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Learning To Predict User-Defined Types
Kevin Jesse , Premkumar T. Devanbu , Anand Sawant

Abstract—TypeScript is a widely adopted gradual typed language where developers can optionally type variables, functions, parameters
and more. Probabilistic type inference approaches with ML (machine learning) work well especially for commonly occurring types such as
boolean, number, and string. TypeScript permits a wide range of types including developer defined class names and type interfaces.
These developer defined types, termed user-defined types, can be written within the realm of language naming conventions. The set of
user-defined types is boundless and existing bounded type guessing approaches are an imperfect solution. Existing works either under
perform in user-defined types or ignore user-defined types altogether. This work leverages a BERT-style pre-trained model, with multi-task
learning objectives, to learn how to type user-defined classes and interfaces. Thus we present DIVERSETYPER, a solution that explores
the diverse set of user-defined types by uniquely aligning classes and interfaces declarations to the places in which they are used.
DIVERSETYPER surpasses all existing works including those that model user-defined types.

Index Terms—Transfer Learning, Multi-Task Learning, Representation Learning, Type Inference

✦

1 INTRODUCTION

G RADUAL typing is gaining popularity particularly in dy-
namically typed languages like JavaScript and Python.

Typing and type-checking can find common kinds of data-
misuse in programs by checking that variables, expressions,
functions and modules are used in a consistent fashion.
Type systems can verify the type safety of the program in
different ways: most languages verify types either statically
at compilation time, dynamically at run-time, or some
combination of both. Developers have come to appreciate the
benefits of type checking at run-time; benefits include faster
prototyping and more flexible use of variables [1], [2]. These
advantages come at a cost because the resulting program has
less known type associations prior to running [3]. Running
a program with fewer type verified variables and functions
results in an increased probability of uncaught type errors
[4], [5].

To address these concerns, gradual type systems [6],
[7] were proposed; they provide developers an attractive
balance between static and dynamic typing. Developers
can gradually add type annotations to a program, as they
see fit. TypeScript is a gradually typed version of the
JavaScript programming language that is gaining traction.
TypeScript can be used anywhere JavaScript is used because
the type checker enforces type rules prior to transpiling into
JavaScript. Thus, code bases can still run on the highly
popular frameworks JavaScript runs on and enforce some
type rules.

Unfortunately this approach also has disadvantages. The
optionality of gradually typed languages is a double-edged
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sword wherein the convenience of not typing variables and
functions may result in type errors that can be caught prior to
deployment if properly labeled [4]. Consequently, researchers
have been determined to develop tools that adequately help
developers label types especially when it can prevents bugs.

The abundance of typed source code (in gradually typed
languages) from repository sites like GitHub1 enables re-
searchers to use machine learning methodologies to infer
types in dynamic languages [8], [9], [10], [11], [12], [13].
Advancements in neural networks are helpful for software
engineering tasks, including type inference [9], [13], [14], [15].
These approaches adapt machine learning architectures as
best as possible but neglect particular aspects of program-
ming languages that are consequential to the problem. Type-
inference is traditionally framed as a bounded classification
task because of the natural alignment with fixed categorical
classification losses in machine learning. However, types
have unbounded vocabulary, as do variable and function
names; so it is desirable to accommodate an open type vocab-
ulary. Thus, modeling types with a bounded classification
layer is overly restrictive; the model’s performance is limited
by an upper bound.

We approach type inference with an unbounded vocabu-
lary very much in mind. We further hypothesize that user-
defined type declarations contain important information that
can help probabilistic machine learning methods to infer
type annotations. Our implemented model, DIVERSETYPER,
leverages two principles: large-scale pre-training and deep
similarity learning.

The first principal idea, pre-training, is the practice of
teaching models the form of languages by enforcing auto-
encoding objectives like masked-language modeling [16]. Pre-
trained models are ideal for efficiently encoding program-
ming features like user-defined classes or type interfaces.
The second principal idea, deep similarity learning, is used
to align or associate two encodings, for example, a class
declaration and the use of the declaration as a type. Our
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Fig. 1: A type is binned by how often it’s used in code in the
dataset (x-axis). The histogram of bins are scaled by Log10 (y-
axis) to see all bins. The ratios between Other, User-Defined,
and Top 100 (color-coded) are linearly scaled for simplicity.
For example, of the types that are used 10 times or less (first
column), 77,820 are Other, and 266,882 are User-defined (22%
78%). On a log10 scale, the total (344,702) is between 105 and
106.

hypothesis is that such a relationship can be learned for an
unbounded set of user-defined types, thus removing this
artificial restriction that exists in previous methods.

In addition to user-defined types, it is common to use
native and library types. Native types like number or string
and library types like ArrayBuffer do not have declara-
tions, and are very frequent [9], [12], [13], [15], [17], [18].
Thus the typing inference task has two seemingly orthog-
onal sub-tasks: learning common-types within a bounded
vocabulary and aligning user-defined types to existing class
and type declarations. We theorize that each task guides a
neural model to learn divergent type representations which
presents a challenge. A model learning a type representation
for common-types in categorical form is equivalent to
partitioning or folding embeddings across a fixed space.
Additionally, a model learning a type representation that
aligns declarations and annotations means clustering types
into manifolds of separability. So we ask, can the model learn
to selectively pick types that should be partitioned (common-
types) versus clustered (user-defined types). The answer is
yes! This is realized with a specially crafted training signal
that balances the representation learning of common-types
and user-defined types. The resulting type inference model,
DIVERSETYPER, can predict common and library types, while
also supporting new types defined using class and interface
declarations. This model is also capable of predicting user-
defined and rare types, even if the type definitions were
not seen during training. DIVERSETYPER is effective globally
across all types but especially in the most difficult user-
defined types because it diverges from previous machine
learning (ML) assumptions and aligns with how developers
annotate custom types. This work’s contributions are,

Contributions
1) A type inference model that adopts large scale pre-

training to type-inference of common and user-
defined types. DIVERSETYPER’s adoption of pre-
training helps it align new type declaration to uses
of that declaration.

2) A novel multi-task uncertainty learning approach
that combines type inference classification (cross
entropy) and type similarity (semi-hard triplet loss)
where loss scaling is learned end-to-end.

3) Improve type inference from state of the art ap-
proaches by 8.59% overall by improving user-defined
type inference 30.16%. User-defined type inference
is significantly harder than common-type inference
due to its long-tailed distribution.

DIVERSETYPER can be found at our public GitHub2.
In the following sections we discuss the challenges of user

defined types, the underlying intuition behind our approach,
and why the approach of DIVERSETYPER is positioned better
than previously developed approaches.

2 CHALLENGES OF USER-DEFINED TYPES

Software programs introduce new vocabulary at a higher
rate than natural language [19], due to new identifier names,
functions, classes, enums, structs, etc. Types also feature large
vocabularies, and thus (like variable, function names, etc)
are a challenge for models with finite type vocabularies.
Figure 1 shows that most unique types occur less than 10
times, typical of a long-tailed distribution. The figure shows
the proportions of the top-100 types, user-defined types, and
other (library) types; it’s clear that most types constituting
the long tail are in fact user-defined types. This is because
user-defined types typically occur just within the scope of
the project that defines them, and rarely exist elsewhere. It’s
evident from Figure 1 that type inference approaches that
model a finite type vocabulary ignore a lot of types.

Close inspection user-defined type annotations (and their
respective declarations) reveals that the declarations are often
co-located in the same file or exist nearby (See Figure 2).
In the example of Figure 2, representative of many user-
defined type annotations, the compiler cannot deduce the
corresponding type CodeSandBoxLanguage because of
type ambiguity. This annotation ultimately resolves to a
string and a variety of variables also are of string type.
The task of correctly labeling types becomes challenging
when types appear ambiguous to the compiler, say different
type declarations with the same underlying string type.
However, developers have a grounded common sense rooted
in their experiences programming and familiarity with the
language. A developer would observe the context around
the type and gain familiarity with how the type should
typically be used. The developer would likely see that
the variable createPackageJson has an attribute code
and language with a function createDependencies
taking a code string, and record object that includes a
CodeSandbox object. The developer would correlate that the
words “dependencies” and “package” often requires certain
keywords like “imports” in the context of JavaScript. Lastly,

2. https://github.com/diversetyper/diversetyper
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Fig. 2: Code snippet from microsoft/fluentui
GitHub repository. CodeSandboxLanguage is type de-
fined in types.tsx. The type is also imported in
createPackageJson.ts. However, both TypeBert and
LambdaNet fail to properly annotate the correct user-defined
class. DIVERSETYPER references the type properly despite
the type CodeSandboxLanguage is used only once in all
repositories, viz., rare and infrequent.

Fig. 3: Code snippet from LeetCode-OpenSource/
vscode-leetcode GitHub repository. The class
LeetCodeSolutionProvider is declared in the same
file that the class annotation exists in. Both TypeBert and
LambdaNet do not properly type this annotation. The
user-defined class exceeds the bounded type vocabulary of
TypeBert so the best annotation it can do is any. LambdaNet
seems to reference other LeetCode classes but annotates the
class instance with HTMLElement. DIVERSETYPER gets the
annotation correct.

any word of “sandbox” would allow the developer to narrow
down the correct type even if other syntactically correct and
semantically similar types exist; if ProductionLanguage
= ’js’ exists as another user-defined type, this would be
syntactically correct . While no model has the same abilities
to reason logically as a developer would with common
sense knowledge, DIVERSETYPER, is designed to follow the

same clues probabilistically which differs from previous
approaches. In order to demonstrate the effectiveness of
this approach over previous approaches and highlight our
contribution across the user-defined type space, we will first
discuss how the model encodes a type declaration, and then
uses these powerful encodings to type variables in the main
body of the code; no other approach does this, thus falling
short across this diverse domain of types.

3 WHY OTHER TYPING MODELS FALL SHORT

The aim of DIVERSETYPER is try to reach a performance
level closer to that of human developers. The model’s under-
standing parallels developers by utilizing deep pretrained
embeddings to encode a user-defined type; the pretraining
practice is called Masked-Language-Modeling or MLM. This
pretraining approach processes large swaths of raw source
code available on GitHub [20], [21], [22], [23], [24] to learn
representations (neural encodings) which capture common
usage patterns. The model can use its neural encoding of
source code to determine commonalities with other code
tokens. With pretraining, the model in example Figure 2, will
be guided to the words “language” and “sandbox” when
guessing CodeSandboxLanguage. The words “language”
and “sandbox” occur frequently in the context of the type
CodeSandboxLanguage and not other types, which make
these words highly indicative of this type. DIVERSETYPER
digests any class or interface declaration and stores the
embedding of the class or interface declaration as a type.
DiverseTyper’s novelty is that it can handle class and
interface declarations as opposed to previous approaches that
rely on learning from explicit type annotations already present
in the code.

There are two popular approaches to recover types: (1)
Models such as LambdaNet [17] will save the names of user-
defined types and allow prediction to those names (using
a pointer network). LambdaNet must determine the correct
typing on very sparse occurrences of that type; as shown
earlier, user-defined types are less frequent across a global
set of projects. There is no pretrained embeddings involved
so the parameterization of the model comes from sparsely
learned co-occurrences of said infrequent types. (2) Other
approaches, like Typilus and Type4Py, also do not benefit
from pretraining and can only reference a user-defined type
if appears as a previous type annotation (not declaration) in its
training data. Our intuition is that models like Typilus and
Type4Py cannot type as well as a human developer because
it cannot observe new type declarations and understand
nuances between such types without optimizing on them in
a one-shot manner. To accommodate a new class declaration
in Typilus and Type4Py, the model must rely either on
previously seen type annotations of the same exact type, rather
than directly computing an embedding from a declaration,
and aligning that new embedding to valid type locations;
this is what DIVERSETYPER does. When DIVERSETYPER
digests class and interface declarations, it can use the
pre-training basis to discriminate types by attributes and
methods, thus deeming a type incompatible or compatible
with the annotation location. With the type declarations at the
disposal of the typing model, the model is able to reference
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TABLE 1: Comparison between various learning-based type inference models

Model Model Architecture Type Vocabulary User Definition Mechanism Pre-Trained

DeepTyper [9] biRNN 10,000 ✗ ✗
NL2Type [10] LSTM 1,000 ✗ ✗

TypeWriter [11] HNN 1,000 ✗ ✗
OptTyper [12] LSTM 100 ✗ ✗

LambdaNet [17] GNN Unbounded ✗ ✗
Typilus [18] GNN Unbounded ✗ ✗

Type4Py [15] HNN Unbounded ✗ ✗
TypeBert [13] Transformer 40,000 ✗ ✓
DiverseTyper Transformer Unbounded ✓ ✓

a more diverse set of types and an improved performance is
expected.

We are not aware of any existing approach that achieves
our levels of performance for such a diverse set of types.
Earlier works like DeepTyper [9] and JSNice [8], use a limited
type vocabulary and focus only on common-types. More
recent Python approaches Typilus [18] and Type4Py [15],
expand the type vocabulary to include all types seen in
training. This expansion, to all types seen in training, is
an improvement; but even these approaches face a perfor-
mance ceiling on new types. A TypeScript approach called
LambdaNet [17], expands the typeset to all visible project
types with a scoring mechanism; this approach most in
line with our proposal, and we do a careful comparison.
A more recent approach, TypeBert, does not increase the type
vocabulary, but demonstrates that BERT-style pre-training
on JavaScript corpora boosts type prediction because the
model learns token co-occurrence statistics relevant to typing.
TypeBert, like other fixed type vocabulary models [8], [9],
[11], [12], ignores new types. If developers were to use these
tools in practice, the models will underperform on new
types. Since newly defined types are common to projects
per Figure 1, and are often key to good software design, our
machine learning architecture is better-aligned to modern
software development paradigms. Whenever a developer
defines a new, project-specific class or type, DIVERSETYPER
also encodes these classes and type interfaces with pre-trained
vectors. DIVERSETYPER employs those representations in
the type suggestion process. We explain in the following
section how the pre-trained vectors improve a model’s
ability to capture the learnable and relevant features in code,
and the benefits for machine learning based type-inference
approaches.

4 DIVERSETYPER

In this section, we first introduce general pre-training for
types, the training elements of DIVERSETYPER, followed by
the inference mechanisms DIVERSETYPER.

4.1 Pre-training For Types

Pre-trained transformer models for code such as CodeBert
[20], CuBert [23], PLBart [22], and TypeBert [13] achieve
state-of-the-art (SOTA) results on code-related tasks by pre-
training on large code corpora followed by fine-tuning
weights on a specific task. Pre-training on large corpora
is compute-intensive, which is often performed at large,

resource-rich organizations that can afford the cost of training
[25], [26]. Our work amortizes the expensive cost of pre-
training by initializing DIVERSETYPER core weights with
the pre-trained weights from TypeBert [13]. The pre-trained
model takes in a sequence and outputs a contextual vector
for each input token. The code token’s context determines
the vector. The complete body of a class or type declaration
provides rich information such as attributes and internal
functions. This rich information can guide a type inference
model to link the uses of the class or interface to its
declaration; this approach is novel in this work.

To take advantage of these useful representations, DIVER-
SETYPER is initialized with the published TypeBert weights,
input width (256), and sub-tokenized input vocabulary
trained with SentencePiece [27]. Tokenizing the code, with
Byte Pair Encoding (BPE) [28] or unigram language modeling
[27] is common to manage large input code vocabularies [19].
Tokenizing is not used in the type vocabulary because the
model needs to output valid types. With the pre-trained
weights and tokenized input inherited from TypeBert [13],
we are ready to define training procedure for DIVERSETYPER.

4.2 Training
The DIVERSETYPER approach leverages several key compo-
nents. The first component is the context vector provided by
the BERT-style model pre-trained on code (yellow circle in
Figure 4. For instance, for a particular sequence of code s,
each tth source token st, has a context vector ht existing in
Rd where d is a dimension determined by the neural model
architecture. This context vector, ht, is the vector we propose
is capable of representing common-types and user-defined
types, when fine-tuned under the proper loss function and
training procedure.

The second component is the loss function which is
required in order to transform the aforementioned context
vector. The loss function determines what the model learns
and how efficiently it is learned; typically this is comprised
with (sub) losses focused on the optimization of a particular
objective. To learn common-types, the model defines a
categorical learning signal where it learns to associate each
token with a common type. For simplicity, we term this
signal as Task 1 (Section 4.2.1). To learn user-defined types,
the model uses a deep similarity learning signal we call Task
2 (Section 4.2.2). Task 2 transforms the context vector into a
new user-defined type vector (orange circle Figure 4), termed
hs, which can be used to compare new declarations with
individual uses of these declarations. The aforementioned
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Fig. 4: Overview of DIVERSETYPER. Training: DiverseTyper is trained end-to-end with two tasks Task1 and Task 2. Task 1:
a classification layer is trained with a cross-entropy loss on the target types. Task 2: An alignment of user-defined types
and the use of types with a triplet loss. A red dot indicates a type annotation that is incorrectly positioned closest to a
different type. The model learns to correct this and incrementally shift the embedding to the nearest same labeled type. Type
declarations, coexist in the same type space with normal type uses. Inference: DiverseTyper: A deep transformer, outputs a
context embedding (yellow circle) which is projected into a common type guess (Task 1) and a user-defined type embedding
(orange circle) corresponding to a user defined type-space (Task 2). To convert the user-defined type embedding to a type, a
k nearest neighbor (kNN) search returns the nearest neighboring types. Arbiter: An independently trained multi-layered
perceptron (MLP) decides which type prediction is better between the common type and the user-defined type.

transformation into a user-defined type vector, hs, requires
DIVERSETYPER to use additional hidden layers shown in
Task 2 of Figure 4. We add additional layers to allow the
context vector, ht, to contort into a new representation that
might differ greatly from Task 1, but be more suitable for
Task 2; these layers introduce additional degrees of freedom
that can be trained using the above mentioned loss function.
As previously mentioned, a representation might become
more or less suitable for one task over the other during
the training procedure which means the model should turn
up or down the amount of feedback from each task. With
two losses of varying degrees of importance at a particular
moment in training, the model must judiciously combine the
losses in a manner that reflects the model’s confidence in
them. Another term for this is uncertainty.

While there exists many weighing strategies [29], we find
using the inverse variance of a loss is a suitable weighing
term, i.e., 1

variance viz. 1
uncertainty . When the uncertainty is high,

the model will weigh the signal less and vice versa when the
uncertainty is low. The next sections will describe these three
components in detail. We first describe the two losses and
consequentially how we weigh them with uncertainty.

4.2.1 Task 1: Classifying common-types
The first task is based on the model’s ability to classify
commonly occurring types; these types are often self-evident
through simple expressions containing string manipulation

or mathematical operations. At a high level, the machine
learning model is given a sequence s and returns embeddings
for each token st. The embedding is used as input to the
classifier to produce types for each token, given the token
can assume a type. With a type associated to each variable,
parameter, and function code token, the model can check the
predicted type with the ground truth and learn a distribution
that matches the ground truth distribution. This is a popular,
yet effective way to classify a large bulk of type annotations
but is poor in predicting a large breadth of types. In the
next paragraphs we discuss the details of the common type
classifier and motivate an alternative for user-defined types.

In order to learn the ground truth type distribution,
machine learning models, like DIVERSETYPER, require a loss
or feedback from the various tasks they are trying to solve.
To get a loss value for Task 1, DIVERSETYPER must calculate
the following for each type annotation. Per source token
st and a corresponding type annotation τ , DIVERSETYPER
passes the hidden state ht (yellow circle in Figure 4) to a
classification layer (Task 1 in Figure 4). This classification
layer is defined as a probability distribution formed from the
linear combination of the hidden state ht and a learned type
representation rτ . The linear combination produces logits or
log-odds that can be mapped to a probability distribution
with the softmax equation (seen in Figure 5). This leads to a
probability associated with each type. In machine learning
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terminology, this is defined below,

Pst(τ) =
exp(hT

t rτ + bτ )∑T
τ ′ exp(h

T
t rτ ′ + bτ ′)

(1)

where Pst(τ) ∈ (0, 1) and τ is ∈ T , which is the finite set
of known types. Equation 1 is a classic equation in machine
learning for predicting probabilities from a finite set of classes.
During training, these probabilities are often incorrect and
must be adjusted to the underlying true probability. This is
accomplished with the types’ true labels.

With the probability across common types, we seek to
maximize the expected probability Pst(τ) over the training
set by minimizing the corresponding loss LCLASS. We use a
standard classification (cross-entropy) loss:

LCLASS(st, τ) = −
T∑
τ ′

yst log(Pst(τ)) (2)

where yst is the ground truth type for the source code token
st. By optimizing this signal, the model can learn to adjust
it’s internal parameters for common types according to their
true distribution in code. Figure 5, illustrates how Equation 1
normalizes a neural network output to probabilities.
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Fig. 5: The softmax equation, Equation 1, forces model
outputs into probabilities. Left: Raw values from the network
regarding the log likelihood of a category. Right: Equation 1
forces the distribution into a probability distribution with a
cumulative sum of 1.

However, infrequent and user-defined types are not
represented by the model’s fixed type set (shown in the
red block of Task 1 in Figure 4), and cannot be learned as
previously described. To reiterate, this is because the model’s
output is finite. We address this issue with Task 2, capable
of learning infrequent and user-defined types (blue block in
Figure 4).

4.2.2 Task 2: Learning User-Defined Types
Probabilistic type inference approaches perform best when
a sample of type annotations are reflective of the popu-
lation. This is very difficult for user-defined types, like
class declarations and type interfaces, which typically occur
infrequently within the scope of a single project. This is
a major reason why data driven approaches fail on user-
defined types. On the contrary, if this problem is mapped
into a matching task from declarations to uses of those type,
then there are examples in practically every project. Despite

class declarations and corresponding uses being different
code entities, according to the contextual embedding, we
can establish an alignment task and adjust those distant
embeddings to be translated into nearby embeddings. Thus,
DIVERSETYPER can leverage rare types into many good
training examples of matching across thousands of projects
irrespective of the sparsity of individual types across the
entire corpora. In the following paragraphs, we examine
how the aforementioned similarity is defined and learned by
DIVERSETYPER.

To learn infrequent and user-defined types, the model
uses deep similarity learning [30] to associate type declara-
tions with the respective annotation. In machine learning, we
can define similarity in many arbitrary ways as similarity is a
subjective measure. We use a loss that compares embeddings
to other embeddings with respect to the embeddings’ labels
(again could be subjectively assigned). If two embeddings
correspond to the same item, according to the label, and the
distance between the embeddings is large, then the similarity
would be low when it should be high; this can be corrected
with the model producing better embeddings. To elucidate
a more formal concept of similarity, we first introduce the
notion of a triplet, the fundamental building block to Task 2.

Similarity for types is a relative measure defined by
grouping same and different types. For a particular type
xt, the model finds a type x+

t with the same label, and
different type x−

t . Together these three elements define a
triplet as (xt, x

+
t , x

−
t ). A distinct property of a triplet is that

there is a notion of similarity between the reference point or
anchor xt, the positive point x+

t , and negative point x−
t . In Task

2 of Figure 4, the black points are same labeled types with
the anchor being the focal point of the circle. The red dots are
negative points where the label is different than the anchor.
The red points should be moved closer to the center of the
correct point through the optimization of a training loss. In
Figure 4 the negative examples have arrows to demonstrate
the direction the model is moving the points in order to
correct the prediction.

To use the triplet (xt, x
+
t , x

−
t ) for learning user-defined

types, DIVERSETYPER randomly constructs triplets from
embeddings it produces (orange circle in Figure 4). In Task 2
of Figure 4, the types anchor and positive will be annotations
that are both the same, i.e. GraphQlClient and another
annotation of GraphQlClient, with a negative annotation
of a different label, i.e, GraphQlClientOptions. The
novelty of DIVERSETYPER is that the declarations, i.e, class
GraphQlClient() {...} are valid positive annotations,
despite the differing pretrained embeddings indicating they
are different entities; we override this model assumption
by dictating a new notion of similarity; how a developer
interprets these code entities.

By selecting our triplet in this manner, indiscriminate of
declaration and annotation, DIVERSETYPER learns an optimal
representation of user-defined types and has the capability
of using any declaration for type inference irregardless of
if the model has seen it before. The unique combination of
pre-trained vectors with type clustering is what makes our
model perform so well for never before seen types.

More formally the goal is a final representation where the
same labeled types and differently labeled types are sepa-
rated by a margin or distance m. Using the aforementioned
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Fig. 6: Illustration of triplet loss with semi-hard negatives.
The center is an anchor type surrounded by the same types
(black dots) and exist within d+max where d is the L2 distance
between points. The distance d+max defines a neighborhood
shown with the visualization of a circle. Differently labeled
types (red dots) can exist within d+max (hard negative), d+max+
m (semi-hard negative), and greater than the neighborhood
d− (easy negatives). By optimizing the triplet loss in the left
circle, the model adjusts the embeddings so a lower loss
occurs. This is accomplished by moving + points (the same
types) closer to the center and moving − points (different
types) away, further than the margin (dotted boundary). The
final result (right circle) is the optimized type space where ∀
− points, d− > d+max +m.

notation, anchor, positive (+), and negative (-) to represent the
labels of similarity and hs for the embedding of an ith type
location, ∥∥hsi − h+

si

∥∥+m <
∥∥hsi − h−

si

∥∥ (3)

∀{hsi , h
+
si , h

−
si} ∈ T where T is the set of all possible triplets

in the mini-batch, or iteration of training. The notation hsi ,
h+

si , h−
si , are the same anchor, positive, and negative versions

(as used above) but referring to the embedding hs (orange
circle in Figure 4). The embeddings are considered positives
and negatives by their respective type label; the same type
is positive and the different type label is a negative. With
all three representations, hsi , h+

si , h−
si , the triplet loss for a

mini-batch with B examples is defined as

LTRIPLET(hs, h
+
s , h

−
s ) =

B∑
i

[∥∥hsi − h+
si

∥∥−
∥∥hsi − h−

si

∥∥+m
]
+

(4)

This formula simply means, that the model incurs a loss
when the distance between the anchor and negative point
(different labels) is less than the distance between the anchor
and positive point (same labels); a violation of the type
space. The margin is added so that the loss occurs even
if the negative point is within the extra boundary. LTRIPLET,
(Equation 4) rewards an embedding h+

si that is closer to the
anchor hsi and penalizes h−

si that exists within the margin
m. Equation 4 calculates the loss across all possible triplets
T in the mini-batch B. Calculating the loss across all points
is less ideal, computationally, as many points easily result
in a 0 loss, i.e, they are correctly situated. Realistically, only
a few triplets provide a valuable loss; namely ones where
the similarity notion is violated and the loss significant. To

adjust for the mentioned inefficiency, we use a triplet mining
technique called semi-hard negative mining [31] that helps
find the most valuable triplets and optimize those.

Figure 6 demonstrates the selection of semi-hard nega-
tives denoted in the red margin. The green circle in Figure 6
is a converged similarity representation where training
is complete. Practically, until perfect convergence occurs
between all types, there will always occur a decreasing loss.

Subsequent of above, we find that LTriplet converges
faster than LClass due to the relative simplicity of aligning
embeddings, but has an increased variance that reduces
the effectiveness of LClass. This trade off means excellent
performance of user-defined types with some degradation
of the common classifier. We can counter this effect quite
significantly by judiciously combining the errors from the
loss functions such that each loss is optimized as best as
possible. We explore this is the following section.

4.2.3 An Optimal Balance of Losses
As described above, the model learns different losses Task
1 and Task 2: common types for Task 1, and user-defined
types for Task 2. In practice, deep multi-task learning models
have claimed improvements in performance by sharing
representations, in our case, the pre-trained vector in yellow
in Figure 4 between both tasks [32]. The ideal contribution
from each task is not known a priori and typically requires
searching for a good weighing strategy. In lieu of searching
for the perfect strategy with trial and error techniques, like
a grid-search, an alternative learnable weighing technique
can be used; the model can learn the best weighing scheme
as it trains (learning to learn as the model is learning). The
learnable weighing technique can be described as learning to
estimate the uncertainty of the loss [32] from the two typing
tasks. A recent empirical survey [29] for optimal multi-task
weighing strategies demonstrated that uncertainty losses [32],
[33] performed best. We follow Kendall et al. [32] approach
of combining a discrete output (categorical) and continuous
output (similarity). The combined loss follows,

L =
1

σ2
Class

LClass+
1

2σ2
Triplet

LTriplet+log σClass+log σTriplet (5)

where σ represents the standard deviation. σ2
Class and σ2

Triplet
represent the cumulative learned variance (uncertainty) per
task. For learning stability, the model learns log σ2 rather
than regressing on σ2. For more details on this, please refer
to Kendall et al. [32].

We can interpret Equation 5 as a combination of the losses
with weights for each one. Higher σ values will decrease the
impact of the loss signal from the corresponding task, and
smaller σ values increase it. Finally, the regularizing terms,
log σClass and log σTriplet, penalize the model when the scale
of the σ values are too large. The loss asymptotically goes
to zero as both sigmas approach infinity, and while the the
model would have a zero loss, it wouldn’t learn either task!
In summary, the loss from Equation 5 can be viewed simply
as a learned weighted loss with some bias, i.e.,

L = ω1LClass + ω2LTriplet + b (6)

A major benefit of a learned weighting strategy, like Equa-
tion 6, is that the final weights are automatically determined
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TABLE 2: Building an Arbiter for Metric and Probability Type-spaces

Method User Defembedding kNNSimilarity ∢ kNNUser Def ClassIP ClassLabels Attention Data % Accuracy %
Sort 0% 90.92

Neural Network ✓ 10% 82.76
Neural Network ✓ ✓ 10% 83.43
Neural Network ✓ ✓ ✓ ✓ ✓ 10% 91.67
Neural Network ✓ ✓ ✓ ✓ ✓ ✓ 10% 91.72
Neural Network ✓ ✓ ✓ ✓ 10% 91.96
Neural Network ✓ ✓ ✓ ✓ ✓ 10% 91.20
Neural Network ✓ ✓ ✓ ✓ 50% 94.14
Neural Network ✓ ✓ ✓ ✓ ✓ 50% 93.54

The highest performing arbiter has a configuration consisting of a neural network with inputs of user-defined type labels and similarity
scores, common-type labels and probability scores, and 50% of the training data.

by the model over the data; this is clearly preferable to hand-
engineering the weights in each problem setting.

The derived (combined) loss, Equation 6, allows DIVER-
SETYPER to focus on both aspects of type prediction jointly:
the optimization of common type classifications and the
clustering of rare and user-defined types. This work to our
knowledge, is the first to apply an effective, general multi-
tasking approach to type prediction; this approach may also
benefit other SE settings that performance on two tasks must
be effectively balanced.

In order to use a trained DIVERSETYPER, we must define
its inference methods.

4.3 Inference

This section introduces how DIVERSETYPER makes either:
(1) a common type prediction or (2) a user-defined type
prediction. This is done with an arbiter; which (like a human
arbiter) settles “disputes” between the common-type and
user-defined type predictions, as we now explain.

4.3.1 Common Type or User-Defined Type?
During inference, DIVERSETYPER outputs a common-type
guess (purple arrow in Figure 4) and a user-defined type
embedding (orange arrow in Figure 4). The common-type
guessing mechanism is the classification layer that outputs
common-types from the fixed set of types with probabilities
per Section 4.2.1. The user-defined type guessing mechanism
is the closest neighbor lookup using the user-defined type
embedding first defined in Section 4.2.2.

The neighborhood lookup is an efficient k-nearest-
neighbor (kNN) search algorithm3 across all training set dec-
larations and uses of those declarations. DIVERSETYPER adds
the testing set declarations only because the declarations are
available at the time the corresponding type can be predicted;
the model has never seen these test declarations before. If
the model is successful at never before seen types, these new
declarations will be embedded near relevant usages. Finally,
the search returns the distance which ∈ (0, 1] with 0 being
an exact match. When calculating the similarity, we can take
1− distance.

We note that the similarity measure is not a probability
measure, looks nothing like Figure 5, and thus the two are not
comparable unless some mapping is applied. This presents a
quandary: given two incommensurate measures, how would

3. https://github.com/spotify/annoy

an arbiter resolve a “dispute” when different type labels
are offered by the two? In the following section, we discuss
how a special mapping can be baked into a neural network,
automatically picking the best type.

4.3.2 Arbiter
The arbiter first obtains a list of common-types and their
probabilities from the common-type guesser. Next, a k
nearest neighbors search of user-defined types is performed,
returning a second list of user-defined types and the re-
spective similarities. The arbiter combines unique types
from each, sorts them, and returns Lmixed, a set of mixed
types. However, sometimes both type prediction mechanisms
present similar scores, so, how to choose the very best type?

As an initial step, we compare our approach with a
baseline “sorting” approach despite the two different met-
rics: probability and similarity. This approach consists of
combining both sets and sorting irrespective of type metric.
To our surprise, this simple baseline performed better than
expected, with an accuracy of 90.92%. In a later analysis of the
type spaces in Section 6.2, it can be inferred that (extremely)
low distance points often yield the correct prediction, com-
fortably overriding an incorrectly predicted common-type’s
probability. Likewise, the probabilistic predictions are highly
confident when correct in the BERT-family models and thus
can easily override the distance of an incorrect user-defined
type. The baseline is effective in most cases but there are
some scenarios where the correct answer is enigmatic. This
is where we find performance of a specifically trained neural
network arbiter beats the simple sorting baseline.

We tried several designs for the neural network in Table 2.
We manipulate the network’s access to various inputs:
the similarity embedding, similarity distance, user-defined
type label, common-type probability, common-type label,
attention, and amount of data trained on. From the above
ablations, we find the best performing arbiter uses the top 5
common-type prediction probabilities and user-defined type
similarity scores with the respective type labels. We create
a dataset with the described inputs in Table 2. The output
label is 0 if the common-type mechanism gets the answer
correct and 1 if the user-defined type mechanism gets the
solution correct. The arbiter’s neural network is trained on a
holdout portion of the training data while the remainder is
used to learn the kNN search. The trained model is selected
by performance on a validation set and evaluated on the test
set per Table 2. The trained model was very good as a binary
classifier picking between the two type predictors (common
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TABLE 3: Multi-Task Type Annotation Datasets

Approach Type Inference Dataset User Definition Dataset
Projects Files Annotations Projects Files Annotations

(Definitions/Usage)

TypeBert [13] 20,860 1,474,418 12,920,988 ✗ ✗ ✗
DiverseTyper 20,860 1,474,418 12,920,988 14,309 225,551 3,204,180 (50% / 50%)

DIVERSETYPER uses two joint learning objectives to learn common-type and user-defined type associations.
We provide no additional type inference data to demonstrate the effectiveness of the supplemental objective.
The true ratio of definitions to usage is 32% / 68% but we over-sample definitions such that each batch has
both a definition and its corresponding use.

vs. user-defined type). As seen in Figure 7, this classifier has
a strong receiver operating characteristic (ROC) curve with
an area under the curve (AUC) of .93. This ROC and AUC
demonstrates that the classifier is effective at arbitrating the
two type recommendation mechanisms. The next section
examines the performance of DIVERSETYPER with several
research questions (RQs).
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Fig. 7: Receiver Operating Characteristic (ROC) curve of the
Arbiter. Area Under the Curve (AUC) is .93 which means it
is an excellent classifier.

5 QUANTITATIVE EVALUATION

In this section we present the dataset DIVERSETYPER is
trained and evaluated on, metrics for type inference evalua-
tion, and our baselines for DIVERSETYPER.

Then we answer the following research questions:

RQ1: How effective is DIVERSETYPER compared to baseline
approaches?

RQ2: Can DIVERSETYPER predict user-defined types?
RQ3: How does DIVERSETYPER perform on previously

unseen types?

5.1 Dataset
We use the same 20,860 projects collected in TypeBert [13] for
the type inference dataset and maintain the same data splits
between train, test, and validation. This dataset contains
human-annotated types on variables, parameters, functions
and method declarations. Types range from common-types,
i.e., number and string to library and user-defined types

like dynamodb and Point. This dataset does not have the
user-defined type declarations but only the annotations. We
supplement this dataset with additional data extracted from
the same set of projects that includes user-defined type
declarations across the existing dataset splits in TypeBert
[13]. The purpose of a project level data split is twofold: (1)
so files seen at test time are never seen at training time and
(2) to accurately compare the contribution of training on
user-definitions.

To extract user-defined type declarations and the loca-
tions of their use, we wrote a code parser to localize user
declarations denoted with keywords interface and class.
The parser finds use of a user-defined type corresponding to
the declaration within project scope. The supplemental user-
defined types dataset contains 362,759 (32%) declarations
and 1,141,734 (68%) uses across 14,309 projects and 225,551
files. This supplemental dataset is only used in training and
is not used to evaluate the model’s performance. We have
released the supplemental dataset in our GitHub repository.

To evaluate DIVERSETYPER, we follow standard evalua-
tion procedure from previous works [12], [13], [17] and only
use human-annotated types for evaluation. The intuition is
that compiler inferred types are typically easy and saturate
performance scores, where as, human annotations are more
difficult and meaningful. Following standard practice we
allow the model to train with both the “easy” compiler
inferred types and the “hard” human-annotations. Also in
line with other works, we exclude the wildcard type any
in our evaluation. Finally, a key practice is to perform de-
duplication on a dataset [34]. Code duplication between and
within training and evaluation sets has historically existed
in previous works, prior to Allamanis [34] demonstrating
duplication leads to artificially elevated evaluation scores.
To conclude this section, we provide the breakdown of top

TABLE 4: Top Types In Datasets

Type-Inference Dataset User Definition Dataset

Types Count Data % User Defs Count Data %

string 2,103,227 16.19 Node 7,583 .0584
void 1,324,632 10.20 State 6,843 .0527

number 1,213,432 9.34 Props 6,536 .0503
array 915,837 7.05 User 5,798 .0446
object 635,155 4.89 Context 5,367 .0413

Promise 549,219 4.23 Type 3,961 .0305
boolean 514,801 3.96 Player 3,386 .0261

Sum 7,256,303 55.87 39,474 .3039

types in each dataset. Observe the type breakdown in Table 4.
User-defined types occur infrequently while common-types
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account for >55% of the original type annotations. We believe
the stark distributional difference between common-types
and user-defined types necessitates the separate mechanism
for predicting user-defined types. Again, this is because
the vast majority of types are often project-specific, locally
defined, and only occur only a handful of times. It is
important to note that DIVERSETYPER contextualizes user-
definitions, so different declarations with the same name,
such as User or State, will be represented by a separate data
point. This is particularly useful for the model because it can
condition on small differences in the definition such as the
presence of attributes.

5.2 Metrics
We use Top-1 Accuracy (exact match) and Top-5 Accuracy
(correct prediction in the top 5 guesses) for subsets of types
exactly in line with previous works. The categories are as
follows:
Top 100: The most frequent types such as native types int
and string and types not considered user-defined within
the top 100 rank [12], [13], [17].
Other: Types that are common but occur outside of the
top 100 and are not user-defined. Examples would be
commonly used library types like ArrayBuffer, Entity,
FunctionComponent just to name a few.
User Defined: Types that correspond to a class, enum,
or type interface where the type is declared within the
same project scope. Examples would be developer specified
types that occur quite rarely if at all in other projects, i.e.,
KindaShiftView, VRMSpringBone, Iterm2ColorName.
Unknown: In previous works with fixed type vocabularies
[9], [10], [11], [12], [13] type inference models would pre-
dict UNK if the type exceeded its classification capabilities.
TypeBert [13] accounted for UNK predictions by counting
them against the performance of TypeBert. This meant
that ∼8% of predictions in the test set were automatically
considered incorrect as a function of its model architecture.
DIVERSETYPER has no type limitations, and never predicts
UNK as it can always defer to the user-defined similarity
vector.

5.3 Baselines
We compare DIVERSETYPER to three TypeScript baselines:
LambdaNet [17], OptTyper [12], and TypeBert [13].
LambdaNet a graph neural network (GNN) approach that
links variables and logical constraints to approximate a type
dependency graph. The architecture can predict common-
types in the top 100 and user-defined types available in the
type-space with a pointer network.
OptTyper performs probabilistic type inference across the
top 100 most-frequent types. OptTyper combines a contin-
uous interpretation of logical constraints derived by static
type inference with the natural constraints learned from deep
learning across large code bases.
TypeBert uses BERT-style pre-training with large scale
corpora in addition to a large fine-tuning dataset to train
a type inference model. The implementation is similar to
sequence tagging in NLP.

5.4 RQ1: Effectiveness of DIVERSETYPER

We evaluate the effectiveness of DIVERSETYPER over the
type categories in Section 5.2. We also perform ablation
analysis by varying different elements of its architecture to
understand why DIVERSETYPER is effective.

Type Performance
As shown in Table 5, we report the top-1 accuracy and
top-5 accuracy across type categories defined in metrics.
DIVERSETYPER has the strongest Top 1 overall scores at
79.71% accuracy overall a +8.59% absolute improvement
over TypeBert. DIVERSETYPER scores the highest Top 5
accuracy overall meaning that DIVERSETYPER is providing
more relevant scores across all of its predictions. Both
DIVERSETYPER models demonstrate Top-5 scores higher
than TypeBert and LambdaNet which is notable because
LambdaNet uses static analysis and pointer mechanisms
to predict user-defined types. This means that not only
does DIVERSETYPER do a better job at recognizing user-
defined types, but is additionally capable of referencing
declarations from its kNN search even when the declarations
are unavailable or missing in the source code.

We observe a trade-off in the top 40,000 types (Top 100
and Others). This might be due to complications arising from
training of Task 1 and Task 2 together. A possible source of
this, is that often developers override library types such as
Node, State, User, Context etc. where the common-type
classifier gets disrupted in favor of learning user-defined
type declarations. The aforementioned types are also the
most frequent user-defined types as seen back in Table 4.
Ablations
Deep learning models are difficult to understand and abla-
tions provide insights to the model’s learned representations.
We vary the architecture in meaningful ways to gain insights
to how different methods affect prediction capability. We
organize our ablation results in Table 6.

First we define a base version of DIVERSETYPER, DTbase,
where the model is trained jointly on the two tasks: Task
1 and Task 2. This model is evaluated with only the
common-type classifier. The purpose of this evaluation is to
demonstrate how much accuracy was lost in the traditional
classifier from the jointly learned objectives. We observe
that others and user-defined types perform very poorly.
This indicates that the type representation rτ (defined in
section 4.2.1) is not a meaningful type representation of
user-defined types anymore. This intuition is confirmed
with the performance of the same model using the user-
defined kNN search. The model that employs the kNN
search is denoted basee2e + U.D networke2e + Arbiter. From
a training perspective, the network is equivalent to DTbase
and yet performs +50%. This indicates that the user-defined
type representations are moving in favor of the similarity
representation. This comparison between the two models
with the same training but different inference mechanisms
shows the effectiveness of our proposed learning approach.

In order of incremental improvement, we try a model
where we use base and only sample from the user-defined
types when the classifier predictions UNK viz. the model does
not know the type. base + UNK filler improves performance
but not considerably.
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TABLE 5: Accuracy Comparisons with DIVERSETYPER Across Binned Types

Model Top 1 Acc % Top 5 Acc %
Top 100 Other User Def Overall Top 100 Other User Def Overall

LambdaNet [17] 66.9 N/R 53.4 64.2 86.2 N/R 77.7 84.5
OPTTyper [12] 76 N/R N/R N/R N/R N/R N/R N/R
TypeBert [13] 89.51 50.49 41.40 71.12 98.51 70.34 55.02 81.88

DIVERSETYPERARBITER 83.51 46.92 72.53 79.30 92.94 60.53 81.59 88.59
DIVERSETYPERARBITERNN 84.78 43.29 71.56 79.71 90.88 53.25 77.18 85.62

TABLE 6: DIVERSETYPER Ablations

Model Top 1 Acc % Top 5 Acc %
Top 100 Other User Def Overall Top 100 Other User Def Overall

DTbase 82.28 24.69 23.41 59.77 95.76 41.48 36.49 73.10
DTbase + UNK filler 82.46 33.56 46.40 68.67 96.59 59.44 78.69 79.43
DTTypeBert + U.D. network 89.69 50.49 41.39 71.16 98.57 70.34 55.0 81.86

DTbasee2e + U.D. networke2e+Arbiter 83.51 46.92 72.53 79.30 92.94 60.53 81.59 88.59
DTbasee2e + U.D. networke2e+ ArbiterNN 84.78 43.29 71.56 79.71 90.88 53.25 77.18 85.62

base: DIVERSETYPER with only common-type classifier (same as TypeBert) used for evaluation
base + UNK filler: fill UNK predictions with top 1 guess from user-defined type mechanism.
TypeBert + User-Defined network: initialize DIVERSETYPER with TypeBert’s weights. These weights are not changed.
basee2e + User-Defined networke2e + Arbiter: Use basic (sort) arbiter to pick top 1 type between common-type and

user-defined type mechanism.
basee2e + User-Defined networke2e + ArbiterNN: Use neural network arbiter to pick top 1 type between common-type and

user-defined type mechanism.
∗ e2e: learned jointly with end-to-end training
∗ NN: Neural network

The next ablation is to initialized DIVERSETYPER with
TypeBert weights and train with only the user-defined
supplemental dataset while holding the TypeBert weights
stationary. This model has the label TypeBert + U.D network.
We can see that the user-defined types were not learned by
the model and this model has almost the same performance
as TypeBert. We anticipate that this akin performance is
because the final type representations learned in TypeBert
drop relevant features about user-defined types in the process
of partitioning the common-type space. Interestingly, the
performance of this model marginally surpasses TypeBert in-
dicating the network learned relevant information pertaining
to the Top 100 in the user-defined type dataset.

The final two ablations are our best models where we
use the base model, plus the kNN search, and the arbiter for
inference. The first model uses only the sorting arbiter and is
labeled basee2e + U.D networke2e + Arbiter. In this ablation,
DIVERSETYPER is capable of using the information learned
during training to match declarations with annotations. This
model performs best in user-defined type exact-match and
top-5 overall. The second of the two best DIVERSETYPER
models uses the same base model, kNN search, but with a
neural network arbiter. This model is denoted basee2e + U.D
networke2e + ArbiterNN and performs the best overall in
exact matches. These models reinforce the hypothesis that
the model is capable of taking advantage of user-defined
type matching with declarations with a sizeable performance
increase in the overall and user-defined types category.

DIVERSETYPER improves overall performance 8.59% over
TypeBert, a 13.38% percent increase of TypeBert’s improve-
ment over LambdaNet.

5.5 RQ2: Prediction on User-Defined Types
In this section we evaluate DIVERSETYPER’s capabilities on
user-defined types. Observe the reported user-defined type
accuracy in Table 5 and Table 6. In comparison with other
approaches DIVERSETYPER performs 31.13% better than
TypeBert across user-defined types with almost the same
architecture. The performance of DIVERSETYPER informs us
that the user-defined similarity embedding is substantially
more effective for rare and user-defined types than a
fixed vocabulary. The performance improvement can be
attributed two characteristics of the user-defined similarity
embeddings. First, Task 2 introduces a representational
“slack” by clustering similar representations rather than
strict partitioning of dimensional space. Second, unlike
other deep similarity learning approaches [15], [18] that
only group similar annotations, DIVERSETYPER places the
class and interface declarations into the user-defined
type-space. By learning the relationship between declaration
and annotation, DIVERSETYPER makes the user-defined
type set generalizable to novel class and interface
declarations.

DIVERSETYPER improves user-defined type accuracy on
LambdaNet by 19.13% and 31.13% over TypeBert.

5.6 RQ3: Performance on Never Seen Types
We test DIVERSETYPER with the hardest type annotations,
i.e., types that have never been seen before. By evaluating
the model on never seen types, we gauge how well
DIVERSETYPER will do on brand-new types added by
developers. Table 7 shows that DIVERSETYPER scores
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Fig. 8: t-SNE plot of aligned user-defined types and the respective usage. When a developer defines a new type and requires
type inference of this new type, the usage embedding will be clustered with the definition making type inference of new
user-defined types possible with high accuracy.

TABLE 7: DIVERSETYPER on Never Seen Types

Type Accuracy
Top 1 Acc Top 5 Acc

Top 100 Other User Def Overall Top 100 Other User Def Overall
0% 19.44% 80.56% 100% 0% 19.44% 80.56% 100%

N/A 1.723 54.82 44.50 N/A 3.62 58.48 47.82

9.04% of test set contains types never seen before. Top 100 accounts for 0% of never seen
types. Percents under type categories are proportion of never seen types. For example,
80.56% of never seen types are user definitions.

a commendable 44.50% top-1 accuracy on types it has
never seen. DIVERSETYPER performs even better for user-
defined types, at 54.82% top-1 accuracy. This result is more
consequential when we see that user-defined types occupy
about ∼81% of never seen types. This is a promising result
for a deep learning based approach where performance
is typically dependent on comprehensive examples from
training data.

DIVERSETYPER’s user-defined type mechanism successfully
annotates never seen types ∼55% of the time.

6 QUALITATIVE EVALUATION

Our qualitative evaluation serves to elucidate the inner work-
ings of DIVERSETYPER and its user-defined type similarity
predictions. In this section we answer the following research
question:

RQ4: Can we visually inspect DIVERSETYPER’s perfor-
mance over other methods?

RQ5: How does DIVERSETYPER cluster typical user-defined
types?

6.1 RQ4: Inspecting Consequential Annotations

Figure 2 is a snippet from a popular Microsoft GitHub repos-
itory. We can see that the type CodeSandboxLanguage is
defined with the type keyword indicating it is a user-defined
type. It is defined within a TSX file (TypeScript’s equivalence
to JSX) and imported into the main .ts file. The user-defined
type CodeSandboxLanguage is used in the definition of
an object createPackageJson. DIVERSETYPER recognizes
the intra-project type declaration and properly assigns
it in the object. DIVERSETYPER recommends both lexical
similar types such as Language and hints at functionality
preservation with relevant type RemoteDebugLanguage
for a sandbox environment. TypeBert only recommends
lexical similar types such as Language, ILanguage, and
LanguageCode. LambdaNet considers the correct type
CodeSandboxLanguage to be Out-Of-Vocabulary (OOV)
because it did not populate in it’s list of possible types.

The outcomes from the three models are not sur-
prising given their advantages and disadvantages. Lamb-
daNet is restricted to 100 types and the types it discov-
ers within the project. LambdaNet has failed to discover
CodeSandboxLanguage and thus declared it outside of
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its predictive capability. TypeBert has seen contexts, espe-
cially in pretraining, where semantically similar notions of
CodeSandboxLanguage occur with types Language and
LanguageCode; thus the recommendation. Even if TypeBert
had an unbounded classification layer, which is not currently
possible in machine learning, it is still less likely that TypeBert
would get a majority of user-defined types correct. This is
because TypeBert must accurately predict the exact type out
of an unbounded list of types where as DIVERSETYPER only
has to match the correct declaration to the context and use it
correctly.

Figure 3 is a code snippet from another popular
coding repository containing LeetCode webapp code.
The user-defined type LeetCodeSolutionProvider is
defined within the same file as the class usage. LambdaNet
does not have LeetCodeSolutionProvider in its top
5 predictions, but shows some relevant predictions. We
observe in other files within the same project, LambdaNet
had relevant user-defined type predictions, but fails to place
them as the top guess for reasons we do not know; likely
a violation of type constraints according to LambdaNet
since the type is in the same file. TypeBert fails at most
user-defined types as they exceed the vocabulary limit
and are not defined in its architecture; this is expected
because TypeBert cannot predict infrequent and rare types.
DIVERSETYPER accurately predicts the right type where
as TypeBert and LambdaNet do not. We observe this
similar outcome for other user-defined types in other files
within the same project: LeetCodePreviewProvider,
LeetCodeExecutor, LeetCodeStatusBarController,
LeetCodeTreeDataProvider. Most impressively for
DIVERSETYPER, these types are all defined and used once,
demonstrating DIVERSETYPER’s capability on rare and
infrequent types.

DIVERSETYPER correctly associates rare and infrequent user-
defined types within the same file and across the same
project.

6.2 RQ5: Typical User-Defined Type Clusters

The neural type embeddings learned by DIVERSERTYPER
are information rich due to the extremely large corpus used
for fine-tuning. The visualization of such type embeddings
demonstrate important type relationships learned during
this fine-tuning. Embedding visualizations reach many data
exploratory domains [35], [36], [37]. Commonly, the embed-
ding visualizations are crafted by transforming the high
dimensional data into two dimensions while preserving
the overall structure of the data. The t-SNE algorithm aims
to perform dimensionality reduction to lower dimensions
that humans can interpret (2D or 3D), while preserving
the structure of the high-dimensional data, as the model
interprets it. Figure 8 and Figure 9 are created with the t-
SNE algorithm [38]. A visualization of specific embeddings,
such as a category of types, can indicate performance across
these embeddings. If the type clusters of the embeddings
are indistinguishable, then the kNN search will likely not
return the correct answer as a kNN search is a function of
neighboring data points. An embedding space that is not

clustered properly across types is undesirable as the model
will fail to generalize properly.

Originally, the pre-trained embeddings are purely context
driven, meaning that similarly occurring contexts amongst
variables and function names will appear co-located in
embeddings. DIVERSETYPER has altered this embedding
space to shift context dissimilar sequences, such as type
declarations, in a manner that is useful to typing. While
this transformation is the goal, the model must to maintain
relative structure of the embeddings in places that are not
directly relevant to typing. Examples of this include general
code syntax and the semantics the model derives from a
sequence. DIVERSETYPER must balance maintaining existing
code semantics while aligning type declarations derived
from those code semantics; especially to generalize on code
snippets. We now direct the reader to Figure 8.

Figure 8 is a visualization of the most difficult types
to classify, i.e, never seen user-defined types. To visualize
the aforementioned clustering of infrequent user-defined
types, we plot all user defined types in a t-distributed
stochastic neighbor embedding (t-SNE) and select points
based on whether the model has seen the type before. Listed
in Figure 8, are 20 user-defined types that DIVERSETYPER
has never seen in training and occur extremely infrequently.
We can see that each type, represented by various colors, is
grouped into small clusters of like-typed annotations. This
shows that our approach for aligning user-defined types
works correctly. In the same figure, we exam the relatedness
of never before seen types with the purpose of maintaining
semantic meaning. In Figure 8, left, BaselineOptions and
AddUniversalOptions stand out as co-located and com-
plementary in embedding structure. Upon further inspection
of why this might be, it is clear that the types are related
by instantiation, specifically, a subclass from the base class.
The learned complex relationships, such as instantiation,
are encouraging for future work because complex type
relationships exist. Some of these complex type relationships
include but not limited to union and inheritance types
(outside the scope of this work), and are potentially tractable
for this model architecture. On the right side of Figure 8,
it can be observed that JSDocImplementsTag is close to
JSDocPropertyTag. Again, with further inspection to how
these tags are used in real projects, we find that both return
SymbolDisplayPart related types. We conclude from the
visualization that the model exhibits a basic understanding of
how types are used and the complexities within the defined
type behavior even when the types are incredibly sparse.

Naturally, we are curious about DIVERSETYPER’s capabil-
ity of clustering common-types with the user-defined type
mechanism despite not being trained to do so. Again, we
visualize the clustering of common-types with a t-SNE plot
in Figure 9. From Figure 9, it can be concluded that common-
types are clustered in a similar fashion to user-defined
types, but with less defined margins or white space between
groups. With Task 2 only trained on user-defined types
and common-types learned by a common-type classifier in
Task 1, we expect DIVERSETYPER to completely deprioritize
the learning of common-type similarity, yet surprisingly
maintains proper structure. One might ask, “Why does
common type clustering matter when one can use the common
type classifier?”. The usefulness of common-type clustering
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is in the case of an arbiter misprediction. If the arbiter picks
the user-defined type mechanism over the common-type
classifier, the clustering of common-types should provide
some redundancy. For example, if a common-type matches a
real type annotation from the user-defined search (potentially
an infrequent case of overriding a native type), the type
prediction will still be correct.
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Fig. 9: t-SNE plot of commonly used types. DIVERSETYPER’s
inherits a the strong performance of common-types across
its classification layer. Additionally DIVERSETYPER demon-
strates effective clustering in commonly occurring types.
If a developer overrides a common-type, i.e., string,
DIVERSETYPER has both a common type guess and user-
defined type guess that the arbiter can choose from.

DIVERSETYPER groups rare user-defined types in a similar
fashion to developers with regard to semantic and syntactic
relatedness.

7 RELATED WORK

Pre-Trained Foundational Models
Large scale pre-trained models [16], [39], [40], [41], [42]
coined foundational models [43], are stacked transformers
[44] with various autoencoding objective functions [45],
[46] on large unlabeled data. Their success in natural
language processing (NLP) has warranted its application
in other fields such as computer vision (CV) [47], [48]
and software engineering [20], [21], [23]. The extent
of foundational “learning” is hotly debated [49] and
examined in a software engineering context [50]. Albeit, the
performance improvements from pre-training is undeniable
as it has set benchmarks for many SOTA tasks across various
domains.

Multi-Task Learning
Multi-task learning attempts to efficiently learn multiple
objectives from a shared representation [51]. Multi-task
learning is prevalent in machine learning fields of natural
language processing [52], computer vision [53], and speech
recognition [54], but is seldom used in software engineering
[55], [56]. Prior approaches use a naïve weighted sum
of losses where the losses are uniformed or manually
weighed. New approaches include dynamically weighing
tasks from gradients [57] and uncertainty [32], [33].

The dynamics of multi-task learning is still not very well
understood but has been effective across several applications.

Type Inference
Dynamic type inference techniques [58], [59] and type
checkers [60], [61], [62], [63] achieve soundness by enforcing
type constraints. Dynamic type-checking provides the con-
venience of not requiring annotations, and/or having to fix
compile-time errors; however, dynamic checking may miss
coding errors un-executed parts of programs.

Machine learning can help programmers more conve-
niently make better use of static type-checking by suggesting
type annotations. This works by learning natural type
distributions across corpora of code [64]. Hellendoorn et
al. [9] interpreted type annotation as a tagging task with
DeepTyper. Pradel et al. [11] designed separate sequence
models to infer function types in Python and validate with
a type checker. Wei et al. [17] used insights from [14] to
train a GNN from type dependency graphs. Allamanis et
al. [18] proposed a graph based approach to predict types
with similarity learning and parametric type matching. Mir
et al. [15] uses an approach akin to Allamanis with more data
and improved results. Jesse et al. [13] uses pre-training to
improve sequence tagging of types. This work extends the
previous works by introducing a novel training approach and
a data set for learning user-defined and rare types. Unlike
DIVERSETYPER, existing approaches do not contextualize and
provide new associations for novel developer defined types.

8 CONCLUSION

DIVERSETYPER presents a test of our hypothesis that user-
defined type declarations and the corresponding type annota-
tions can be aligned and used in type predictions. We demon-
strated that deep learning models could learn to encode
novel class and interface declarations, leverage the learned
representations to guess rare and difficult user-defined types,
and extend to never before seen types. Finally, we believe
that our approach can be applied to other applications of
machine-learning to software engineering, where developers
can freely proliferate concepts, (e.g., functions, interfaces,
classes, generics, exceptions) and thus arbitrarily transcend
any vocabulary limits pre-set by machine-learning models.
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