ; may be a block of random variables as the number of parametaredeecan vary depending on
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its number of parents. In a Boolean network for a parentless @dea single random variable whose value
represents node parameterXP{ TRUE). For nodes that have parents in a Boolean netw@rkpnsists of
2tParens random variables representing the parameted$ ®(TRUE | Condition) ... P(X = TRUE |
Condition~gparens) With the different conditions being the various combinations of TRUBFALGE values of
the parents.

What can we say of these continuous random variables that repitesgr@rameter estimates learnt from
different random samples? In this paper we show that these contiraraien variables form a Gaussian
distribution that center on the population values (the parametemsdbht be learnt from the entire population
of data) and whose variance is a function of the sample sizehtMethatQ, ~ Gaussiarg , pi (1- pi) /(k9)
wherek is a constanty; is the relevant parameters of the generating mechanism titatoed the data arsds
the sample size. The standard deviation of this random variable elpgsodaero and the sample mean
converges asymptotically to the population value as the valaénofeases. We can now make two estimates
for each parameter in the network: its expected value and its variance.

In most learning situations the actual probability distribution oJes tearnt parameters due to
uncertainty/variability in thebserved data seis unknown. Sometimes, generalities are known such as that
decision trees are unstable learners or that iterative thig@rithat minimize the distortion (vector quantization
error) are sensitive to initial parameters. In this paper we make usepsbtability distribution over the learnt
parameters for two applications. These should be treated as attgabpts to make use of the mean and
variance of each parameter and future work will refine thegdications. Firstly, we use the variance to
determine if gathering more data will necessarily change the mean vaheepaframeters by at least some user
specified value. This has applications when collecting data ésdonsuming or expensive. We then illustrate
how to create confidence intervals associated with each inference made froetwibik.

We begin this paper by describing the learning of belief netwaekslers familiar with this topic may skip
this section. The applicability of the central limit theorem tbebenetwork learning with complete data is
described next. We then empirically verify that the central tenydef the distribution of the learnt parameters
by sampling the data to leamithout replacement from a large collection of data (generated bybhsGi
sampler). Having such a large pool of data is an unusual luxury amextallustrate approximating the
variance associated with the learnt parameters using Efron’sttagosampling (sampling with replacement)
[5]. We next discuss how to use the estimated variance for our bpog®d applications. Finally we conclude
our work and describe future directions.

Learning Belief Networks

The general situation of learning a belief network can be condideseconsisting of estimating all the
parameters (marginal and conditional probabilitie®)for the nodes and discovering the structure of the
directed acyclic graplG. Let 8 ={q1 ... Gim} be the parameters of tienode graph learnt from data $eNote
that the corresponding upper-case notation indicates the random véoiablese parameters. As the network
is Boolean, we only need the probability of the node being one value itgveanditions (if any). In later
sections we shall refer to graph and network together as the model of thé=da#aG}.

This paper focuses on learning belief networks in the presence pfeterdata and a given graph structure.
From a data sdD; = {dy, ... ,ds}, dy ={au1 ... am} Of srecords, we find either the marginal or conditional
probabilities for each node in the network after applying a Laptacection. The ternay; refers to thg™
node’s value of thé" instance within thé" data set. For complete data, known graph structure and Boolean
network the calculation for nodes simply:

If N; has no parentsy; = (1+Xa; =T)/(s+2) (1)
|

If N, has parentBarents() = N (2)

Ot :(1""23111 =T anday, :Tj/(z"';aﬂk :Tj

G :(1+|Zailj =Tanday =F j/(z“‘liaﬂk =F )

Note thesubscript T or F refers to the node’s parent’s value, the parantetdways refers to probability of
the node taking on the valde For exampleay: refers to the probability learnt from tif data set that thg
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node will beT given its parent i§. If a nhode has more than one parent then the expression for the paramete
calculations involves similar calculations over all combinations of the paoelet values.

Figure 1. The Cancer Belief Network.

Figure 2. The Asia Belief Network

The Asymptotic Distribution of Learnt Parameters for Belief Networks

Consider as before a number of random samples of trainingRiata D;) each of sizes. We divide our graph

of nodes into two subsets, those with no ancestagefitlesy and those that have ancestors and are hence
children Children). We initially consider binary belief networks, whose nodes cantakby on two values T
(TRUB and F FALSBH and children that have only one parent, but our results generalize to multi-parent nodes.
For each training dat®() set we learn a modé| as described earlier.

Under quite general condition (finite variance) the parametetseafodes that belong Rarentlesswill be
Gaussian distributed due to the central limit theoréjn We can formally show this by making use of a
common result from the central limit theorem, the Gaussian approximation to the bidistilaution [4].

A similar line of argument that follows could have been establighskdow the central tendency around each
and every joint probability value (R{... Ny)) but since the belief network is a compact representation of the
joint distribution, we show the central tendency around the parameters of the network.

Situation #1: N;O Parentless

Let p; be the proportion of times in the entire population (all possible daad)thej™ node (a parentless
node) is TRUE. If our sampling process (creating the training setd®m then when we add/sample a record,
the chance thg" node value is TRUE can be modeled as the result of a BernallgtfBernouli trial can only
have one of two outcomes). As the random sampling process genedaiesnident and identically data (lID)
then the probability that of tterecords in the sample tharecords will have TRUE for th& node is given by
a Binomial distribution:

N S—N ( 3)
(s—n)] (pi) (1‘ pj)

Applying the Taylor series expansion to equation ( 3 ) with the kbgarifunction for its dampening
(smoothness) properties and an expansion ppayields the famous Gaussian distribution expression:

(4)

P(s,n, p;) =

P(s,n, pj) :ﬁe—(n—spj) (20 )’0.2 =sp, - pj)
If the sample size isthen the number of occurrencesX@fT in any randomly selected data set will be given
by a Gaussian whose mearsig and variance.p(1- p) as shown in equation (4 ).

Therefore,Q; ~ Gaussiafp;, p(1- p)/s)) in the limit whent — o andp; > €, wherep; is the proportion of
timesX=T in the population.

Situation #2. NO Children and Parent(N) = N; ... Ng

A similar argument as above holds except that there are novamag Bernouli experiments as there are
combinations of parent values. In total there will2&ernouli experiments. Therefore; Q Gaussiarng;.
(. )(Apij..0)) / (sQ)). Note thatsg is just the proportion of times that the condition of interest (thenpar
value combination) occurred.



A valid question to ask is how big shoytd(or pi;.«) ands (or sG) be to obtain reliable estimates. The
general consensus in empirical statistics is thiatif100, s > 20 andp; (or pi;..x) > 0.05 then estimates made
from the central limit theorem are reliable [4]. This is eglént to the situation of learning from one hundred
samples, where each parental condition occurs at least tweetydiml no marginal or conditional probability
estimate less than 0.05. While these conditions may seem prohibigvidund that in practice for standard
belief networks tried (Asia, Cancer and Alarm) that the thigtion of parameters was typically Gaussian. Table
1 shows for the Cancer data set that from 249 training dataasdtso€size 1000 training instances that the
average of the learnt parameters passed a hypothesis tiest% confidence level when compared to the
population (true) parameters. Similar results were obtained for the Cancermamddata sets.

| n |  Mean | | n |  Mean |
Gender 249 0.4874 Cancer 249 0.2977
Hypothesised 0.5130 Hypothesised 0.3090
Difference between means -0.0256 Difference between means -0.0113

95% ClI

-0.0313 to -0.0199

95% CI

-0.0227 to 0.0000

| n |  Mean | | n |  Mean |
Age 249 0.3022 S.C. 249 0.3210
Hypothesised 0.3030 Hypothesised 0.3170
Difference between means -0.0008 Difference between means 0.0040

95% ClI

-0.0070 to 0.0055

n |  Mean |

95% CI

-0.0025 to 0.0106

| n |  Mean |
Ex.to.Tox. 249‘ 0.4639‘ Lung Tmr 249 0.2454
Hypothesised 0.4190 Hypothesised ‘ 0.2390‘
Difference between means 0.0449 Difference between means 0.0064

95% CI

0.0342 to 0.0556

| n |  Mean |
Smoking 249 0.4670
Hypothesised 0.4850
Difference between means -0.0180

95% CI

-0.0322 to -0.0039

95% ClI

-0.0023 to 0.0151

Table 1. For the Cancer data set, hypothesis testing of theah#@nlearnt parameter and the population (true value)
of the parameter. In all cases the difference between the true valtizeamean of the learnt parameters lied in the 95%
confidence interval. Only a subset of the hypothesis testsegered for space reasons.

Using Bootstrapping to Estimate the Variance Associated With Parameters

Having the ability to generate random independent samples from theafiopus a luxury not always
available. What is typically available is a single sedatfaD. The bootstrap sampling approaghdan be used
to sample fronD to approximate the situation of sampling from the population. Bootstraplisg involves
drawingr samplesB; ... B;) of size equal to the original data set by samplhiith replacementfrom D. Efron
showed that in the limit the variance amongst the bootstrap samajgles will approach the variance amongst
the independently drawn sample means. We use a visual represeofatioa difference between the
probability distribution over the learnt parameter values (249 boptstmples each of size 1000 instances)
and a Gaussian distribution with a mean and standard deviation adiciutan the learnt parameter values as
shown in Figure 3. As expected the most complicated node (smoking) hadettest deviation from the
normal distribution.
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Figure 3. For the Cancer data set the difference between theutistribver the learnt parameter values and a Gaussian
distribution with the mean and the standard deviation ofleéhent parameter values. The straight line indicates the
Gaussian distribution. The x-axis is the parameter value windedistance between the lines is the Kullback-Leibler
distance between the distributions at that point.
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Learning and Using the Variance of Learnt Parameters

We now describe an approach to learn the belief network paramseteesi and variance. Firstly, the
parameters of a belief network are learnt from the availdbta using the traditional learning approach
determined earlier. Secondly, bootstrap sampling is performed toatstthe variance associated with each
learnt parameter. Estimating the variance involves takimgnaber of bootstrap samples of the available data,
learning the parameters of the belief network from each andunm@@she variance across these learnt
parameters. Therefore, for each parameter in the belief netwenkow have its expected value and variance.
Estimates of the variance of the parameters could have beemeobtaom the expressions reported in
situation#1 and situation#2 earlier. However, in practice we found that these weracoairase as calculating
variances from a large number (more than 100) bootstrap samplesvaEhiecause from our limited training
datathe learnt parameter was often different from the true value.

In this paper we propose two uses of these additional parametets whidescribe next: determining if
more data is needed for learning and coming up with confidence intervals over irderence

Determining the Need for More Data

A central problem with learning is determining how much data isl fbew bigs should be). The
computational learning theory literatur@ pddresses this problem, unfortunately predominantly for learning
situations where no noise exists, that is the Bayes error of shelbssifier would be 0. Though there has been
much interesting work studying the behavior of iterative algostfiig] this work is typically for a fixed data
set. The field of active learning attempts to determine wipat of data to add to the initial training data St [
(the third approach in the paped0] and [L1]. However, to our knowledge this work does not address the
guestion of when tetop adding data.

We now discuss the use of Chebychev’'s bound to determine if mores detaded for learning. Othen?]
have used similar bounds (Chernoff's bound) to produce lower bound resulthéorpattern recognition
problems. Since both the expectation and variance of the parameateesedt are known, we can make use of
the Chebychev inequality.

The Chebychev inequality allows the definition of the sample sjzequired to obtain a parameter estimate
( p) within an error €) of the true value from a distribution with a mearpand standard deviation ofas

shown below.
. o? (5)
Plp-pl> 5]<?
This expression can be interpreted as an upper bound on the chance thiat thkdagger thaa . In-turn we
can upper bound the right-hand side of this expressiaimdyich can be considered the maximum chance/risk
we are willing to take that our estimate and true valuerdiffemore thans . Then rearranging these terms to
solve for the sample size yields:

2 (6)
>
&%
Typical applications of the Chebychev inequality usep(1-p) and produce a bound that requires knowing the

parameter that is trying to be estimated! [13]. However, we sanour empirically (through bootstrapping) obtained
variance and circumvent this problem.

The question of how much data is needed, is now answered with resgest tmuch error £) in our
estimates we are willing to tolerate and the chadcthat this error will be exceeded. We can use equation ( 6)
to determine if more data is needed if we are to tolerate learning pamthaterith a chancédiffer from the
true parameters by more than The constant® and ¢ are set by the user and effectively define the users
definition of how “close” is close enough. For each node in the beligfonetwe compute the number of
instances of each “type” required. We then compare this againatii@er of actual instances in the data set of
this type.If for any node the required number is less than the actual number then more elddéambe added.
By instance “type”, we mean instances with a specific comoimati parent node values. There as many
instance “types” as there aneededmarginal or conditional probability table entries. For example, for the
Cancer network (Figure 1) the Exposure node generates two types, brieragten its parent’s (Age) value is
T or F, the value of the remaining nodes are not specified.
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To test this stopping criterion we need to empirically determimen adding new instances to the training set
adds no information. This involves measuring the expectation (ovebititedjstribution) of the code word
lengths for each combination of node values. We wish to only add instanitestraining set if the instances
reduce the mean amount of information needed to specify a combination ofalods. As the training data
size increases the parameters learnt stabilize and bpperxamate the chance occurrence in the population.
Formally, the expected information is:

(7)

Averagétbits=- sz H* (E;).log(8(E;))
i=1

wherek; is a particular combination of node values of which there "aferzaam binary node networkH*(.)
is the probability distribution of the generating mechanisméfyis the learnt distribution.

Figure 4 shows the expected information for different sized trasets for the Asia and Cancer networks
averaged over 100 experiments. In each of these experiments thiegtrdata is incrementally added by
sampling without replacement from the population (50,000 instances gehérame a Gibbs sampler).
Calculating this expected information requires a significant anwfuithe and cannot be used for determining
when to stop adding instances to the training set.

Mean Information Versus Size of Training Set

© © =
o © w o
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Figure 4. The mean information for the joint distribution for the Ati@ curve) and Cancer networks
against training set size (x10). At approximately 5510 instances andrEsdfces the decrease in information
due to adding instances are negligible for the Asia and Cancer data setsualgpecti

For one hundred experiments we used the test described earlier in itdliesv).05 and>=0.025. Whether
these results generalize to more complicated networks remains as futkre wor

Stopping Point Mean Over All Trials  Standard Deviation
(From Figure 4) Over All Trials

Asia 5510 5203 129

Cancer | 1510 1567 98

Table 2. For 100 trials, the mean number of instances in the trag@tibgfere the test based on equation ( 6)
specifies adding no more data points. The correct number of instances is visuathyraetdrom Figure 4.

Confidence Intervals Over Inferences

Typically with belief networks an inference is of the form thatolves calculating a point estimate of
P(N=T | {E}) where E is some set of node values that can be coedids evidence. For small networks exact
inference is possible but since exact inference is NP-Hard for lsegeorks approximate inference techniques
such as Gibbs sampling is used [2]. However, if the variancechfmrameter is known we can now create a
confidence interval associated with N | {E}). We now describe a simple approach to achieve this.

For a belief network parameter of valp@and standard deviatiamwe know that with 95% confidence that
its true value is in the ranger 1.960. We can now creatiaree versions of the belief network, one where all
network parameters are setpgdthe expected case) another where the network parameterd tog-4e960
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(lower bound) and another where they are setith96c (upper bound). Point estimation is performed in each
of the three networks using whatever inference technique is dppliaad the three values are then bought
together to return an expected, lower and upper bound on the inference to provide a 95% confidegice interv

Though it may be thought that the changes amongst these networke wilvial and not return greatly
varying inferences, recent work4] has shown that even small changes in network parametersstdinime
large changes in the inference/query probabilities.

Future Work and Conclusion

Our work posed the question: Given many independently drawn random sénmplébe population, if we
learn the belief network parameter estimates from each, hivwheilearnt parameters differ from sample to
sample. We have shown that for complete data and known graph strilctutbe learnt parameters will
asymptotically distributed around the generating mechanism (truainpters. This result follows from the
central limit theorem and has many potential applications in hadiefork learning. This means each node in
the belief network is described by the parameter's mean angheari The variance parameter measures the
uncertainty in the parameter estimates due to variability in the data.

However, having many random samples from which to estimate timnea is a great luxury. By using
bootstrap sampling we can create an estimate of the variansanhyling from a single data set with
replacement. Having a probability distribution over the learnt petensidue t@bserveddata uncertainty has
many potential applications. We describe two. We show how to create apgelower bounds on the
probabilities of inferences by creating three networks that septethe expected, lower bound and upper
bound. Using the mean and variance associated with each parameter akomdeg if more data is required
so as to guarantee with a certain probability that the differbat@een the expected and actual parameter
means are within a predetermine error.

We have limited our results in this paper to the simplest beééfork learning situation to ensure the
uncertainty in the parameters is only due to data variability. We intencttextend our results to the situation
where EM and SEM is used to learn from incomplete data and unknown graph structure.
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