Intractability and Clustering with Constraints

Tan Davidson
S.S. Ravi

DAVIDSON@CS.ALBANY.EDU
RAVIQCS.ALBANY.EDU

Department of Computer Science, State University of New York, 1400 Washington Ave, Albany, NY 12222

Abstract

Clustering with constraints is a developing
area of machine learning. Various papers
have used constraints to enforce particular
clusterings, seed clustering algorithms and
even learn distance functions which are then
used for clustering. We present intractabil-
ity results for some constraint combinations
and illustrate both formally and experimen-
tally the implications of these results for us-
ing constraints with clustering.

1. Introduction, Motivation and
Previous Results

Clustering is used extensively in unsupervised
machine learning applications such as informa-
tion retrieval and natural language understanding
[Wagstaff et. al. 2001]. Recent work published in the
machine learning and data mining community has in-
vestigated the introduction of supervision into clus-
tering in the form of instance-level constraints which
effectively provide hints to the composition of a de-
sirable clustering of the instances. This line of work
has followed a natural progression since Wagstaff and
Cardie’s seminal paper [Wagstaff and Cardie 2000]
which we now discuss briefly.

Clustering Under Constraints. In 2000 Wagstaff
and Cardie [Wagstaff and Cardie 2000] introduced to
the machine learning community the most common
form of constraints: must-link (ML) where two in-
stance must be in the same cluster and cannot-link
(CL) where they must be in different clusters. Their
COP-k-means algorithm attempts to find a set par-
tition that minimizes the vector quantization error
and also satisfies all of the constraints. The ML
and CL constraints in conjunction offer the ability
to incorporate strong background knowledge into the
clustering process with respect to the type of clus-

Appearing in Proceedings of the 24" International Confer-
ence on Machine Learning, Corvallis, OR, 2007. Copyright
2007 by the author(s)/owner(s).

ters to be found. For example when clustering auto-
mobile GPS trace information to form clusters (traf-
fic lanes) [Wagstaff et. al. 2001], the physical distance
between lanes (4 meters) can be used to generate
CL constraints between instances. In academic sit-
uations constraints are typically randomly generated
from small amounts of labeled data. If two randomly
chosen instances have the same (different) label an ML
(a CL) constraint is generated between them. How-
ever, the constraints may be generated from back-
ground knowledge such as in the traffic lane applica-
tion above. Wagstaff’s empirical results in her thesis
[Wagstaff 2002] and papers convincingly show that us-
ing constraints can improve performance with respect
to predicting an extrinsic label over unsupervised clus-
tering.

Seeding Clustering Algorithms With
Constraints In 2002 Basu and collaborators
[Basu et. al. 2002] explored wusing constraints to
initialize the k-means algorithm. Their core idea
is to make use of scarce labeled points to compute
approximations to the cluster centroids. This idea
can be extended to computing the transitive closure
over the must-linked points to generate a series of
connected components and then seeding the cluster
centroids by the average of the points in each con-
nected component. Their experimental work showed
clearly that seeding k-means with the labeled data
provides improved performance over just random
seeding.

Learning a Distance Function From Constraints
and Then Clustering In 2003, Xing and collabora-
tors [Xing et. al. 2003] introduced another use of ML
and CL constraints, namely to learn a distance func-
tion. The aim of their work is to learn a mapping from
the original m dimensional space to another m dimen-
sional space so that the must-linked points are close
and the cannot-linked points are far apart. Xing’s ex-
perimental results show that learning a distance func-
tion from the constraints and then clustering the data
with the newly learnt distance function but not en-
forcing the constraints typically performs better than
just finding a clustering that enforces the constraints.

Intractability and Clustering with Constraints

Active Constraint Generation In 2004 Basu and
collaborators [Basu et. al. 2004a] develop an approach
to actively select the most informative constraints.
The problem they address is: given an Oracle that has
access to a set of labels that implicitly defines a set
partition, which subset of points should be selected
to reveal their respective constraints on each other.
Their experimental results show that actively select-
ing constraints produces better results than randomly
generating constraints by choosing two instances and
comparing their labels.

Clustering under Selective Constraints Fi-
nally, the PKM [Basuet. al. 2004b] and CVQE
[Davidson and Ravi 2005] algorithms allow the ignor-
ing of constraints if their satisfaction leads to a signifi-
cant worsening of the objective function. We can think
of this work as being penalized COP-k-means. When
constraints are not helpful (say due to noise), this work
shows that ignoring some constraints produces better
results than attempting to satisfy all constraints as
COP-k-means does.

1.1. Negative Intractability Results

However, when using constraints with clustering, it
is quite possible to specify constraints inappropri-
ately particularly when constraints are not gener-
ated from labeled data. As a trivial example, no
clustering is possible for any value of k under the
constraints M L(a,b), CL(a,b). Davidson and Ravi
[Davidson and Ravi 2005] discussed that even for self-
consistent constraints set such as CL(a,b), CL(b,c)
and C'L(a, ¢), there is no clustering for k& < 2. Further-
more, their worst-case complexity results show that to
solve the clustering problem under cannot and must
link constraints involves solving a sub-problem that
is NP-complete (intractable). They discuss how al-
gorithms that cluster to satisfy all constraints such
as COP-k-means (i.e. Cluster Under Constraints) at
each iteration must indirectly answer the feasibility
question: Does there exist any partition of the set of
points that satisfies all the constraints? This problem
was formally defined as the feasibility problem:

Definition 1.1 The Feasibility Problem. Given a
set D of data points, a collection C' of ML and CL
constraints on some points in D, upper (K,) and lower
bounds (K;) on the number of clusters, does there exist
at least one partition of D into k clusters such that
K; <k < K, and all the constraints in C are satisfied?

The feasibility problem for clustering under ML con-
straints is in P while clustering under CL only and ML
and CL is NP-complete, as can be shown by a reduc-

tion from graph coloring [Davidson and Ravi 2005].
Thus, Davidson and Ravi conclude that, unless P =
NP, there cannot be an efficient clustering algorithm
that satisfies all constraints for all data sets. It is im-
portant to note that they are not stating that there
does not exist such an algorithm, just that efficient
algorithms cannot exist under the common assump-
tion that P # NP. In this way, rather than being
an impossibility result such as Kleinberg’s impossibil-
ity theorem for clustering [Kleinberg 2002], their work
provides a computational intractability result.

Contributions of This Paper. This paper makes
two main contributions. Firstly, we extend the original
intractability results for constrained clustering with re-
lated results from graph theory. We then discuss and
where appropriate experimentally verify that these in-
tractability results have implications beyond just clus-
tering to satisfy a set of constraints. We show impli-
cations for a) Seeding and active constraint generation
(section 4) b) Clustering under most constraints (and
ignoring some) (section 5), and ¢) Learning distance
functions (section 6).

Importantly, these intractability results and their im-
plications are related. For example, if no clustering
algorithm can efficiently satisfy all constraints, then it
would seem natural to try to minimally prune the set
of constraints so that they can be satisfied efficiently.
In this paper we show this problem is also intractable.
Similarly, given that we cannot write an efficient al-
gorithm to satisfy all constraints or optimally prune
a constraint set, a natural direction is to make sure
that k& is guessed to correctly match say the number
of extrinsic labels used to generate the constraints so
that infeasibility cannot occur. We not only show that
BIC and AIC do not return the correct number of ex-
trinsic class labels, but also that efficiently computing
the value of k from the answers provided by an Ora-
cle is computationally intractable. The paper begins
by surveying previous intractability results in section
2 and then introducing our new intractability results
in section 3. Sections 4, 5 and 6 build upon the previ-
ous results and empirically demonstrate the impact of
these intractability results on seeding algorithms us-
ing constraints, clustering while ignoring the minimal
number of constraints and learning a distance function
from constraints after which we conclude and summa-
rize our work.

2. Coloring, Clustering and Constraints

Consider clustering under the set of constraints:
ML(a,b), ML(a,c), ML(d,e), ML(f,g), ML(h,1),
ML(j,k),CL(a,e),CL(i,j),CL(d, k),CL(e,l). The

Intractability and Clustering with Constraints

feasibility problem involves only those instances
a,b,...,l. We can represent the feasibility problem
as a graph as follows.

1. Find connected components C1, ..., C,. by calculat-
ing the transitive closure over the ML constraints.

2. Replace each connected component with a single
node and have a single node for each instance that
appears only as part of a CL constraint.

3. For each constraint CL(x,y), place an edge be-
tween nodes representing instances x and y.

Figure 1 shows the resulting graph for our simple ex-
ample. To find a feasible solution to satisfy the must-
link constraints involves computing the transitive clo-
sure in step 1) above and checking whether the num-
ber of connected components is at least K. Since the
transitive closure computation takes time O(n 4+ m),
where n is the number of nodes and m the number of
edges, the feasibility problem for ML constraints is in
P. Clustering to satisfy the CL constraints is then a
case of assigning each node an integer value from 1 to
k so that no two adjacent nodes have the same value.
This is at least as hard as the graph k-coloring problem
which is known to be NP-complete. To find a feasi-
ble clustering in our example we can assign instances
f and ¢ to any cluster so long as they are together.
However, care must be taken to assign the instances
de so that the assigned value does not conflict with the
assignments for [and jk and abe.

Importantly, since the feasibility problem is intractable
for just CL constraints or ML and CL constraints to-
gether, then unless P = NP, there cannot exist an ef-
ficient algorithm that satisfies all the constraints. Fur-
thermore, if the constraints are generated from k* dif-
ferent labels and we attempt to cluster the data for k
clusters where k < k*, then no feasible solution need
exist. But since the feasibility problem is intractable,
we will not be able to tell efficiently that no feasible
clustering exists! Most of the previous experimental
results reported assume that k* is known which need
not be the case. This is a large assumption and as we
shall prove, if k* is unknown then we cannot efficiently
estimate it even if we have access to an Oracle.

3. New Intractability Results

Previous work [Davidson and Ravi 2005] states that
in the worst-case, unless P = NP, no efficient (i.e.
polynomial time) clustering algorithm that satisfies all
constraints can be developed. We now present related
results that we shall later show have an impact on

Figure 1. A graphical representation of ML(a,b), ML(a,c),
ML(d,e), ML(f,g), ML(h,i), ML(j,k), CL(a,e), CL(ij),
CL(d,k), CL(e,l)

constrained clustering beyond just trying to satisfy all
constraints. Our theorems can be summarized as fol-
lows.

e Given a collection of ML and CL constraints, the
problem of determining the number of extrinsic
labels £* used to generate the constraints is com-
putationally intractable. Furthermore, even ef-
ficiently approximating the value of k* is com-
putationally intractable. We call this the No
Efficient Approximation Theorem (Theorem
3.1).

e Given a clustering into k clusters that violates
some of the constraints, determining whether the
clustering can be fixed so that all constraints are
satisfied is also computationally intractable. We
refer to this as the No Efficient Repair Theo-
rem (Theorem 3.2).

e Given a set of constraints for which no feasible
solution exists for a particular value of k, iden-
tifying the minimal subset of constraints to re-
move/prune so there is a feasible clustering for
the remaining constraints is computationally in-
tractable. We refer to this as the No Efficient
Minimum Pruning Theorem (Theorem 3.3).

The remainder of this section proves these results and
can be skipped on first reading of this paper.

3.1. Some Definitions
3.1.1. GRAPH THEORETIC DEFINITIONS

The problems addressed in subsequent sections are
closely related to the minimum coloring problem for
undirected graphs. For the convenience of the reader,
formal definitions of coloring and related problems are
given below.

Given an undirected graph G(V,E) and an integer
K < |V], the K-coloring problem asks whether each
node of the graph can be assigned one of at most K col-
ors so that whenever two nodes v; and v; of the graph
are adjacent (i.e., {v;,v;} € E), the colors assigned to
v; and v; are different. Note that K-coloring is a de-
ciston problem; the answer to the problem is “Yes” or

Intractability and Clustering with Constraints

“No”. It is well known that the K-coloring problem is
NP-complete [Garey and Johnson 1979]. It is widely
believed that there are no efficient (i.e., polynomial
time) algorithms for any NP-complete problem.

In the corresponding optimization problem, called
minimum coloring, we are given just the graph
G(V, E), and we are required to find the smallest in-
teger K such that G is K-colorable. From the compu-
tational intractability of K-coloring (i.e., the decision
version of the coloring problem), it is readily seen that
the minimum coloring problem (i.e., the optimization
version) is also computationally intractable. Since the
notion of NP-completeness applies only to decision
problems, the term “NP-hard” is used when referring
to the intractability of optimization problems.

Suppose a given graph G(V,E) is not K-colorable.
One way to achieve K-colorability is to delete some
edges' of G. This edge deletion problem can be for-
mulated either as a minimization problem or a maxi-
mization problem. In both versions, certain edges are
deleted from G to ensure that the resulting subgraph
is K-colorable. In the minimization version, which
we call minimum edge deletion K-coloring, the
quality of a solution is measured by the number of
edges deleted from E. In the maximization version,
which is known in the literature as the maximum K-
colorable subgraph problem [Ausiello et. al. 1999],
the quality of a solution is measured by the number of
edges retained in E. Clearly, the NP-hardness of the
minimum coloring problem implies that of both the
maximization and minimization versions of the edge
deletion problem.

3.2. Variants of Feasibility: Computational
Intractability Results

When the feasibility problem for clustering is NP-
complete, some options for dealing with the problem
were mentioned earlier. In this section, we formally
show that many of these options also lead to compu-
tationally intractable problems.

A common thread that runs through the results in
this section is the following: the minimum graph col-
oring problem is embedded in the feasibility problem
(and its variants) involving CL constraints. The main
idea needed to prove the embedding is the following
straightforward reduction [Davidson and Ravi 2005]
of the minimum coloring problem to the feasibility
problem.

! As will be seen, deleting edges corresponds to pruning
a given constraint set in the case of the feasibility problem
for clustering.

Reduction R:

(a) Given a graph G(V,E), where V =

{v1,v2,...,0,}, construct a collection
S = {p1,p2,...,pn} of n points. (Point p;
corresponds to node v;, 1 < i < n. Spatial

coordinates for the points in S are not specified
since they play no role in the reduction.)

(b) For each edge {v;,v;} € E, add the constraint
CL(pi, p;)-

Clearly, the feasibility problem produced by the above
reduction involves only CL constraints. (The num-
ber of CL constraints produced is equal to the num-
ber of edges in the graph G.) Reduction R ensures
that each color class of G (i.e., subset of nodes with
the same color) corresponds to a cluster in a solu-
tion to the feasibility problem and vice versa. An
easy consequence of the reduction is the following
[Davidson and Ravi 2005].

Proposition 3.1 Let G(V, E) be any undirected graph
and let point set S and constraint set C' constitute the
feasibility problem instance produced by carrying out
the reduction R on G. For any integer K, there is a
feasible clustering with K clusters if and only if G is
K -colorable. [|

We will use the above proposition several times in the
ensuing discussion.

3.2.1. OBTAINING A FEASIBLE CLUSTERING WITH
NEAR-MINIMUM NUMBER OF CLUSTERS

This subsection considers the problem of producing a
partition with a minimum number of clusters. Since
this problem is NP-hard, one may be interested in ob-
taining a partition that is a p-approximation for some
p > 1 (i.e., a partition that uses at most p times
the smallest number of clusters). However, a com-
putational intractability result? for obtaining a near-
optimal partition can be easily established as follows.

Theorem 3.1 [No Efficient Approximation
Theorem] For any € > 0, there is no O(n'~¢)-
approzimation for the problem of obtaining a feasible
clustering with a minimum number of clusters, unless
NP = ZPP.

Proof: If, for some ¢ > 0, there is an O(n'~¢)-
approximation for the feasibility problem, then there

2This intractability result is based on the widely be-
lieved assumption that complexity classes NP and ZPP
are different. For a definition of complexity classes, we
refer the reader to [Papadimitriou 1994].

Intractability and Clustering with Constraints

would be such an approximation for the mini-
mum coloring problem as well. This follows di-
rectly from Proposition 3.1. However, it is known
[Feige and Kilian 1998] that the existence of such an
approximation for the minimum coloring problem

would imply that NP = ZPP. [|

3.2.2. REPAIRING AN INFEASIBLE CLUSTERING

In this subsection, we consider the problem of repairing
a given infeasible clustering. In this problem, we are
given a point set S, a constraint set C' and a partition
of S into K clusters S, Ss, ..., Sk such that one or
more of the constraints in C' are violated. The goal is
to obtain another partition into K clusters S7, S5, ...,

% such that none of the constraints in C' is violated.
We now observe that this problem is also computa-
tionally intractable. (The proof essentially points out
that the given infeasible clustering is a red herring with
respect to the worst-case complexity of the problem.)

Theorem 3.2 [No Efficient Repair Theorem]
The problem of repairing an infeasible clustering is
NP-complete.

Proof: The problem of repairing an infeasible cluster-
ing is in NP since one can guess a partition and verify
that all the constraints are satisfied.

To prove NP-hardness, consider the following minor
variant of the K-coloring problem: Given a graph
G(V,E) and an invalid K-coloring, can the coloring
be modified into a valid K-coloring? This variant of
the K-coloring problem is also NP-complete, since re-
gardless of the initial (invalid) coloring, we can get a
valid K-coloring if and only if G is K-colorable. By
starting with this variant of K-coloring and carrying
out Reduction R, one can obtain a feasibility problem
along with an infeasible clustering. By Proposition 3.1,
the resulting infeasible clustering can be repaired into
a feasible solution if and only if the K-coloring prob-
lem has a solution. Hence, the problem of fixing an
infeasible clustering is also NP-complete. []

3.2.3. PRUNING A CONSTRAINT SET

When there is no solution to an instance of the feasibil-
ity problem, one possible approach to obtain solutions
is to prune the constraint set, that is, to delete some
constraints. Since constraints have the ability to drive
clustering algorithms into producing useful partitions,
one may be interested in deleting only the smallest
number of constraints from the given constraint set to
ensure feasibility. This section examines two variants
of this pruning problem.

The first variant, which we call the minimum prun-
ing problem, can be formulated as follows: Given a
set of points S and a constraint set C, delete a min-
imum cardinality subset Cy of C' so that there is a
feasible K-clustering for the resulting constraint set
C — Cy. For this optimization problem, the quality
of a pruning algorithm is measured by the number of
deleted constraints (i.e., |Cy4|). One can readily estab-
lish an intractability result for this problem as follows.

Theorem 3.3 [No Efficient Minimum Pruning/
For any p > 1, there is no p-approzimation algorithm
for the problem of deleting the minimum number of
constraints, unless P = NP.

Proof: First, consider the minimum edge deletion K-
coloring problem where we are given a graph G(V, E)
and an integer K and the goal is to delete the smallest
number of edges in F so that the resulting graph is K-
colorable. The smallest number of edges to be deleted
is zero if and only if G is K-colorable. Thus, for any
p > 1, a p-approximation algorithm for this coloring
problem cannot delete any edges, if the graph G is
K-colorable. Therefore, for any p > 1, the existence
of any p-approximation algorithm for the minimum
edge deletion K-coloring problem would enable us to
efficiently decide whether G is K-colorable; that is, it
would imply that P = NP.

By starting with the minimum edge deletion K-
coloring problem and carrying out Reduction R, we
obtain an instance of the feasibility problem where
the goal is to ensure feasibility by deleting the min-
imum number of constraints. Moreover, for any ¢ > 0,
any solution obtained by deleting ¢ constraints cor-
responds to deleting ¢ edges to ensure that G is K-
colorable. Therefore, for any p > 1, the existence
of a p-approximation algorithm for the minimum con-
straint pruning problem would imply a similar approx-
imation algorithm for the minimum edge deletion col-
oring problem; that is, it would imply that P = NP.
|

Since the K-coloring problem is NP-complete for any
fized K > 3 [Garey and Johnson 1979], it follows from
the above proof that the minimum pruning problem
has no efficient approximation (modulo the complex-
ity theoretic assumption that P # NP) even for fixed
values of K.

A second variant of the pruning problem involves re-
taining the mazimum number of constraints from the
given constraint set. This problem, which we call the
maximum feasible subset problem, can be formu-
lated as follows: Given a set of points S and a con-
straint set C, obtain a maximum cardinality subset

Intractability and Clustering with Constraints

C, of C such that there is a feasible K-clustering for
the set C,.. For this optimization problem, the qual-
ity of a pruning algorithm is measured by the number
of constraints that are retained (i.e., |Cy|). The max-
imum feasible subset problem is also NP-hard since
its decision version is equivalent to the decision ver-
sion of the minimum pruning problem; deleting the
minimum number of constraints is equivalent to re-
taining the maximum number of constraints. In terms
of approximability, the two problems behave differ-
ently. For example, when the constraint set C' contains
only CL constraints, there is no efficient approximation
algorithm for the minimum pruning problem, unless
P = NP (Theorem 3.3). Moreover, this result holds
even for any fixed K > 3. The maximum feasible sub-
set problem is equivalent to the maximum K-colorable
subgraph problem defined earlier. For this problem, ef-
ficient approximation algorithms are known for fixed
values of K [Ausiello et. al. 1999].

4. Implications of Intractability Results
for Seeding k-Means and Active
Constraint Generation

As mentioned earlier, several uses of constraints for
clustering have been studied in the literature. Here,
some implications of our results for two of these ap-
proaches, namely the seeding of clustering algorithms
using constraints and active constraint generation, are
examined. It should be noted that both of these ap-
proaches inherently rely on knowing the value of k*,
the number of extrinsic labels. This is so since if we
attempt to cluster with £* under-estimated then no
feasible clustering may exist. Furthermore, as we shall
see in later sections, learning distance functions and
then clustering with a lower value than k* produces
worse results in terms of cluster accuracy on the ex-
trinsic label than not using any constraints.

It is important to note that we use a prag-
matic/relaxed Oracle in this section, meaning that an
answer of “no” to the question “Are x and y cannot-
linked?” does not mean they are must-linked. This cor-
responds to the situation where labels are not known
for all the points.

Theorem 4.1 [Insufficiency of Using Just a
Cannot-Link Oracle]. Given an Oracle that can
only answer ‘yes’ or ‘no’ to the question “Is there a
CL constraint between instances x and y?”, the true
value of k* cannot be determined in polynomial time,

unless P = NP.

Proof: We will show that if there is such a polyno-
mial time algorithm, it can be used to solve the k-

Clusters AIC PC BIC/MDL ICOMP
1 0 (0) 1 (0) 2 (0) 0 (0)
2 28 (0) 14 (0) 29 (0) 0 (0)
3 32 (0) 46 (0) 28 (0) 7 (0)
4 19 (1) 18 (0) 24 (2) 23 (0)
5 2(55) 12 (11) 14 (41) 29 (2)

6 (Glass) | 12/(12) 7(32) 3 (28) 32 (7)
7 7(10) 2 (38) 0 (16) 10 (72)
8 5(12) 0(11) 0 (13) 0 (18)
9 3(7) 0 (8) 0 (0) 0 (1)

10 (Digit) | 3(2) 0 (0) 0 (0) 0 (0)

Table 1. The appropriate number of clusters for the Glass
and in parentheses the Digit data sets for a variety of model
complexity measures. For each value of k EM was used to
estimate the maximum likelihood and parameters. The
value of k* for Glass is 6 and for Digit 10.

COLOR problem in polynomial time, contradicting the
assumption that P # NP.

Consider an instance of the k-COLOR problem, given
by a graph G(V, E) and an integer k. As before, the set
S of the points to be clustered is one-to-one correspon-
dence with the set of nodes. For each query of the form
“Is there a CL constraint between points z and y?”,
the Oracle responds “Yes” if the there is an edge in
G between the two nodes corresponding to the points
x and y; otherwise, the oracle responds “No”. Now,
suppose the algorithm that uses the Oracle is able to
determine in polynomial time the smallest value k*
for which there is a feasible clustering satisfying all
the given CL constraints. Then, by simply checking
whether k > k*, one can determine whether or not G
is k-colorable. This contradicts the assumption that
P # NP. [|

The above result shows using just an Oracle for CL
constraints, the problem of determining k£* is compu-
tationally intractable. As the following observation
points out, using an Oracle for just ML constraints
is adequate for determining k*. The idea is that we
can consult the Oracle for each pair of points, thus re-
sulting in a total of () = O(n?) queries, and use the
results to construct a valid partition with £* blocks.
Unfortunately, when the number of points to be clus-
tered is large, the number of queries used by this simple
approach is impractical.

Observation 4.1 [Sufficiency of Using Just a
Must-Link Oracle]. Given an Oracle that can only
answer ‘Yes’ or ‘No’ to the question “Is there an ML
constraint between points x and y?”, the true value of
k* (the number of extrinsic labels) can be determined
using O(n?) queries, where n is the number of points
to be clustered. []

Intractability and Clustering with Constraints

Figure 2. A Graph of the average (500 individual results)
number of connected components over randomly created
sets of ML constraints of varying size. Similar results exist
for Pima, Ion and Iris datasets.

Breast Wine

o
S}

= =
S} n

@

Number of Connected Components
Number of Connected Components

=

0 500 500

10 umiset of constaints 10 umiset of constraints
Figure 3. Results over 500 randomly created sets of ML
and CL constraint sets of varying size (x-axis). The y-axis
shows accuracy (Solid Line) measured according to Rand
index and proportion of constraints ignored (Crossed Line)
in final clustering.

Glass Wine

120, 120,

100| 100

& 80 2 80
g g

T 60 T 60
@ 5]
8 S

@ 40 T 40
o a

20 20

100 100

50 50
Number of Constraints Number of Constraints

The results of this theorem can be illustrated as shown
in Figure 2. Initially the number of connected com-
ponents increases rapidly but then as the transitivity
and entailment properties of ML and CL constraints
[Basu et. al. 2004b] become prevalent the number de-
creases to the number of extrinsic labels (k*). It is
then tempting to make use of the transitive nature
of ML constraints and the entailment property of CL
constraints (i.e. ML(a,b), ML(¢c,d) and CL(a,c) —
CL(a,d),CL(b,c) and CL(b,d)) [Basu et. al. 2004b]
to find a value of £* using a small number of queries.
However the No Efficient Approximation Theorem
(Theorem 3.1) means that determining k* from both
ML and CL constraints is also computationally in-
tractable. Another alternative is to try to deter-
mine k from the unlabeled points. There are a vari-
ety of methods of determining the number of clusters
such as Aikike information criterion (AIC), Bayesian
Information Criterion (BIC) and the closely related
Minimum Description Length (MDL) criterion, Par-
tition Coefficient (PC) and ICOMP criterion. See
[Oliver et. al. 1996] for explanations and formulas.
However, Table 4 shows that for data sets with large
numbers of extrinsic labels, all criteria typically pro-
vide a value of k that is significantly less than the
true value on average. This is to be expected as many
model complexity estimators attempt to embody Oc-
cam’s razor and hence favor simpler models. This re-
sult is consistent with prior work [Oliver et. al. 1996]
where it is observed that when clusters overlap signif-

icantly, AIC, PC, MDL and ICOMP tend to under-
estimate the number of clusters. However, generating
a set, of constraints from labels with £* different values
and then attempting to find a clustering with k clus-
ters where k < k* may fail since a feasible clustering
may not exist particularly as the number of constraints
increases.

5. Implications for Algorithms That
Attempt to Ignore Constraints

Given that satisfying all constraints is computation-
ally intractable, there are two viable alternatives: (a)
ignoring some constraints while clustering and then
trying to fiz the clustering so that all constraints are
satisfied and (b) initially ignoring the constraints and
finding the best clusterings for k and then selecting
the fewest constraints to prune so that the clustering
is feasible. Unfortunately, one cannot expect to carry
out either (a) or (b) efficiently due to the No Efficient
Repair Theorem (Theorem 3.2) and the No Efficient
Pruning Theorem (Theorem 3.3) respectively.

6. Implications for Learning Distance
Functions and Then Clustering

The results of Xing and collaborators
[Xing et. al. 2003] and Basu and collaborators
[Basu et. al. 2004b] showed that learning a distance
function from constraints and then using this distance
function to cluster the data and not enforcing the
constraints produced better results than just enforc-
ing the constraints. This is to be expected since
by learning a distance function from say M L(z,y)
we not only make z and y be close but all points
surrounding = and y. However, their experimental
results are limited to clustering the data when the
value of k is set to be the number of extrinsic labels
(k*) and hence a feasible solution always exists. In
Figure 3 we show the results of similar experiments
for data sets where k > 2 except we cluster the data
for k being one less than the number of extrinsic
labels. In this way, no feasible solution need exist
for some constraint sets generated. Our results show
that in this situation the accuracy on the data sets
can increase, but overall, constraints can adversely
affect the performance of the clustering algorithm.
The leftmost point on these plots indicate clustering
with no constraints. Furthermore, we see (crossed
line) that when evaluating the clustering, most of
the constraints that were used to learn the distance
function are effectively ignored in that two must-
linked (cannot-linked) points are placed in different
(the same) clusters. We can formalize this empirical

Intractability and Clustering with Constraints

observation in the following theorem.

Theorem 6.1 [Futility of Learning a Distance
Function and Then Clustering for an Infeasible
Value of k Theorem]. Let S be a set of data points
and let C be a collection of ML and CL constraints
over the set S. Let k* > 2 denote the minimum num-
ber of clusters needed to satisfy all the constraints in
C. Suppose an algorithm learns a distance function
for S from the constraint set C' and the learnt distance
function satisfies the following distance criterion:
the mazximum distance between any pair of points in-
volved in an ML constraint is less than the minimum
distance between any pair of points involved in a CL
constraint. Then, any clustering of S with less than
k* clusters will violate the distance criterion.

Proof. Since k* is the minimum number of clusters
needed to satisfy all the constraints in C, it can be
seen that any partition of S into k* — 1 or fewer clus-
ters violates at least one CL constraint; that is, there
is a pair of points z and y such that C' contains the
constraint CL(z,y), but and y are in the same clus-
ter. (In other words, the chosen partition with less
than k* clusters enforces an ML constraint on x and
y.) Since the learnt distance function satisfies the dis-
tance criterion, the distance between = and y is larger
than the distance between any pair of points which are
involved in an ML constraint. However, x and y are in
the same cluster. So, in the clustering with less than
k* clusters, the distance criterion is violated. []

7. Conclusion

We have built upon earlier intractability results that
showed that finding a feasible solution to the prob-
lem of clustering under a set of constraints is in-
tractable. We have added several new intractability
results. Firstly, given a set of constraints, efficiently
calculating even an approximation to the minimum
number of extrinsic labels the constraints were gen-
erated from is intractable (Theorem 3.1). Secondly,
given a set of constraints and a clustering that does not
satisfy all of the constraints, the problem of fixing this
clustering to satisfy all the constraints is intractable
(Theorem 3.2). Thirdly, given a set of constraints and
a value of k for which there exists no feasible cluster-
ing, the problem of minimally pruning the constraint
set so that there is a feasible clustering with k& clus-
ters is also intractable. We then showed that these re-
sults have implications for several uses of constraints
in clustering by presenting empirical results where ap-
propriate. For example, we showed that if a distance
function is learnt from a set of constraints and then

the points are clustered using a value of k for which no
feasible solution need exist, then the vast majority of
constraints will effectively be ignored in the final clus-
tering and that the learnt distance function generally
performs worse than the Euclidean distance function.
We note that these implications were most likely not
noted in earlier works which clustered the data using
the same number of clusters as extrinsic labels (k*)
used to generate the constraints. In such a situation,
feasible solutions will always exist.

Acknowledgments

We gratefully acknowledge NSF funding for this work
under CAREER grant I1S-0643668.

References

[Ausiello et. al. 1999] Ausiello G., et. al., Complexity
and Approzximation, Springer, 1999.

[Basu et. al. 2002] Basu S., Banerjee A. & Mooney R.,
“Semisupervised Learning by Seeding”, ICML 2002.

[Basu et. al. 2004a] Basu S., Bilenko M. & Mooney
R., “Active Semi-Supervision for Pairwise Con-
strained Clustering”, STAM Data Mining, 2002.

[Basu et. al. 2004b] Basu S., Bilenko M. & Mooney
R., “A Probabilistic Framework for Semi-Supervised
Clustering”, ACM KDD, 2004.

[Davidson and Ravi 2005] Davidson 1. & Ravi S. S,
“Clustering with Constraints: Feasibility Issues”,
SIAM Data Mining, 2005.

[Feige and Kilian 1998] Feige U. & Kilian J., “Zero
knowledge and the chromatic number”, J. Computer
and System Sciences, Vol. 57, 1998, pp. 187-199.

[Garey and Johnson 1979] Garey M. & Johnson D.,
Computers and Intractability, 1979.

[Kleinberg 2002] Kleinberg J., “An Impossibility The-
orem for Clustering”, NIPS 2002, pp. 446-453.

[Oliver et. al. 1996] Oliver J., Baxter R. & Wallace C.,
“Unsupervised Learning Using MML”, ICML 1996.

[Papadimitriou 1994] Papadimitriou C., Computa-
tional Complexity, Addison-Wesley, 1994.

[Wagstaff and Cardie 2000] Wagstaff K. & Cardie
C., “Clustering with Instance-Level Constraints”,
ICML, 2000.

[Wagstaff et. al. 2001] Wagstaff K., Cardie C, Rogers
S. & Schroedl S., “Constrained k-means Clustering
with Background Knowledge”, ICML, 2001.

[Wagstaff 2002] Wagstaff K., Intelligent Clustering
with Instance-Level Constraints, Ph.D. Dissertation,
Cornell University, 2002.

[Xing et. al. 2003] Xing E., Ng A., Jordan M. & Rus-
sell S., “Distance Metric Learning, with Application
to Clustering with Side-Information”, NIPS, 2003.

