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ABSTRACT
Proofs play a key role in reasoning about programs and verification

of properties of systems. Mechanized proof assistants help users in

developing and checking the consistency of proofs using the proof

language developed by the systems; but even then writing proofs is

tedious and could benefit from automated insight. In this paper, we

analyze proofs in two different proof assistant systems (Coq and

HOL Light) to investigate if there is evidence of "naturalness" in

these proofs: viz., recurring linguistic patterns that are amenable

to language models, in the way that programming languages are

known to be. Such models could be used to find errors, rewrite

proofs, help suggest dependencies, and perhaps even synthesize

(steps of) proofs. We apply state-of-the-art language models to large

corpora of proofs to show that this is indeed the case: proofs are

remarkably predictable, much like other programming languages.

Code completion tools for Coq proofs could save over 60% of typing

effort. As proofs have become increasingly central to writing prov-

ably correct, large programs (such as the CompCert C compiler),

our demonstration that they are amenable to general statistical

models unlocks a range of linguistics-inspired tool support.
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1 INTRODUCTION
Proofs have played a key role in discovering and capturing knowl-

edge since the dawn of mathematics. The power of formal logic

to prove complex theorems in multiple, verifiably correct steps

has been available for computer scientists’ use, in languages such
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as Prolog (for first-order logic) and, more recently, via interactive
frameworks for higher-order logic languages, which can automati-

cally establish many simpler theorems, e.g. HOL [1]. Such frame-

works have been used to prove tens of thousands of theorems, each

of which can in turn be used as dependencies in other theorems.

Formal verification of program properties is greatly facilitated by

proof languages as well: languages like Coq [3] have been used to

provemany program properties, even verifying an entire C compiler

(CompCert [11]).

Much like programming, writing proofs is difficult, tedious and

time-consuming. Real-world proofs often consist of many steps

and may depend on many other theorems. In addition, while most

programming language compilers accommodate the incremental

development of programs, from partially correct skeletons to fully

operational versions, proofs must be universally sound at every

step of construction. Developer assistance tools can be of great

help given these constraints. At present, these predominantly come

in the form of automated sub-theorem proving (for instance, Coq

includes keywords like auto and intuition [3]). Other program-

ming languages have benefited from automated code completion

[8, 14], fault localization [13] and rewriting [2]. All of these can

be enabled by language models, which capture and utilize typical

repetitive patterns in bodies of text. If such patterns also exist in

typical proofs, we may bring a substantial range of assistance tools

within reach of proof-writing and hopefully simplify this process.

In this work, we establish that this is indeed the case by studying

two very different corpora of proofs: one written in Gallina, Coq’s

specification language and one consisting of kernel-level traces of

HOL Light proof steps, formatted to resemble typical logical ex-

pressions [6, 10]. We show that both Coq and HOL Light proofs are

highly predictable, far more so than natural languages. Similar to

other programming languages, proofs exhibit high degrees of local-

ity. Our work opens the door for a range of naturalness-supported

developer assistance tools for proof-writing.

2 LANGUAGE MODELS
Language models measure the fluency of a sample (test) text by

comparing its statistics to those observed in a large (training) cor-

pus of real-world text. For instance, an n-gram language model

may collect frequencies of sequences of n adjacent words from a

collection of newspaper articles and compare these to sequences

that occur in a new article. If the new article is relatively unpre-

dictable given the past data, this indicates that its writing-style is

atypical, possibly even containing errors. In addition, a language

model may be queried for suggestions in a context; if it adequately

"understands" the context, it should recommend useful completions

of e.g. a word or sentence.

In practice, n-gram models are often used as baseline models

because they are fast to estimate and remarkably accurate. They
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accomplish this by only considering contexts of n− 1 tokens, where

n is typically around 5, which tends to be the most informative

bit of context. This does ignore many long-range dependencies,

however, so deep learning models, based on recurrent neural net-

works, have more recently come to dominate the state-of-the-art

in many natural language modeling tasks. These models abstract

context into opaque latent states that theoretically allow them to

carry dependencies over long distances (though practically they

tend to be more limited). In source code, both types of models have

proven highly successful: in general, tokens (e.g. punctuation, key-
words, identifiers) in programming languages are more predictable

than those in natural languages. n-gram models can especially ben-

efit from locality (e.g. tokens in the same file), allowing them to

outperform deep learning models in some settings [7].

We use both (dynamic) n-gram and recurrent neural network

models to study repetitiveness in proofs. Specifically, we use SLP-

Core
1
to implement n-gram models, both plain and with file-cache

components. This model uses a scoped n-gram regime, weighting

n-gram frequencies from different program scopes.

We implement recurrent neural network language models in

CNTK,
2
using a fairly typical architecture with 300-dimensional

embeddings and two 650-dimensional, GRU activated hidden layers,

with a residual connection. We apply drop-out regularization (50%

likelihood of disabling a hidden neuron at training time) and batch-

normalization to the second hidden layer. The network is trained

across 10 epochs with an initial learning rate of 0.002 per token that

is decayed by half every epoch starting epoch 5. On account of the

small vocabularies, we found performance to be better when the

model was allowed to back-propagate gradients across more time-

steps: typically, the recurrence is only "unfolded" for 20 to 50 words,

but we achieved substantially better results at 100 steps. Because

the corpora are fairly large (HOL’s is much larger than typical for

code) but the vocabularies are small, we also used relatively large

minibatch sizes – 10,000 tokens for Coq and 20,000 for HOL.

We fix the vocabulary for the deep learning model by treating

all tokens that are seen only once at training time as a generic

"unknown" token. This is necessary because typical RNNs are not

able to learn new tokens at test time; instead they must treat these

as a generic "unknown" token that must also be learned at training

time. We note that the vocabulary is unlimited for the n-gram
models. We account for this discrepancy by following the approach

described by Hellendoorn & Devanbu [7], as described below.

2.1 Metrics
Cross-entropy (typically just called entropy) is our primary metric

because it is commonly reported in language modeling work. This

information-theoretic metric captures the predictability of a text

in terms of the number of additional bits needed to communicate

each token (on average) to a receiver if they had access to the

same language model. It is computed by averaging the negative

log-likelihood across all the tokens in the corpus, which reflects

their typical predictability.
3
Lower values imply higher predictabil-

ity, with the optimal entropy score being 0, at which point a model

1
https://github.com/SLP-team/SLP-Core

2
https://cntk.ai/

3
Specifically, the geometric mean probability, which is more stable than the arithmetic

mean given the wide range of probabilities that may be encountered.

Theorem sqrt2_not_rational :
forall p q : nat, q <> 0 -> p * p = 2 * (q * q) -> False.

Proof.
intros p q; generalize p; clear p;
elim q using (well_founded_ind lt_wf).
clear q; intros q Hrec p Hneq;
generalize (neq_O_lt _ (sym_not_equal Hneq));
intros Hlt_O_q Heq.

apply (Hrec (3 * q - 2 * p)
(comparison4 _ _ Hlt_O_q Heq) (3 * p - 4 * q)).
apply sym_not_equal; apply lt_neq;
apply plus_lt_reg_l with (2 * p);
rewrite <- plus_n_O; rewrite <- le_plus_minus; auto with *.

apply new_equality; auto.
Qed.

Figure 1: An example of a proof in Coq, proving the irra-
tionality of the square root of 2.

...
(!a. (!b. (!m. (!n. ((n <= m) ==>
(((real_add ((float a) (int_neg (int_of_num m)))) ((float b)
(int_neg (int_of_num n)))) = ((float ((int_add ((int_mul
...

Figure 2: A proof snippet in HOL Light

experiences zero “surprisal" at observing any next token. Typical

values for natural languages are in the range of 5 to 8 bits (where 5

bits is currently the state-of-the-art, for neural network models esti-

mated over extremely large corpora) and values for source code are

in the range of 1 to 4 bits [7, 8]. Entropy serves well as a general in-

dication of predictability but may not perfectly reflect predictability

between languages. This is because it is averaged per token: more

verbose languages (like Java) will tend to use more (predictable)

syntax-related tokens and may achieve lower per-token entropies

than less verbose languages (like Haskell).

Prediction accuracy allows us to approximate how useful a code

completion tool could be for a language by recommending a list

of tokens in every context. Typically, accuracy is reported based

on where the correct item appears in an ordered list of sugges-

tions. Top-1 accuracy captures how often the correct item is also

the top-ranked item (we will mainly report this metric); top-5 and

top-10 accuracy metrics allow the suggestion to appear anywhere

in that respective range to be counted correct and thus implicitly

assume that a user will look at those top-k items before choosing a

completion or typing the token themselves. Often, the most simple,

shortest tokens are also the most predictable, so that top-k accu-

racy scores may be deceptive; it is unlikely that a programmer will

ask for a 1-character completion. We will also report the relative

character savings at top-1/5/10: the percentage of characters in the

file that a programmer would save (not have to type) when the

correct item is in the top-k suggestions.

3 CORPORA
To capture the types of proofs that are commonly written, we use

two major data sources consisting of Coq proofs, and higher-order

logic proofs. Table 1 shows the characteristics of our datasets.

Coq is a proof assistant for logic based on Calculus of Inductive

Constructions [4]. It uses the Gallina language for specification of

theorems and proofs. A proof in Coq can be written as a sequential

application of hypotheses or lemmas, enclosed between Proof and

Qed commands, that will prove the proof goal. Coq allows defining
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Table 1: Statistics of the datasets used in our work

Dataset # files # tokens # vocabulary

Coq 3,589 9,817,678 37,813

HOL 11,410 107,576,235 1,837

custom tactics to bundle common proof steps together for reuse, as

well as sophisticated proof search based on available lemmas and

proof subgoals. Figure 1 shows a proof for irrationality of

√
2 in Coq

taken from the Coq manual [3]. Dots (.) and semicolons (;) demar-

cate the steps in the proofs. This Gallina script uses proof tactics

such as intro and rewrite, and applies previous theorems/lemmas,

such as sym_not_equal in the proof. We used 17 active (based on

the number of proof scripts and commits) Coq projects on GitHub

for this study. The Gallina files in these projects were randomly

split into a 90% train and 10% test split for our language models.

Higher Order Logic (HOL) allows universal (∀) and existential

(∃) quantifiers over higher-order objects; where first-order objects
describe individual objects in the domain, second-order objects

describe sets of objects, third-order objects describe sets of sets of

objects, and so on. HOL can thus describe highly complex relations

among objects in domains, making it very expressive. Figure 2

shows a proof snippet in HOL.

Kaliszyk et al., collected the HOLStep dataset, consisting of pro-

cessed trace data of real proofs from the HOL Light [6] kernel. This

produced a dataset of proofs, each starting with some (typically

simple) dependencies followed by a number of "positive" (useful)

and "negative" (not useful) steps. The original proof contained the

positive steps only, and the task of a machine learner in this chal-

lenge was to decide which steps were real and which were fake.

The authors registered some reasonable success rates (ca. 80%) us-

ing convolutional neural networks, suggesting that there is indeed

something "natural" about real proof steps.
4
We are not interested

in the challenge task itself, but instead use the positive steps from

their proofs as training data. This gives us 10 thousand training

proofs (with nearly 99 million tokens) and 1,410 test proofs (with

ca. 8.5 million tokens).

The steps in the HolStep dataset are based on kernel-level traces

(for simplicity, we will still refer to them as HOL Light proofs) and

were all tokenized to resemble “textbook-style mathematics”, mak-

ing these proofs very different from the Coq dataset, which makes

our findings more broadly appicable. Since these are not human-

written proof steps, code completion is unlikely to be useful here,

but entropy and general predictability are. Note also that HolStep

contains proofs that use only primitive higher order inferences. That

is, in contrast to proofs in Coq, it does not contain any high-level

proof tactics. We reiterate that we do not compare the predictability

of these languages (in part because of these differences); we instead

show that both are remarkably natural.

4 RESULTS
We present the entropy results for our various models in Table 2.

We also compare the predictability (and aspects of it) of both proof

languages to other programming languages.

4
Although we found negative examples in this dataset to be different in entropy than

positive ones, which may allow deep neural networks to distinguish between positive

and negative steps without any insight into the actual proof

Table 2: Entropies (in bits) and top-1 prediction accuracy on
the proof corpora. Character savings gives an indication of
typing effort reduction, using the top completion if correct.

Entropy Top-1 Acc. Char. savings
Coq HOL Coq HOL Coq HOL**

base n-gram 3.52 2.49 55.7% 55.5% 46.9% 56.1%

n-gram+cache 2.28 1.28 70.2% 78.8% 63.0% 80.8%

RNN 3.03 1.72 56.6% 68.6% 46.5% 67.9%

RNN open* – – 56.2% 68.6% 45.6% 67.9%

*RNN with open vocabulary at test time, for which suggesting the generic unknown

token is not considered accurate

**HOLStep data is based on kernel traces, not human written steps; typing effort is

thus only shown for reference.

4.1 Performance Characteristics
Looking first at the per-token entropy values for simple n-gram
models, both Coq and HOL Light (kernel-level) proofs are relatively

predictable compared to natural languages, whosen-gram entropies

tend to be around 6 to 8 bits per token. Coq’s plain n-gram entropy

of 3.52 bits/token is quite similar to typical entropies for Java [8].

HOL Light’s entropy is substantially lower, although we caution the

reader against assigning too great an importance to the difference

for several reasons: (1) HOL Light’s vocabulary is much smaller (and

its training corpus larger), (2) the entropy is measured per-token,

so that more verbose languages tend to score lower (e.g. Java is less

entropic than Python by this measure), and (3) we do not compare

these two languages; we just aim to understand their characteristics

in the larger context of programming language "naturalness".

The RNNmodel outperforms the plain n-grammodel by a sizable

margin, similar to findings in prior work [17]. It is especially good

at modeling HOL Light proofs, which may be due to their very small

vocabulary; this language may be particularly amenable to RNNs.

RNN prediction accuracy is also better in HOL Light but is about

the same as the plain n-gram models for Coq. This matches insights

from prior work, which found that the RNN mainly achieves low

average entropy by being very confident in correct predictions

(thus achieving effectively zero entropy on those), whereas the

n-gram model is more "reserved" due to smoothing. As a result, the

entropy gain of the RNN over the plain n-gram model may just be

concentrated on the most predictable tokens and not translate into

any useful improvements in prediction accuracy. The RNN model is

in turn outperformed by an n-gram model with a cache component,

as also found in previous work on modeling Java code [7]. This

holds for both entropy and prediction accuracy. The RNN does

use a limited vocabulary, whereas the n-gram model vocabulary is

unlimited; we will discuss this more in Section 4.2.

Completion accuracy on Coq shows artifacts of inflation relative

to actual character savings: less typing effort is saved than sug-

gested by the top-1 accuracy alone across all models. This means

that relatively short tokens are more predictable while offering com-

pletions on those is unlikely to save a developer effort. However, the

difference is relatively small, possibly because very few long (over

10 characters) tokens were found in the Coq data, whereas other

programming languages will often contain many more such tokens.

Performance on the HOLStep dataset did not show a discrepancy at

all, in fact yielding slightly better character savings than prediction

accuracy. However, this dataset did not consist of human-written
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steps but rather of trace data, so that the typing effort reduction is

less relevant than characterization metrics such as entropy.

4.2 Vocabulary
The vocabulary of both proof systems is remarkably low, much

lower than both natural languages and programming languages

considering their corpus sizes. For instance, a 16M token Java corpus

in prior work had a vocabulary of ca. 200,000 tokens [7], while the

Coq corpus (at 10M tokens) has less than 38,000. The HOL Light

proofs’ even smaller vocabulary is mainly due to variable names

being lost in the trace data.

Relatively small vocabularies tend to imply higher predictability,

but we do note that this per se by no means explains the low en-

tropy values. Even a vocabulary of a thousand tokens would yield

an entropy of ca. 10 bits if those tokens were used at random. Fur-

thermore, the popular PTB English dataset has a vocabulary of just

10,000 words and its best entropy values are around 6 bits. Instead,

the vocabulary size may justify some of the lower entropy values

of HOL compared to Coq, but a substantial inherent repetitiveness

is responsible for the overall low entropy values.

The deep neural network uses a closed vocabulary when train-

ing and testing, meaning some tokens are treated as generic "un-

knowns". As a result, it uses a vocabulary of 24,427 tokens for the

Coq data and 1,759 for the HOL data. This necessarily inflates its

performance somewhat as these unknown tokens are fairly com-

mon and easy to predict while replacing tokens that are rare and

hard to predict. Following Hellendoorn & Devanbu, we include an

additional row in Table 2 that instead gives no reward for predicting

the unknown token [7]. As can be seen, this effect is quite mild in

our data; prediction accuracy on Coq decreases somewhat (espe-

cially in terms of character savings because rare tokens tend to be

longer), but not as much as in prediction of Java in prior work. Per-

formance on HOL Light proofs does not change significantly at all

because of its naturally almost completely closed vocabulary. Thus,

proof languages may be a domain where the deep neural network’s

difficulty learning new tokens is not such a great disadvantage.

4.3 Locality
Both Coq and HOL n-gram entropies benefit substantially from a

cache component: it more than halves surprisal in both,
5
yielding

an especially impressive improvement in HOL considering the

already low entropy. Programming languages have been shown to

exhibit a high degree of locality in their patterns, which is especially

present in locally typical use of identifiers (e.g. only within one file,

package or project) [7, 15]. However, HOL’s vocabulary is already

extremely small, implying that there is also a high degree of locality

in the organization of the arguments in the proofs themselves. To

ensure that this is not just a matter of vocabulary repetition, we also

compared with a 1-gram cache (a cache that only stores tokens, not

sequences): this model achieves an entropy of 2.41 bits/token, which

is substantially worse than what can be achieved by caching whole

sequences. Both datasets see a substantial increase in prediction

accuracy and (even more so) relative character savings of the top-1

predictions. Since the longest tokens in most proofs are references

to dependencies (other theorems), the cache component appears to

5
every bit of entropy is a factor two increase in geometric mean probability

successfully pick up on repeated use of those dependencies, which

should be helpful for a developer in a code completion setting.

5 IMPLICATIONS
Proof assistants have traditionally mainly been used by theory-

savvy users. With the increasing demand for certified software,

there are increasingly more developers who need to use proof

assistants such as Coq or HOL to prove properties of their systems

and generate certified code. Naturalness of proofs may provide new

opportunities to support them.

Guiding proofs: Naturalness of source code has been key in devis-

ing useful tools for programmers, e.g. code completion [14], based

purely on the textual representation of the source code. Our results

suggest that proof scripts are also natural, making it possible to pro-

vide proof guidance by predicting next tokens and perhaps entire

statements in proof scripts based on surrounding context.

Unnatural approaches: Proving theorems can be a tedious job.

Usually, one tries many different deconstructions of a proof goal

into subgoals and multiple steps to prove them before finding the

right approach. One way to address this issue may be to alert

the user whenever the proof script starts to deviate from natural

proofs. Studies on source code have shown that buggy code is

unnatural [13], and similarly "surprising" proof steps may help

developers catch bugs early.

6 RELATEDWORK
Naturalness of Code Hindle et al., showed that the degree of repet-
itive patterns in source code reflects and exceeds repetitiveness in

natural language [8]. This naturalness facilitates applications such

as code completion [14], error checking, variable name recovery

in minified Javascript [16] and style checking [2]. Proof scripts are

themselves programs that are interpreted by proof assistants, mak-

ing them much like classical programming languages. We studied

two large corpora of proof scripts and observed that they are indeed

also natural.

Guiding Proof Search The process of proving a conjecture is

essentially a search in the space of possible sequences of application

of lemmas and hypotheses. This search space can be prohibitively

large; thus, proof assistants attempt to guide this search by hinting

theorems that are more likely to lead to the proof. Premise selection

techniques attempt to find the most relevant theorems and lemma

to proof goals and are traditionally driven by hand-made heuristics

[9]. More recently, with advent of large corpora of proofs, machine

learning techniques have been employed to find related theorems

given a conjecture, though this has been largely limited to choosing

between a useful and unused next step [5, 10, 12]. Language models,

on the other hand, can be used for a wide range of tasks, both

generative (e.g. synthesis, translation, completion) and descriptive

(e.g. fault localization, convention checking) in nature.
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