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ABSTRACT
Machine Learning models from other fields, like Computational
Linguistics, have been transplanted to Software Engineering tasks,
often quite successfully. Yet a transplanted model’s initial success at
a given task does not necessarily mean it is well-suited for the task.
In this work, we examine a common example of this phenomenon:
the conceit that “software patching is like language translation”.
We demonstrate empirically that there are subtle, but critical dis-
tinctions between sequence-to-sequence models and translation
model: while program repair benefits greatly from the former, gen-
eral modeling architecture, it actually suffers from design decisions
built into the latter, both in terms of translation accuracy and diver-
sity. Given these findings, we demonstrate how a more principled
approach to model design, based on our empirical findings and
general knowledge of software development, can lead to better
solutions. We propose several models that leverage the same ma-
chine learning tools, but whose architecture, data presentation, and
metrics are specialized for the software engineering task. The result-
ing models perform significantly better than the studied baseline,
especially in more program repair appropriate metrics. Overall,
our results demonstrate the merit of studying the intricacies of
machine learned models in software engineering: not only can
this help elucidate potential issues that may be overshadowed by
increases in accuracy; it can also help innovate on these models
to raise the state-of-the-art further. We will publicly release our
replication data and materials at https://github.com/Anonymous-
authors-2020/Patch-as-translation.git.
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1 INTRODUCTION
Recent work has applied a wide variety of machine learning models
to practical software engineering tasks, including code completion,
automated program repair, and code comment generation. These
models excel at learning general patterns from large amounts of di-
verse data, even when training data is relatively unstructured. This
combination enables one to simply transplant successful models
from related fields, e.g. from computational linguistics, to software
engineering. Yet, even if these models provide reasonable perfor-
mance, the transplanted model may still not be appropriate for the
task; many of these models were designed for paradigms that differ
subtly, yet significantly.

In this work, we conduct a systematic empirical case-study to
illustrate how transplanted models can fail in the targeted task
domain, focusing specifically on the concept of “patching as trans-
lation” as a typical example of this phenomenon. A range of recent
work has adopted neural machine translation (NMT) models to
learn to repair programs by “translating" the buggy code to the
repaired code [3, 4, 19, 27]. We argue that there are three general
concerns with this type of approach, and show concretely how these
manifest in “patching as translation” through empirical analysis:

Task design: Deep Learning (DL) models transform their inputs
into a compact set of features that stores the important information,
which it then uses to produce the required target. A wide range
of DL architectures have been proposed that do so, but regardless
of the specific architecture or task, it is self-evident that all the
relevant information needed to generate the target must already
exist in the input. While that is (largely) a fair assumption for
natural language translation, where we can assume that the input
& output sentences express the same idea, it is questionable for
source code repair: we show evidence that buggy fragments often
lack the information required to repair them. Reliably choosing
the correct repair may even be impossible without access to a very
broad context (including surrounding files), in the absence of which
this task is inevitably ambiguous for many real-world bugs.

Architectural design: Given a task where deep learning is feasible,
one must choose a model architecture that supports the transfor-
mation from input to output, in as realistic and simple a manner
as possible. This is done by ensuring that prior knowledge of the
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task (including dependencies and structural properties) are built
into the model design. Architectures for machine translation rely
heavily on the auto-regressive nature of text: language is generally
produced one word (or token) at the time in left-to-right manner,
e.g. in speech or writing; the standard NMT encoder-decoder archi-
tecture generates translations correspondingly. While this works
very well for NMT, its relevance to practical program repair is ten-
uous at best: empirically, many repairs just copy (nearly all) tokens
from the buggy line, with very few changed tokens (often just one).
As such, both bug and patch share a large identical prefix, but the
difference in the subsequent tokens is crucial. We demonstrate that
models struggle to predict this transition, as the large amount of
copying distracts (and inflates) the training quality signal.

Objective design: finally, models are trained by computing a loss
for their predictions relative to a “gold" output, using a loss function.
This function is usually a differentiable proxy for the actual quality
of the model, because such qualitative assessments tend not to be
differentiable. In machine translation, the training loss is usually
based on the probabilities of the correct token; the actual quality
of the trained model is measured with BLEU scores (or the like)
that measure overlap between the generated and ground-truth
translation. However, such overlap measures are inappropriate for
program repair. For reasons stated earlier (few token changes, lack
of contextual information), the quality of a produced repair often
correlates very poorly with the number (and placement) of tokens
it shares with the desired output. For instance, the trained model
emits many syntactically incorrect repairs, as well as many very
similar patches for a given bug, rather than exploring a range of
alternatives. This yields poor performance in a search-based setting
in which they are popularly used (given failing test cases).

Having studied these concerns empirically, we address them
by designing a program repair tool for a given, localized bug from
first-principles, incorporating the empirical and conceptual insights
identified above. Specifically, we propose to add a substantial win-
dow of contextual information to the model and change the archi-
tecture of the model to predict insertions and deletions relative to
the bug rather than the entire patch. The latter change especially
produces a model that both generates the correct patch more often,
and provides better sampling behavior (i.e., higher top-K prediction
accuracy using beam search). The contextual enhancement is less
effective, which highlights that empirically observing an issue and
effectively addressing it are not always the same; we leave this
challenge for future work.

2 BACKGROUND
To study transplanting of architectures from neural machine trans-
lation (NMT) to automated program repair, we need to understand
both domains. In this section, we first discuss NMT – its conceptual
needs and corresponding architectural designs, and thenAutomated
Program Repair – its empirical characteristics and practical use.

2.1 Neural Machine Translation
NMT aims to convert an expression in a source language (e.g., Eng-
lish) into a semantically equivalent expression in a target language
(e.g. French). This is generally both quite feasible and fairly deter-
ministic: a given English sentence almost certainly has a French

translation that is both a good French expression on its own and
preserves all the information in the original English expression (i.e.,
it could be translated back to a comparable English phrase).1

A natural fit for this task is the encoder-decoder architecture,
which consists of two components: 1) an encoder that learns to com-
pactly encode the important information from the source language
expression, and 2) a decoder, which transforms that information into
an equivalent expression in the target language. Encoder-decoder
style models can address many types of transformations between
two domains (e.g., from image to textual description) and are typi-
cally instantiated with specific encoder-decoder architectures for a
given problem that reflect some knowledge about that problem’s
domain. This simplifies the otherwise complex task of representing
and producing a very wide range of inputs. For example, in com-
putational linguistics, sequence-to-sequence (seq2seq) [25] models
are a well-established way to generate text one token at a time, in
a left-to-right manner – this linear order reflects how language is
often generated in speech and writing. Seq2seq models exploit this
structure by both representing and generating expressions with
a strong emphasis on the left-to-right relations between tokens;
especially in the decoder component, which (in nearly all popular
models) produces tokens “auto-regressively", meaning that tokens
are produced one by one, and every previously generated token is
fed back to the model to produce the next token.

Practical seq2seq models. Seq2seq models have achieved great
success in the NMT field. Recurrent Neural Networks (RNNs) were
popular for many years, but had difficulties in remembering long-
term dependencies. In an RNN, all the information of a source
sentences is encoded into a hidden state from left to right; the final
hidden state is then passed to the decoder, which attempts to recon-
struct the target expression from this information. This puts inor-
dinate strain on that single hidden state, which tends to cause the
model to forget tokens seen longer ago. Long short-term memory
(LSTM) [12] and gated recurrent unit (GRU) [5] were introduced to
mitigate this bottle-neck by better separating long-term and token-
specific information, and did significantly improve the performance
of RNN-based NMT models, but ultimately suffered from the same
concerns. Attention-based mechanisms [2] were introduced to al-
low the decoder to “attend" to any given intermediate state from the
encoder (rather than only the final one), which greatly improved
performance. Most recently, the Transformer [29] model general-
ized this idea to relying entirely on attention mechanisms to both
encode inputs and generate outputs. The Transformer model pro-
poses multi-headed (self-)attention interspersed with feed-forward
networks that enables both encoder and decoder to attend to any
set of tokens across arbitrarily long distances. These models are
also highly parallelizable. We adopt this model in our work.

Seq2seq models in SE.. Hindle et al observed that source code
is “natural" [11], viz., with strong local dependencies similar to
natural languages like English. Many language models have been
applied to software engineering tasks. More recently, this includes a
range of applications of the seq2seq architecture in modeling source
code. Existing work has exploited their potential in several SE tasks,

1In practice, context is sometimes required, e.g., to determine if an expression is meant
sarcastically, which may alter its translation. There can also be multiple valid transla-
tions for one expression (e.g. literal vs. idiomatic). Even so, generated translations that
overlap strongly with the ground-truth are rated highly by human translators [20].
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such as code summarization [13], code migration [7] and program
repair [3, 4, 19, 27]. The prevalent approach is to treat source code
as a sequence of tokens with implicit or explicit structures (e.g.,
abstract syntax trees) [3]. The encoder learns the distribution of
such structured language, which is then translated into the target
domain, either program languages (PL) or natural languages (NL).

Relevance of Models to Tasks. All these models excel at learning
generalizable patterns from large amounts of diverse data and are
prima facie at least somewhat applicable to source code, to the
extent that it reflects natural language characteristics. However,
different tasks come with their own concepts and peculiarities,
and the models should reflect the phenomena specific to the task.
For example, code summarization and code migration are more
like NL translation tasks, since both their goals are to encode and
preserve the semantics of their inputs (code fragments), just in
different vocabularies (concise natural language, and another code
context respectively). On the other hand, software engineers behave
differently when repairing a program. Developers tend to fix a
buggy fragment by making minor changes rather than entirely
rewriting it. Furthermore, the semantics of the buggy fragment
are by definition not preserved; the express goal is to introduce
semantically new content (and possibly remove some) so as to
change the meaning of a fragment. None of this disqualifies the use
of seq2seq models per se, but its built-in assumptions should at least
be carefully evaluated empirically, and, if necessary, its application
should be changed to better reflect the domain.

2.2 Automated Program Repair
Automated program repair (APR) is a task of keen interest in SE.
The aim is to fix software bugs with minimal human intervention.
Classic APR techniques can be categorized into 1) generate-and-
validate (G&V) [6, 14, 21, 22] or 2) synthesis-based approaches [17].
G&V approaches automatically generate patches and validate the
candidates using a set of test cases that reveals the bug. To generate
fixes, one effective approach is to mutate (e.g., insert, replace) the
buggy code according to code snippets in the current project that
occur in similar contexts [14]. Synthesis-based approaches create
constraints that satisfy all test cases, and then solve them and
produce patches from the solutions.

NMT for APR.. Tufano et al. [27] proposed to use machine trans-
lation to repair programs and empirically studied the feasibility of
translating buggy programs into fixed ones. They applied multi-
layer RNNs with either LSTM or GRU nodes to predict patches of ab-
stracted, real bugs, and report promising performance. Chen et al. [4]
subsequently introduced SequenceR, an end-to-end framework to
repair one-line Java bugs. They used NMT models to learn the
implicit bug-repair patterns by training the model with 35k bug-
fix pairs. Besides the buggy line itself, they also considered code
context to allow long-range dependencies in fixes; they include
the entire class in which the bug is located, which they abstract
to reduce the input size. CODIT [3] developed a tree-based NMT
model to produce code edits and bug fixes. It first translates the
tree structure of code and utilizes the structural information to
assist the generation of code tokens. CODIT also includes the tree
nodes around the bug as context to predict meaningful patches. EN-
CORE [19] ensembles multiple NMT models to capture diverse fix

patterns. The authors argue that incorporating context is essential
for fixing bugs, yet ineffective for deep learning models, so they
ignore the buggy context.

Although these existing works apply a wide range of models,
they all treat program repair as a translation task; these tools encode
a limited program window around a bug and learn to transform
it to repaired code based on historical repairs. The premise is that
translation is both a suitable model and that the buggy code (with
its context) provides sufficient information to succeed. It is thus
past time to ask the following, high-level question, which has yet
to be addressed from an empirical perspective:

RQ1. Is it generally feasible to translate buggy programs to repairs?

While these approaches all indicate that Seq2Seq learning holds
promise for learning patterns of transformation between bugs and
patches, they struggle to outperform many G&V tools that applied
human-designed rules to fix defects. One explanation is that the
search space of repairs is prohibitively large [18], among others due
to the large and highly local vocabulary and patterns endemic to
software [9], as well as the length of buggy fragments. Intuitively,
however, the search space need not be so large at all: in real-world
development, modifications made to code during repair are mostly
small, limited to a few tokens rather than completely reconstruct-
ing a statement. Is the reliance on translation putting models at a
disadvantage by artificially expanding the search space? It is again
worth determining this empirically, by asking:

RQ2. Do machine translation architectures mischaracterize real-
world fixing behavior, and does this disadvantage their performance?

Deep Learning for APR.. Besides translating buggy code to fix
it, recent work has proposed deep learning models that learn to
specify the buggy locations that need to be modified together with
the edits to be made. DeepFix [8] implemented a seq2seq attention
network to fix compiler errors. As input, the program is represented
as a sequence of (line number, tokens) pairs, and the model predicts
a single single (buggy line number, patch) pair as a repair. Va-
sic et al. [28] proposed using pointer networks [30] to jointly learn
to localize and repair a specific class of bugs known as VarMisuses.
Their network jointly predicts two output “heads", one to locate
the buggy token and one for its replacement. Tarlow et al. [26]
introduced an edit-based model called Graph2Diff that uses a graph
neural network as an encoder and a Transformer as decoder. This
model transforms a program graph into a ToCoPo sequence of AST
edits that transform the buggy program into a repaired version.

By directly learning the locations of incorrect tokens and the
edits to be made, these edit-based methods provide an approach to
learning bug fixing with a very different loss, which is not trivially
reduced by maximizing the token overlap between the bug and
repair. The impact of this loss can be substantial in determining the
kind, and robustness, of local minima that the neural network finds
during training. We thus implement a simple version of this model
ourselves to empirically study the impact of the objective function
on both our baseline model and this edit-based model. This way,
we study the impact of the objective function on the models by
studying the models’ results themselves, asking the following:

RQ3. How well does the NMT objective function apply to Automated
Program Repair?
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3 METHODOLOGY
The goal of this work is to provide an empirical and conceptual anal-
ysis of the relevance of deep learning models (originally developed
for NMT) in SE contexts. As such, we emphasize that it is not our goal
to produce a state-of-the-art bug detector, or replicate prior work.
Rather, we identify a general, representative approach (seq2seq for
program repair), that reflects a direct adoption of models from a
related field to SE tasks, and study its limitations. Naturally, prior
work has covered a wide range of applications and modifications of
this method, and may be immune to some of our findings, but this
does not discount the general result of our analysis: that adapting
deep-learning models designed for other fields to SE requires a
principled, empirically and conceptually grounded approach.

3.1 Scope
Concretely, we focus on a relatively simple form of automated
program repair in which we translate a given buggy line to its
repaired counter-part. We thus assume that we have the bug already
localized and that it is confined to exactly a single line. This is the
most direct form of “repair as translation”, in which an off-the-shelf
translation model is used on two software “sentences": the buggy
version and the repair.

3.2 Data
We collect our bugs from the history of the 10,235 most-starred
Java repositories on Github on March 30th, 2020. We analyzed each
project’s entire commit history and extracted any commits that
altered precisely a single line in a single Java file, disregarding any
(spurious) changes to whitespace. We then compared the corre-
sponding commit messages against a relatively simple keyword-
based check [23] to heuristically find commits labeled as e.g. “fix"
or “bug". We note that, although this heuristic is not particularly
precise, the characteristics we found in our data were very similar
between those marked as fixes and other one-line changes, so we
expect this to have little impact on our analysis. This process re-
sulted in ca. 60,000 bug fixes across 8,644 projects in our dataset. In
the course of our analysis of this data, we manually checked and
confirmed that most of these were indeed bugs.

3.3 Experiment Setup
Given the collected dataset, we first analyze the characteristics of
real fixes and then train NMT models on these samples to predict
patches. To answer our research questions, we study both char-
acteristics of the the real-world bug-fixing behaviors and of the
model-generated patches.

3.3.1 Bug context. We design experiments to explore the impor-
tance of a bug’s lexical context when fixing defects. In natural
languages, context (the text surrounding an expression) has a direct
effect on the way people understand a specific expression and can
help avoid ambiguity in communication. Similarly, the context of
a buggy line is the code surrounding, as in, both preceding and
succeeding, the bug. This can variously be chosen to include up to
𝑁 lines of code above and below the bug, the surrounding func-
tion, or even the whole file (or project). This context can provide
vital information (e.g., variable definitions, conditional statements)
for understanding the defect and the necessary repair. We study

the role of variously sized contexts for both disambiguation and
providing necessary information in section 4.1.

3.3.2 Similarity analysis. We noted earlier that software engineers
tend to make small changes when fixing defects, likely because
bugs correspond to only minor flaws in the code, and perhaps also
because making few changes reduces the risk of introducing new
bugs. Given this, we evaluate the similarity between real bugs and
patches empirically across three similarity metrics:

(i) Edit distance (precisely, Levenshtein distance) is a metric that
quantifies the difference of two sequences by the minimum number
of edits (deletions, insertions, or substitutions) required to transform
one into the other.

(ii) Jaccard similarity (effectively intersection-over-union) cal-
culates the ratio of overlapping n-grams between two sequences
divided by their union. Jaccard similarity is usually just applied
to token-level similarity; we extend it to the average of 1 through
4-gram overlap to better capture both token-level similarity and
matches in their ordering.

(iii) Bilingual evaluation understudy (BLEU) is popularly used to
evaluate the quality of machine translations, and is considered to
have a high correlation with human assessments of similarity [20].
This is an asymmetric measure that captures how similar the model
prediction (the “hypothesis") is to the ground-truth translation
(the “reference"). BLEU also counts n-gram matches between the
prediction and the ground-truth, and normalizes these w.r.t. the
predicted sequence length, which causes the asymmetry.

These three metrics above will be used frequently across our
analysis to measure similarity in different aspects.

3.3.3 Model training and BPE. To inspect the performance of NMT
models on program repair, we trained and evaluated a vanilla Trans-
former model [29] on our dataset. We split the whole dataset into
three parts across organizations, train/valid/test, with a ratio of
90%:5%:5%. We trained the model on the ca. 55K bugs in the train
set, optimized it for held-out performance relative to the valid set
and finally evaluated the performance on test set.

In the field of natural language processing, Byte-pair-encoding
(BPE) [24] is a widely used method to encode rare and long words
into frequent sub-tokens; this way, tokens that were not seen in full
during training can still be predicted accurately at inference time.
BPE splits a word (e.g., "coding") into a list of more frequent sub-
tokens (e.g., [’cod’, ’ing’]). In programming languages, vocabulary
innovation is even more rampant, as developers tend to name a vari-
able or method using a combination of words (e.g., isNullOrEmpty)
[9]. Karampatsis et al. [15] show that BPE can effectively address
this issue in big code applications, so we apply this to our model
input as and predictions as well.

4 ANALYSIS
In this section, we empirically analyse the characteristics of pro-
gram repair on real-world bug fixes with a joint focus on the rela-
tion to natural language translation and on factors that influence
accuracy for program repair. In particular, we study the character-
istics of the ground-truth data (i.e., the real bugs and patches with
their context), and of the patches generated by our NMT model, as
trained in Section 3.3.3. For the rest of this section, we scrutinize
the adequacy of translation as a paradigm in Section 4.1, we identify
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architectural concerns in Section 4.2, and we quantify their impact
on model performance in Section 4.3.

4.1 Task Design
Translation, as a task, is intended to facilitate communication across
language barriers. Hence, by design, it must preserve the semantics
between the source language, and the target language—any trans-
lation that changes the semantics is unacceptable. By contrast, in
program repair, the semantics of source and target are meant to dif-
fer, as the buggy version contains incorrect program behavior that
the fixed version is supposed to correct. To do that, engineers delib-
erately change (add/delete/replace) incorrect tokens with correct
ones. Imitating such changes with a machine learner is non-trivial,
especially since the learner usually only has access to the bug and
the fix, but not the knowledge latent in the developer’s mind to
reason about the fix.

For instance, the fix may introduce, de novo, tokens that are not
in the buggy lines, e.g., a new API call. In such cases, a model has
to learn to pick those new tokens from across its entire known
vocabulary. If the replacement is a common fix pattern, this might
be easy enough to learn; otherwise, this leads to a vast search space
of candidate repairs. The latter case is common enough; developers
often use methods of their own creation, defined in adjacent files,
or string or numerical patterns specific only to that project. It is
thus important to quantify, even just approximately, how much
information the model needs and how much it has access to from
its training data, which tends to comprise the buggy lines and
an optional window of code context. Although it is non-trivial to
inspect the learned “black-box" model and extract what it infers
about a given buggy line, we can identify the gaps between "what
program repair needs" and "what machine translation can supply".

4.1.1 Program repair needs (lots of) contextual information. Patches
that introduce new vocabulary (relative to the buggy line) require
the model to conjure up novel tokens, ex nihilo. Given that code
vocabulary is highly diverse and often strongly specific to a given
project, package and file [9], doing so from the buggy line alone
may require an unreasonable level of ingenuity from the model.
Table 1 quantifies this: first, nearly 90% of patches introduce new
vocabulary relative to their buggy source, which is true regardless
of sub-tokenization (even using the BPE approach). Furthermore,
these are not at all just typical program tokens or local variables; we
paired the buggy linewith increasingwindows of context (explained
in Section 3.3.1) and find that the unseen tokens introduced by the
patch are still rarely borrowed from any immediate buggy context;
they are sometimes present in the file as a whole, but in locations
far away from the bug. Nearby tokens are a bit more likely to share
some sub-token(s) with the patch, but rarely provide the entire
missing link. Given that modeling large volumes of code (i.e., many
hundreds, or thousands of tokens) at once is often prohibitively
expensive for current deep learned models, this can seriously affect
models that incorporate only modest levels of context, such as the
surrounding few lines or function.

This is not merely a matter of richer training data either; a large
proportion of project-specific tokens are not found in any other
projects [9], so it is quite unlikely that our model would have seen
many of these at training time. We note that this is in contrast

Table 1: Ratio of patches with new vocabulary relative to the buggy
snippet given a context window that ranges from None (i.e., only
buggy lines – a typical translation setting), to a given number of
lines (symmetrically around the bug), and finally to the entire file.

Context included
Patches introducing unseen tokens

without BPE with BPE

None 89.5% 86.2%
10 lines 73.0% 64.2%
20 lines 68.7% 59.9%
Whole file 49.5% 38.6%

to other paradigms of program repair, such a many G&V models,
which instead search for patches from across many surrounding
files, rather than aim to encode a context directly into a translation.

4.1.2 Without context, program repair is inherently ambiguous. As
discussed, a learner would certainly struggle to capture enough
information from the buggy program alone. Fortunately, these learn-
ers are equipped with the capacity to transfer many insights from
their training data to new examples. Perhaps they can predict the
missing semantic information from those bug-repair pairs?

Although it is again impossible to quantify what the model can
do, we also again argue that it is perfectly sound to lower-bound its
potential by estimating how much of the requisite information it
has access to at training time. Concretely, the training data contains
many “similar" bugs to those seen at test time (which we will quan-
tify in various ways), so the model might learn the transformations
that produced patches from those similar bugs and apply the same
insight, e.g., to predict the missing vocabulary. But, this is contin-
gent on similar bugs indeed producing similar repairs; if repairs for
similar bugs routinely diverge, then the model is reasoning about
highly ambiguous data and will have to learn a wide range of valid
transformations for a single defect in the training data.

To simplify this discussion, let b be a bug in the held-out por-
tion of our dataset and p be the patch of b . Assuming we had some
oracle that can provide “similar" bugs 𝑏 (with patch 𝑝) for b, specifi-
cally from our training data, we would ideally expect information
about the relative change needed to repair b to be transplanted from
𝑝 . If that is generally true, then our model can learn similar trans-
formations for similar bugs and thereby generate new vocabulary
and patterns that are not present in the buggy context.

To quantify this, we find the top-3 most similar bugs for each
b in the held-out using 4-gram Jaccard index (see section 3.3.2),
which we label 𝑏1, 𝑏2, 𝑏3, among bugs in the training data. We
then extract the corresponding p and 𝑝𝑖 and evaluate the patch
similarity SIM[p, 𝑝𝑖 ] in relation to the bug similarity SIM[b, 𝑏𝑖 ]. To
facilitate transferring repair patterns, we should hope that similar
bugs produce similar repairs. We visualize this as a heat map (Fig-
ure 1) to show the correlation between bugs’ similarity and patches’
similarity: for each grid in the heat map, we count the number of
samples with SIM[b, 𝑏𝑖 ] and SIM[p, 𝑝𝑖 ] in the corresponding range,
and then color the grid based on these counts. To make the color
contrast more identifiable, we log-normalize the counts.

We calculate the b → 𝑏 and p → 𝑝 similarity scores using both
the Jaccard index and BLEU scores; the latter is more appropriate
for translation because it is asymmetrical, capturing the overlap
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(a) Intersection-over-union (b) BLEU

Figure 1: Correlation between bugs similarity and patches similar-
ity. X-axis indicates the bug/similar-bug similarity, and y-axis indi-
cates the patch/similar-patch similarity. The corresponding count
of each grid is normalized on a log scale.

Table 2: Similar bugs do not always have similar patches.

bug/similar-bug BLEU # Samples patch/similar-patches BLEU

< 0.5 ≥ 0.5

≥ 0.5 2038 66.0% 34.0%

≥ 0.6 1143 62.3% 37.7%

≥ 0.7 561 54.2% 45.8%

≥ 0.8 258 46.1% 53.9%

1 173 49.1% 50.9%

from the perspective of the translation target. This aligns well with
the task’s directionality: we want to quantify what information
is transferred from training to held-out, not vice versa. The
result is shown in Figure 1; both metrics yield a similar pattern:
bug-similarity only partially correlates with patch-similarity. Both
graphs show a “smeared out" pattern in which similar bugs tend
to produce patches with typically less similarity, rather than a
strongly pronounced diagonal, that would indicate that patches
relate to one another as their bugs do. Worse, many bugs have only
neighbors with low similarity to begin with. These lower scores
tend to just reflect spurious overlap due to the large portion of
“closed-vocabulary" tokens (e.g., brackets, keywords) in source code,
which is also evident from the main hotspot being at (0.25, 0.25).

We are particularly interested in pairs that share a relatively large
number of tokens and patterns; i.e., those with similarity scores
greater than 0.5. For example, the code: “private boolean isName
= false;" and code: “private boolean isName = true;" yield
a BLEU-score of 0.57, and they indeed look alike (only differ in
boolean value). If similar bugs are (predominantly) fixed in similar
ways, then we should expect that to translate into high patch simi-
larity, which would allow the model to copy the appropriate repair
patterns. Unfortunately, Table 2, which breaks down the highly
similar bugs specifically, paints a different picture: here too, the
similarity between bugs has nearly no discernible relation to that
of their patches. Even highly similar bugs’ patches do not score
above 0.5 half the time, which is actually lower than their respective
bugs. For instance, a common bug in our dataset, "LOG.error(e);",
presents with many dissimilar patches including "LOG.warn(e);"
and "LOG.error(“Can’t read settings for " + tool, e);".
The BLEU score between these two patches is just 0.12, and we can
tell that this bug was fixed with very different intentions. In other
words, relying on similar bugs to transplant patch information is
almost entirely ineffective.

This demonstrates a substantial inherent ambiguity in program
repair based on just a buggy line (though not necessarily to program
repair in general): for given a bug, the learned program repair
history provides a mixed signal of many candidate repairs with
distinct semantics. This matches our intuition as well: just how
a given fragment is buggy, and what specific repair among many
valid semantic transformations is appropriate depends on a vast
array of factors, many of which are not enshrined in the code at
all (e.g., project requirements, developer preferences), let alone the
buggy line (or even function) itself.

4.1.3 The challenges of new vocabulary. Finally, it might still be
feasible for the model to “guess" at novel tokens and break the
ambiguity if they can be constructed fairly obviously from the
context, e.g., by applying known transformations to existing ones,
like converting singular to plural or incrementing a provided integer.
Whereas the former results provided a lower-bound on what is
feasible, it is quite impossible to quantify precisely what the model
“could do", as the patterns learned by its millions of parameters
can be highly complex. So we instead use the model’s performance
itself (studied in more depth in section 5) as an empirical datapoint:
given that it is trained carefully and with ample capacity, we should
expect that it provides at least evidence of this ability to produce
correct new vocabulary. In contrast, we studied the trained model’s
accuracy on our 2,599 test samples; the patch introduced one or
more tokens not present in the bug in over 75% of the cases, yet the
model predicts this new vocabulary only 5.6% of the time. Worse,
many of the “new" tokens are not even entirely new; they may just
constitute the addition of null check, which the model still does
not anticipate. Even when (beam) searching across the top 25 most-
probable sampled patches, the model only anticipates 14% of the
required new vocabulary. We stress that this is a well-trained model,
which was able to achieve a high accuracy on its training data and
for which we used the most generalizable checkpoint after training
for 100 epochs. As such, machine translation models are already at
a serious disadvantage here compared with NLP applications. This
allows us to conclude our investigation of RQ1:

The lack of information in the training data, vocabulary, and
immediate context makes repairing as translation in its current
form largely infeasible.

4.2 Architectural Design
Our second point of concern with translation models for program
repair relates to the structural constraints assumed inherent in nat-
ural language generation: that text is auto-regressively produced
left-to-right. This constraint is built in to the translation model’s
(sequence-to-sequence) architecture and implies that a simple adop-
tion for program repair requires the model to output the entire
repair, producing the correct token at each point.

The flaw with this particular decision is different from the one
in Section 4.1 in that it does not affect the feasibility of the task
(generating the entire repaired line is just as possible as e.g., gener-
ating the change only). Instead, architectural mismatches between
the model and the task impact the difficulty of training and the
corresponding rate, and even the ultimate limit, of convergence
on test data. This is because a) our models do not have infinite
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(a) Edit Distance (b) Intersection-over-union (c) BLEU
Figure 2: Different Similarity Metrics regarding (bug, patch) pairs. X-axis of each histogram indicates the similarity score w.r.t. different
metrics, and y-axis shows the ratio of samples within the corresponding range. The average edit distance between bugs and patches is 3.29.
The edit distances of 51.1% samples are 1 and 63.6% samples have an edit distance ≤ 2. The average intersection-over-union similarity is 0.76,
and 88.4% samples have a similarity ≥ 0.6. The average BLEU score is 0.61, and 72.5% samples have a BLEU score ≥ 0.5.

capacity and b) stochastic gradient descent is a local optimization;
thus, these models tend to find a local minimum that matches the
signal conveyed by the loss function. If this loss function prioritizes
exact repetition of many tokens from the input, or a strong reliance
on left-to-right production, this may negatively affect the actual
quality (e.g., overall accuracy) of the ultimate local minimum. In
this section, we quantify this effect from the data statistics; in the
next we explore it further based on the model’s convergent quality.

4.2.1 The patch preserves most of the tokens in the bug. 2 Bug-
fixing modifications to committed code are often minor; the buggy
line usually is already per se a close approximation of the correct
code, with very subtle, minor flaws. To quantify this assertion, we
first measure the similarity between real bugs and patches. We
use three different metrics to evaluate the similarity of each (bug,
patch) pair in our dataset, outlined in section 3.3.2: token-level
edit distance, (1-gram) intersection-over-union (which contributes
a denominator to token-level overlap); and finally, mean BLEU-4
similarity to balance the overlap between tokens and sequences.

The results are shown in Figure 2. The average edit distance for
the samples in our dataset is 3.29, but the distribution is long-tailed
so this mean is somewhat inflated by the few large edits; the median
distance is simply 1 – 51.1% of the samples only edit a single token
to fix the bug, and 63.6% of the samples have an edit distance up to
2. Thus, bug fixing modifications are often limited to just a select
few tokens. Figure 2b further shows that bugs and patches share the
majority of their vocabulary as well: the average Jaccard similarity
is 0.76, and half the time the patch reserves more than 80% of the
bug’s tokens. This overlap extends to sequences of tokens as well:
the mean BLEU score of a patch relative to its bug is 0.61. Two
lines of code are considered very similar when their BLEU score
is greater than 0.5, so bugs and their patches overlap strongly. For
reference, the state-of-the-art results in NMT at this time are ca.
0.4, depending on the language pair. Program repair achieves far
higher performance by simply copying the bug verbatim; yet, doing
so would in no way approximate a good repair.

This also confirms our intuition that bugs and patches are highly
similar, and patches retain most tokens from the buggy version,
rather than assembling code de novo. This principally suggests that
2This result applies to our study of small (one line) bug fixes; this may not hold for
larger patches, which may be more likely to reconstruct the whole buggy module.

Table 3: Proportion of repairs in which the syntactic structures re-
mains unchanged relative to bug, both for all samples in our train-
ing data and for those in which the patch both does and does not
introduce novel tokens (relative to the bug).

Setting Proportion

All bugs 52.4%
Patches introducing new tokens 56.2%
Patches without new tokens 20.6%

searching for the correct patch token by token, from left to right is
a poor use of search space; a smart program repair tool should just
predict which tokens are supposed to be preserved and focus on
searching for the ones that require modifications. But is it really so
bad to generate the entire patch; wouldn’t copying the preserved
tokens simply prove no concern for the models? We answer this
question in the negative in section 4.3; first, we further analyze the
types of changes made in real repairs.
4.2.2 The patch tends to make minor changes to the bug’s syntax.
Grammars vary widely across languages. For example, subject-
verb-object sequences (“I eat an apple") are abundant in English,
but people seldom use them in verb-final languages like Tamil or
Japanese. Because of this distinction, translating by merely substi-
tuting words in one language with another is often inappropriate.
Instead, neural architectures capture the syntactic transformation
between languages, as well as the translation of the underlying
words. A recent study [1] shows that the difference in word or-
der among various languages is a significant feature that models
learn, and e.g., neural attention mechanisms are effective at this
task. We are similarly curious whether this feature is prominent
in the conversion of bugs to patches, as such information gives
hints about how to adapt machine translation models appropri-
ately. For example, given a buggy line: "if (level >= damage -
damage / 2)" with patch: "if (level <= damage - damage /
2)" (a real sample from our dataset), we can see that the patch does
not modify the syntax (in terms of the AST) of the bug, but only
changes its semantics by changing the underlying tokens. We thus
empirically study how often modifications that fix logical errors
introduce changes to the syntactic structure of code.

Given a pair of bug and patch, we tokenize the code and use
javalang package 3 to identify the syntactic type (e.g., identifier,
3https://github.com/c2nes/javalang



ASE ’20, September 21–25, 2020, Melbourne, Australia Yangruibo Ding, Baishakhi Ray, Premkumar Devanbu, and Vincent Hellendoorn

separator, integer) of each token. If a bug and patch have the exact
same token type sequence, their syntactic structure is unchanged.
Table 3 summarizes the resulting ratios. Slightly more than half
of our patches preserve the exact syntactic structure of their bugs.
Furthermore, the results are starkly different based on whether a
patch introduces new tokens (relative to the bug; see section 4.1.1);
those that do even more rarely (56.2%) change the syntax, while
the other patches are often some kind of permutation of the bug’s
tokens that very rarely preserves syntactic ordering.

These observations have important implications. For one, they
suggest that searching for unseen words across the entire vocabu-
lary is rarely necessary; rather, the model could simply search for
the tokens given a specific syntactic type [3]; e.g., many patches
replace just an operator to fix a bug. More generally, this suggests
that the left-to-right generation process is thus not just inefficient,
but all-but misdirected for such bugs: it requires the model to both
copy a precise prefix, and then generate a single alternative from
that context, where the original token was often already “close" to
being correct (i.e., in the right syntactic ballpark). Patching such
bugs, more than half of those in our dataset, in this way likely puts
inordinate and unnecessary strain on the model, which we will
quantify in the subsequent sections. First, we partially conclude
our second research question:

The machine translation architecture’s generation process is a
poor fit for program repair, which frequently retains most to-
kens from the bug while replacing just a few, and from a small
candidate set.

4.3 Program Repair via NMT (Objective)
Finally, when generating natural language translations, the goal
is to correctly predict as many words of the target sentence as
possible. The idea is that a translator that is likely to predict any
one word given the input and previously predicted words (if any)
is also likely to correctly generate the entire desired sentence by
simply repeating this process until termination. Indeed, this tends
to be quite accurate in general, in part because of the naturally
auto-regressive, Markovian nature of text; a given prefix typically
has only a small set of plausible continuations.

Given the observations in the preceding sections, this Markovian
assumption seems precarious at best for program repair: the bug
and repair often share a large, identical prefix (and suffix) that
is then followed by incorrect tokens in the former and different,
corrected ones in the latter. As such, we must question the validity
of an objective function (both loss and metric) that values per-token
prediction quality so strongly. Having said that, the aforementioned
observations alone do not prove that there is a problem with this
transplanted objective; the buggy token(s) may simply have been a
particularly unnatural successor to its context [23], from which the
corrected token(s) do, in fact, follow naturally. In this section, we
empirically assess this concern.

Specifically, if the Markovian, auto-regressive objective used in
natural language translation is a good fit for program repair as well,
we would expect two things to be true:

(1) The per-token accuracy under auto-regressive teacher forc-
ing correlates closely with the quality (i.e., total accuracy) of
the produced patch. That implies that the model correctly

Figure 3: Performance trends (dashed line) and per-epoch results
(points) on held-out data as training progresses, in terms of per-
token accuracy subject to teacher forcing, accuracy at generating
the complete sequence, and top-5 accuracy using beam search.

identifies the “challenging" tokens, that need to be altered, as
these dictate the overall correctness of the resulting patch.

(2) The model efficiently explores the repair space when sam-
pling multiple patches (e.g., using beam search). That implies
that choosing the repair point by first copying tokens un-
altered and then (auto-regressively) generating a different
continuation is no distraction to the model.

We put both these expectations to the (empirical) test. Figure 3
shows first the progression of various accuracies on our held-out
data over the course of training. At the top, the teacher-forced token-
level prediction accuracy increases steeply early on, throughout the
first ca. 10 passes through the training data, but after that it all-but
plateaus. It does, in fact, still increase, but only very slightly after
epoch 10 (from ca. 83% to 85%). This clearly shows two “phases"
(a bimodal pattern) in training this type of model: the model first
trivially minimizes its loss (and thus achieves a high accuracy)
through simple copying, but then struggles to match that strategy
with predicting the correct change to achieve any more progress.

This initial copying translates into little real accuracy; the Full
Sequence (i.e., complete repair) prediction reaches just 4.5% after 10
epochs, making nearly all its substantial progress afterwards. This
has real training ramifications: we also visualize the progression
of the per-token entropy (transformed to probabilities). In the first
10 epochs, the model quickly becomes very polarized, assigning
high probability to the copied tokens; then it becomes clear that
this yields very low probabilities for the few changed tokens, which
entropy penalizes strongly. As a response, the model instead adopts
a more balanced prediction to achieve higher overall repair quality.

To quantify the correlations in the face of this bimodality, a non-
parametric (Spearman’s rho) correlation test is in order. This does
show that the two metrics (per-token accuracy and full sequence
accuracy) are highly correlated (𝜌 = 0.914), even, though less so,
after epoch 10 (𝜌 = 0.863). The latter result reflects that the remain-
ing per-token accuracy increase translates into a disproportionally
higher complete repair rate – the missing 2% token accuracy be-
comes ca. 7% complete repair accuracy, nearly triple the levels at
epoch 10. This implies a mixed answer to our first premise: the com-
plete patch accuracy certainly follows the per-token accuracy, but
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the relation is far from direct and the latter is a highly misleading
metric in ipso due to its bimodal nature.

Finally, the figure shows that the odds of finding the correct patch
in the top-5 generated samples is only a little higher than the top-1
prediction (ca. 5% points at most); that gap actually shrinks as the
top-1 prediction becomes more accurate, which suggests that the
beam search finds few good novel/alternative patches. We would
hope that, given the natural ambiguity in choosing the correct patch,
the model learns to sample a diverse set of plausible corrections.
Instead, from inspection of the generated samples, the model pro-
duces many very similar candidates, usually differing by just a few
tokens. This too is likely an artifact of the training criteria, which
prioritizes copying 80% of the tokens over predicting the correct
variation. Thus, we answer our final research question:

The objective functions of NMT models are inappropriate for
program repair, leading to reduced training efficacy on more
appropriate metrics.

5 SEQ2SEQ MODEL FOR PROGRAM REPAIR
As a fitting conclusion to our empirical and conceptual evaluation of
the basic “transplanted" approach to program repair as translation,
it is appropriate to try and redesign the existing approach. This
section demonstrates how observing and quantifying issues with
an outside approach relates to principled and innovative modeling
design: while observing concerns does not guarantee that improve-
ments are straightforward (as we show in relation to context), it
can improve performance by better relating the model to the task.
We do this below, by eschewing past practice of trying to generate
patch tokens directly, and instead generating edits.

5.1 Model Changes
We observed three main deficiencies with the existing translation
approach: the inadequacy of relying on just the bug for enough in-
formation to produce a patch, the mismatch between typical repair
actions and generating the entire corrected line, and the related
divergence of training-objective, between per-token accuracy and
whole-repair (both top-1 and beam-search) accuracy. Had we de-
signed a machine learning approach for this problem from scratch,
we would certainly attempt to incorporate both bug context, and
a notion of repair edits to reflect these aspects of program repair,
as has also been proposed by some recent work [26]. We propose
to make both changes: Figure 4 shows the two main architectural
mechanisms we add to the base model to achieve this.

Edits: we model edits directly, as a token-level “diff" between the
bug and patch. Our analysis of typical changes indicated that the
bug and patch nearly always share a substantial prefix and/or suffix,
with the repair occurring at some point in the middle of the line.
We thus parse each bug/patch pair and find the longest overlapping
prefix and suffix. Our model is augmented with two additional
pointers that correspond to insertion and deletion; the original
decoder component (of the encoder-decoder architecture) is now
pressed into service to output the diff (rather than directly generate
the raw tokens in the fix). There are three possible scenarios:
No additions: The prefix and suffix combined span the entire bug.
This means that only tokens were added in the patch. In this case,

if (lineWidth != 0) {

Encoder

> </s>

Decoder

+ = if (lineWidth > 0) {if (lineWidth != 0) {

start/insert end/delete

(a) An edit-based repair model, which emits two pointers based on
the encoder states that indicate the insertion start position and the
removal end position. The decoder generates any missing tokens.

… } if (linewidth != 0) { g.setStroke( …, linewidth, …

Encoder

Decoder if (linewidth > 0) {

(b) Representation of a context-enriched repair model. The encoder
functions as usual on a broader set of tokens; the decoder’s attention
is biased towards the highlighted (buggy) tokens.

Figure 4: Proposed architectural changes to the basic repair model
on an example from our test data.

the deletion pointer will just point to the start of the line, and the
insertion pointer will indicate where the new tokens (which the
decoder will emit) are to be added.
No removals: The prefix and suffix combined span the entire repair.
In this case, only token deletions are needed, to go from the bug to
the patch. So, the insertion and deletion pointer should correspond
to the start and end of the segment to be deleted within the buggy
statement, and the decoder should just emit the “</s>" termination
symbol (an “empty" patch).
Additions & Deletions: A non-trivial change in both bug and
patch. As a combination of the above, the two pointers should
identify the segment to erase from the bug, while the decoder
should generate all newly required tokens to insert instead.

Context: we also observed that the bug alone rarely provides
enough (syntactic and semantic) information to reliably predict the
necessary repair. The natural solution is to add a large amount of
contextual tokens from the file containing the bug. Unfortunately,
Transformers struggle to model very long sequences as their mem-
ory usage increases quadratically with sequence length. At the
same time, section 4.2 showed that even 20 lines of context is rarely
enough to provide much missing vocabulary (which is itself only
part of the information needed). We do not provide a new solution
in this paper; rather, we empirically quantify the deficit from the
model’s perspective by adding up to 500 tokens of context and
comparing the resulting performance. We ensure that the model is
“aware" of which tokens to repair by biasing the decoder’s attention
to the buggy tokens using the same biasing mechanism as in [10],
in this case with a simple unary relation (i.e., “is part of the bug").

5.2 Results
As table 4 shows, there are two main characteristics of the resulting
models’ performances. First, the edit-based enhancement clearly
and substantially improves the accuracy over the baseline model,
fixing an additional 22 bugs on our test set with its top prediction
alone. Second, the contextual enhancement does not seem to help
in its current form. We discuss both these results here.
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Table 4: Repair accuracy on the (de-duplicated) test data of the var-
ious models that we propose in this paper.

Model Top-1 Top-5 Top-25

Baseline 3.30% 5.96% 8.20%
Edits 4.31% 6.14% 7.83%

Context 1.83% 3.57% 5.18%
Edits + Context* 3.39% 4.08% 4.76%

*At the time of this writing, this model completed just 50 epochs compared
to 100 for the others; but, we do not expect its results to change much.

Figure 5: Performance of the edit-based model on held-out data
as training progresses, in terms of per-token accuracy subject to
teacher forcing, accuracy at generating the complete sequence, and
top-5 accuracy using beam search.

Edit model: the edit-based model produces better-quality patches
on our test data than the corresponding baseline. Its design is in-
formed by our data analysis, and so it is arguably a better fit for this
task. Figure 5 shows its training behavior, to compare with that of
the baseline model in fig. 3; its “per-token", teacher-forced accuracy
increases much more smoothly4 and more in line with increases in
the full repair prediction quality. It also displays a larger improve-
ment in sampling accuracy between the top-1 and top-5 prediction,
which remains consistently wide during training, suggesting that
it better explores the search space with more diverse predictions.

Its design also allows the edit model to predict more newly
introduced vocabulary in the patch relative to the bug; it does
so 6.8% and 15.7% of the time (for the top-1 and top-25 samples
respectively), compared to 5.6% and 14% of the base model. One
notable difference is the gap between top-5 and top-25 sampling
accuracy; the edit model is stronger in the former, but loses to the
baseline in the latter. This appears to be due to the edit model having
to commit to an insert & delete pointer first, conditional uponwhich
sampling is more bounded. To be clear, we did also sample these
two pointers from their corresponding probability distributions
and initialized the beam search with the 25 most probable different
combinations of start and end pointers; but, in practice the model
tended to choose a single pair with very high probability, so that it
effectively only explored that set. This may be an interesting issue
to pursue in future work.

Context information: the second missing element was the re-
liance on the bug alone as a source of patching information; in
section 4.1, we showed that the absence of context is an insurmount-
able obstacle that deprives the model of the necessary information
4Their probability also displaying less of a “spike" in early training.

to patch most bugs. However, identifying a problem and solving it
are quite different things, as our results in table 4 show. Although
we added a substantial amount of surrounding tokens (i.e., 500) to
the model’s input, the resulting models’ performance is quite poor,
actually performing slightly worse than their context-free counter-
parts. This is likely due to the challenge of modeling large amounts
of contextual information; although our models were trained to
similar accuracies, they did so much slower and evidently with
worse generalization.

This may point at several issues, but none seem quite responsible.
For one, the attention mechanism we used may not adequately help
the model locate the buggy bits; however, the model always emitted
patches that were very similar to the bug. Similarly, the amount of
context may simply be too little; table 1 suggests that many useful
tokens are only available far away from the bug. However, that
table also implies that the immediate context should help with ca
10-20% of missing tokens, so this too does not explain the lack
of performance. The model itself may simply have insufficient
capacity to capture this much context, though we used a relatively
large Transformer architecture and the model was trained to high
accuracy. All this is to say that we do not know how to better
integrate context in these models. This is not a bad thing; not
all modeling improvements are obvious, but it is important that
we understand the deficits first. Our empirical analysis helped us
both identify it, and has laid a useful foundation for the kind of
information to integrate in further improvements, even if it is not
yet clear how.

6 THREATS TO VALIDITY
This paper presents a case-study of a specific type of program
repair, which we explore in great empirical detail. As such, the
main threats to the validity of our conclusion are external, relating
to the generalization of our findings to both other types of defects
and other model “transplants" into SE research.

First, our data collection and analysis focused only on small,
one-line fixes, since such bugs (and single-statement bugs) are both
common and important, realistic target to current program repair
models [16]. In addition, many existing NMT-based program-repair
tools [4, 19] are trained and tested on one-line bugs. As such, study-
ing such bugs is both representative and impactful. Having said that,
we do not claim, nor believe, that their empirical properties gen-
eralize to larger, more complex defects; these no doubt have their
own non-trivial characteristics that deserve further investigation,
especially if/when they become the subject of new models.

Secondly, we did not compare our model(s) Section 5 with state-
of-the-art, NMT-based, program repair tools. The goal of this work
is not to present models with the best performance; rather, we are
evaluating the feasibility of the general idea of “patching as trans-
lation" using a general, representative modeling setup, especially
in contrast to variations that depart from the translation metaphor.
More broadly, there are many other cases of modeling transplants
into our community, often with some alterations to fit the task;
these may not all be harmful or mismatched, but they do all deserve
careful empirical analysis to ensure that they achieve their potential
efficacy in our community.
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7 CONCLUSION
In this work, we first present a comprehensive study to evaluate
the conceit that "software patching is like the language translation"
as a prototypical example of “model transplant" from neighboring
communities into SE. We empirically show that the translation
paradigm does not capture bug-fixing very well for a range of
reasons. We also use models themselves as empirical devices; we
adapt the seq2seq models used for translation to generate edits
rather than raw tokens, which leads to promising improvements.
We hope this work inspires more empirically-grounded research
into transplanting machine learning models to program repair, and
other software engineering applications.
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