Structural DNA nanotechnology

* a.k.a. DNA carpentry
* a.k.a. DNA self-assembly

slides © 2021, David Doty

ECS 232: Theory of Molecular Computation, UC Davis
Building things by hand: use tools! Great for scale of $10^{\pm 2} \times \text{people}$

Building tools that build things: specify target object with a computer program

Programming things to build themselves: for building in small wet places where our hands or tools can’t reach

[slides credit: Damien Woods]
Things that build themselves

Our topic: self-assembling molecules that compute as they build themselves

[slides credit: Damien Woods]
DNA as a building material

DNA strands bind even if only part of strands are complementary:

TCGGAAATAAAATCGGAC

AGCCTTTATTTTAGCCTG
DNA origami

scaffold DNA strand
(M13mp18 bacteriophage virus)

staple DNA strands
(+ water + salt)

folded DNA origami

heat to 90C, cool to 20C over an hour

Paul Rothemund
Folding DNA to create nanoscale shapes and patterns
Nature 2006

© http://openwetware.org/wiki/Biomod/2014/Design

© Shawn Douglas
DNA origami

Paul Rothemund

Folding DNA to create nanoscale shapes and patterns

Nature 2006

Atomic force microscope images

100 nm
Binding graphs

DNA origami: **star graph**
(all binding is between staples and scaffold)

DNA tiles: **grid graph**
(tiles bind to each other, each has ≤ 4 neighbors)
DNA tile self-assembly

monomers ("tiles" made from DNA) bind into a crystal lattice

Source: Programmable disorder in random DNA tilings. Tikhomirov, Petersen, Qian, Nature Nanotechnology 2017
Practice of DNA tile self-assembly

DNA tile

Ned Seeman, Journal of Theoretical Biology 1982

sticky end
Practice of DNA tile self-assembly

Place many copies of DNA tile in solution...

(not the same tile motif in this image)
Practice of DNA tile self-assembly

What really happens in practice to Holliday junction ("base stacking")
Practice of DNA tile self-assembly

Figure from Schulman, Winfree, PNAS 2009
Practice of DNA tile self-assembly

- **triple-crossover tile** (LaBean, Yan, Kopatsch, Liu, Winfree, Reif, Seeman, *JACS* 2000)
- **4x4 tile** (Yan, Park, Finkelstein, Reif, LaBean, *Science* 2003)
- **single-stranded tile** (Yin, Hariadi, Sahu, Choi, Park, LaBean, Reif, *Science* 2008)
- **DNA origami tile** (Liu, Zhong, Wang, Seeman, *Angewandte Chemie* 2011)
- **Tikhomirov, Petersen, Qian, Nature Nanotechnology 2017**
Theory of *algorithmic* self-assembly

What if...
... there is more than one tile type?
... some sticky ends are “weak”?

Erik Winfree
abstract Tile Assembly Model (aTAM)

• **tile type** = unit square

• each side has a **glue** with a **label** and **strength** (0, 1, or 2)

• tiles cannot rotate

• finitely many tile **types**

• infinitely many tiles: copies of each type

• assembly starts as a single copy of a special **seed** tile

• tile can bind to the assembly if total binding strength ≥ 2 (two weak glues or one strong glue)

Example tile set

“cooperative binding”
seed

change function to half-adder
Algorithmic self-assembly in action

aTAM simulator (ISU TAS by Matt Patitz)

See also WebTAS by the same group:
http://self-assembly.net/software/WebTAS/WebTAS-latest/

VersaTile (by Eric Martinez and Cameron Chalk) https://github.com/ericmichael/polyomino
and xgrow (by Erik Winfree) https://www.dna.caltech.edu/Xgrow/
Tile complexity of squares
Tile complexity

• Resource bound to minimize, like time or memory with a traditional algorithm.

• Why minimize number of tile types?
 • Physically synthesizing new tile types is difficult.
 • Designing DNA sequences for new tile types is difficult. (DNA sequence design is tougher when more DNA sequences are present.)
 • But due to how modern synthesis technologies work, once a tile type is designed, making 50 quadrillion copies of the tile is as easy as making one copy.

• So, we ask: how many unique tile types to we need to self-assemble some shapes?

• We start with $n \times n$ squares as the “simplest” benchmark shape.
 • Why not a $1 \times n$ line as an even simpler shape? What is its tile complexity?

• [Note: we have not formally defined the aTAM yet... first let’s build intuition.]
The program size complexity of self-assembled squares

Question: How many tile types do we need to self-assemble an \(n \times n \) square?

Concretely: how to assemble a 4 \(\times \) 4 square?

All glues are strength 2
(alternately: all are strength 1 and temperature \(\tau = 1 \))

How many tile types does this construction need in general to assemble an \(n \times n \) square?

\(n^2 \)

https://www.dna.caltech.edu/Papers/squares_STOC.pdf
This paper is directly responsible for convincing many theoretical computer scientists that DNA self-assembly is worth studying.
Tile complexity at temperature $\tau = 1$ (i.e., no cooperative binding allowed)

Is n^2 optimal? Can we do better?

Note all pairs of adjacent tiles bind with positive strength:

Theorem: At temperature $\tau = 1$, if all pairs of adjacent tiles bind with positive strength, then for every positive integer n, n^2 tile types are necessary to self-assemble an $n \times n$ square.

Proof: Suppose for contradiction we use the same tile type i at positions (x_1, y_1) and (x_2, y_2). Then they have a path L between them with all positive-strength glues, and this can happen instead:
Tile complexity at temperature $\tau = 1$, where not all adjacent tiles are bound

Is n^2 still optimal? No!

Tile complexity of this construction?

$$2n - 1 = O(n)$$

Conjecture: The temperature $\tau = 1$ tile complexity of an $n \times n$ square is $\Omega(n)$.

(most recent progress:
https://arxiv.org/abs/1902.02253
Tile complexity at temperature $\tau = 2$ (i.e., cooperative binding allowed)

This tile completes an $n \times n$ “L shape” into an $n \times n$ square.

These glues should all be different.

Strength-1 glues (with no other glues to cooperate with)

Tile complexity $= 2n$
Tile complexity at temperature $\tau = 2$

Goal: complete a $1 \times n$ line into an $n \times n$ square

Tile complexity = $n + 4$

How to get *sublinear* tile complexity?
Logarithmic tile complexity at temperature $\tau = 2$

Goal: rectangle of height n using $O(\log n)$ tile types

For width of k bits, stops when it reaches what value?

"zig-zag counter"
Logarithmic tile complexity at temperature $\tau = 2$

A few more “filler” tiles complete the $\approx n \times \log n$ rectangle into an $n \times n$ square.

Tile complexity = \[\log n + 23 \]

What number should this encode?
Ω(\log n / \log \log n) tile complexity lower bound for \(n \times n\) squares

• What does \(Ω(\log n / \log \log n)\) tile complexity lower bound mean?
 • First let’s think about what we already showed: what does \(O(\log n)\) tile complexity upper bound mean? For all \(n\), \(O(\log n)\) tile types is enough to self-assemble an \(n \times n\) square.
 • A lower bound looks like: For infinitely many \(n\), \(o(\log n / \log \log n)\) tile types is not enough to self-assemble an \(n \times n\) square.

• How to prove? It’s a counting argument:
 • Count number of (functionally distinct) tile systems with fewer than \(\frac{1}{4} \log p / \log \log p\) tile types.
 • We’ll show that it’s fewer than \(p\).
 • There are \(p\) squares with width \(n\) between \(p+1\) and \(2p\); each needs a different tile system.
 • By pigeonhole, some \(n \times n\) square cannot be assembled with < \(\frac{1}{4} \log p / \log \log p\) tile types.
 • Since \(p \leq n/2\), we have \(\frac{1}{4} \log p / \log \log p \leq \frac{1}{4} \log n / \log \log n\).
 • Since we can do this for every positive integer \(p\), there are infinitely many \(n\) that require more than \(\frac{1}{4} \log n / \log \log n\) tile types (a stronger result holds: “most” values of \(n\) require that many)
How many tile systems with k tile types?

- **Goal**: show that there are fewer than p (“functionally distinct”) tile systems with $k = \frac{1}{4} \log p / \log \log p$ tile types.

- How many have **exactly** k tile types? Count each of the ways to define the tile system:

 a) How many different glues can we have? $4k$

 b) How many ways can we choose the 4 glues for **one** tile type? $a^4 = (4k)^4$

 c) How many ways to choose the glues for **all** k tile types? $b^k = (4k)^{4k}$

 d) How many ways to choose the seed tile? k

- How many tile systems? $c \cdot d = k(4k)^{4k}$
How many tile systems with \(k \) tile types?

- Number of tile systems with **exactly** \(k \) tile types: \(\leq k(4k)^{4k} \)
- Number of tile systems with **at most** \(k \) tile types: \(\leq k^2(4k)^{4k} \)
- Recall \(k = \frac{1}{4} \log p / \log \log p \); by algebra (see notes), \(k^2(4k)^{4k} < p \).
- By pigeonhole principle, for some width \(n \) with \(p < n \leq 2p \), the \(n \times n \) square is not self-assembled by one of these \(k^2(4k)^{4k} \) tile systems. Since those are all the tile systems with at most \(k \) tile types, the \(n \times n \) square requires **more** than \(\frac{1}{4} \log p / \log \log p \) tile types to self-assemble. **QED**
“Descriptive Complexity” proof

• Can be formalized with *Kolmogorov complexity*

• We can “describe” n with a tile system that self-assembles an $n \times n$ square.

• How many bits do we need to describe a tile system with k tile types?
 • $\log(4k)$ to describe one of the $4k$ glues, e.g., 8 glues: 000, 001, 010, 011, 100, 101, 110, 111
 • $4 \log(4k)$ to describe one tile type consisting of 4 glues, e.g., tile $b = (010, 011, 111, 100)$
 • $4k \log(4k)$ to describe all k tile types, plus $\log k$ to give index of the seed.
 • So $O(k \log k)$ bits total.

• For any n in the Fact, $\log n = O(k \log k)$, i.e., $k = \Omega(\log n / \log \log n)$.

Note: we’re ignoring glue strengths here; adds 2 bits per glue to describe at temperature 2. (since there are 3 possible strengths 0, 1, 2); see http://doi.org/10.1007/s00453-014-9879-3 for handling higher-temperature systems.

Fact: “most” integers n require $\geq \log n$ bits to “describe”.
(Though some require fewer: 1111111111111111111111 can be described by its length 22 in binary: 10110)
Which bound is tight?

1. All \(n \times n \) squares can be assembled with \(O(\log n) \) tile types; can we get it down to \(O(\log n / \log \log n) \)?

2. Or do we need \(\Omega(\log n) \) tile types to assemble infinitely many \(n \times n \) squares?
Improved upper bound: self-assembling an $n \times n$ square with $O(\log n / \log \log n)$ tile types

Recall:

Idea:
1) Use same 23 tiles that turn the seed row encoding a binary integer n' (related to n) into an $n \times n$ square.
2) Create the binary seed row from only $\log n / \log \log n$ tiles.

Tile complexity = $O(\log n) + 23$
Creating a row of log n glues with arbitrary bit string $s \in \{0,1\}^{\log n}$ using $O(\log n / \log \log n)$ tile types

- Key idea: choose larger power-of-two base $b = 2^k$, with $b \approx \log n / \log \log n$, and convert from base b to base 2.
- How many base-b digits needed to represent a $\log(n)$-bit integer?
- Each base-b digit is k bits
 - e.g., if $b=2^3=8$, then $0=000$ $1=001$ $2=010$ $3=011$ $4=100$ $5=101$ $6=110$ $7=111$
 - e.g., the octal number 7125_8 in binary is 1110010101_2
 - need $\log(n) / k = \log(n) / \log (\log n / \log \log n) = \log(n) / (\log \log n – \log \log \log n) \approx \log(n) / \log \log n$ base-b digits.
Creating a row of log n glues with arbitrary bit string $s \in \{0,1\}^*$ using log $n / \log \log n$ tile types (i.e., base conversion from b to 2)

$s = 11000101101$

$b = 2^3 = 8$

hard-coded tiles:

“almost” works... what’s missing? mark glues of most and least significant bit
Formal definition of aTAM
abstract Tile Assembly Model (aTAM), formal definition

• Fix a finite alphabet Σ. A glue is a pair $g = (\ell, s) \in \Sigma^* \times \mathbb{N}$, with label ℓ and strength s.
• A tile type is a 4-tuple of glues $t \in (\Sigma^* \times \mathbb{N})^4$, with each glue listed in order north, east, south, west.
 • Define unit vectors $N = (0,1)$, $S = (0,-1)$, $E = (1,0)$, $W = (-1,0)$
 • For $d \in \{N, E, S, W\}$, let d^* denote the opposite direction of d, i.e., $N^* = S$, $S^* = N$, $E^* = W$, $W^* = E$.
• Let $t[N], t[E], t[S], t[W]$ be the glues of t in order.
• T denotes the set of tile types.
• An assembly is a partial function $\alpha: \mathbb{Z}^2 \rightarrow T$, such that $\text{dom} \ \alpha$ (set of points where α is defined) is connected.
 • a partial function indicating, for each $(x, y) \in \mathbb{Z}^2$, which tile is at (x, y), with $\alpha(x,y)$ undefined if no tile appears there.
• Let $S_\alpha = \text{dom} \ \alpha$ denote the shape of α. Let $|\alpha| = |S_\alpha|$.
• Given $p, q \in S_\alpha$, two tiles $t_p = \alpha(p)$ and $t_q = \alpha(q)$ interact (a.k.a. bind) if:
 • $\|p - q\|_2 = 1$ (positions $p \in \mathbb{Z}^2$ and $q \in \mathbb{Z}^2$ are adjacent)
 • letting $d = q - p$ (the direction pointing from p to q), $t_p[d] = t_q[d^*]$ (the glues match where t_p and t_q touch)
 • $t_p[d]$ has positive strength (the glues are not zero-strength)
• Let $B_\alpha = (V,E)$ denote the binding graph of α, where
 • $V = S_\alpha$
 • $E = \{(p,q) \mid \alpha(p) \text{ and } \alpha(q) \text{ interact}\}$
 • B_α is a weighted, undirected graph: Each edge’s weight is the strength of the glue it represents.
• Given $\tau \in \mathbb{N}^+$, α is τ-stable if the minimum weight cut of B_α is at least τ.
 • i.e., to separate α into two pieces requires breaking bonds of strength at least τ.

39
abstract Tile Assembly Model (aTAM), formal definition

- Given assemblies $\alpha, \beta : \mathbb{Z}^2 \to T$, we say α is a **subassembly** of β, written $\alpha \sqsubseteq \beta$ if
 - $S_\alpha \subseteq S_\beta$ (\textit{α is contained in β}), and
 - for all $p \in S_\alpha$, $\alpha(p) = \beta(p)$ (\textit{α and β agree on tile types wherever they share a position})
- We say $\Theta = (T, \sigma, \tau)$ is a **tile system**, where T is a finite set of tile types, $\tau \in \mathbb{N}^+$ is the **temperature**, and $\sigma : \mathbb{Z}^2 \to T$ is the finite, τ-stable seed assembly.
- We say α **produces** β in **one step**, denoted $\alpha \to_1 \beta$, to denote that $\alpha \sqsubseteq \beta$, $|S_\beta \setminus S_\alpha| = 1$, and letting $\{p\} = S_\beta \setminus S_\alpha$ be the point in β but not α, the cut $\{\{p\}, S_\alpha\}$ of the binding graph B_β has weight $\geq \tau$.
 - (one new tile $\beta(p)$ attaches to α with strength at least τ to create β)
 - If the tile type added is t, write $\beta = \alpha + (p \mapsto t)$.
- The **frontier** of α is denoted $\partial \alpha = \bigcup_{\alpha \to_1 \beta} (S_\beta \setminus S_\alpha)$ (**empty locations adjacent to α where a tile can stably attach to α**).
- A sequence of $k \in \mathbb{N} \cup \{\infty\}$ assemblies $\alpha_0, \alpha_1, \ldots$ is an **assembly sequence** if for all $0 \leq i < k$, $\alpha_i \to_1 \alpha_{i+1}$.
- We say that α **produces** β (in 0 or more steps), denoted $\alpha \to \beta$, if there is an assembly sequence $\alpha_0, \alpha_1, \ldots$ of length $k \in \mathbb{N} \cup \{\infty\}$ such that
 - $\alpha = \alpha_0$
 - for all $0 \leq i < k$, $\alpha_i \sqsubseteq \beta$, and
 - $S_\beta = \bigcup_i S_{\alpha_i}$
- We say β is the **result** of the assembly sequence.
- If k is finite, it is routine to verify that $\beta = \alpha_k$, and \to is the reflexive, transitive closure \to_1^* of \to_1.

Question: If $\alpha \sqsubseteq \beta$, can α grow into β?

Why can’t we just say \to is the reflexive, transitive closure \to_1^* of \to_1?

Sometimes we write $\alpha \to^0 \beta$ to emphasize this is with respect to a particular tile system Θ.
abstract Tile Assembly Model (aTAM), formal definition

- Given tile system $\Theta = (T, \sigma, \tau)$, we say α is **producible** if $\sigma \rightarrow \alpha$.
 - Write $A[\Theta]$ to denote the set of all producible assemblies.
- We say α is **terminal** if α is stable and $\partial \alpha = \emptyset$. *(no tile can stably attach to it)*
 - Write $A_{\square}[\Theta] \subseteq A[\Theta]$ to denote the set of all producible, terminal assemblies.
- We say Θ is **directed** (a.k.a., **deterministic**) if
 - $|A_{\square}[\Theta]| = 1$. *(this is what we want it to mean: only one terminal producible assembly)*
 - equivalently, the partially ordered set $(A[\Theta], \rightarrow)$ is **directed**: for each $\alpha, \beta \in A[\Theta]$, there exists $\gamma \in A[\Theta]$ such that $\alpha \rightarrow \gamma$ and $\beta \rightarrow \gamma$.
 - equivalently, for all $\alpha, \beta \in A[\Theta]$ and all $p \in S_{\alpha} \cap S_{\beta}$, $\alpha(p) = \beta(p)$.
- Let X be a **shape**, a connected subset of \mathbb{Z}^2. Θ **strictly self-assembles** X if, for all $\alpha \in A_{\square}[\Theta]$, $S_{\alpha} = X$. *(every terminal producible assembly has shape X)*
 - Note X can be infinite.
 - Example: strict self-assembly of entire second quadrant $X = \{ (x, y) \in \mathbb{Z}^2 \mid x \geq 0 \text{ and } y \leq 0 \}$
 - Example of tile system Θ that does not strictly self-assemble any shape?
- Let $X \subseteq \mathbb{Z}^2$. Θ **weakly self-assembles** X if there is a subset $B \subseteq T$ (the “blue tiles”) such that, for all $\alpha \in A_{\square}[\Theta]$, $X = \alpha^{-1}(B)$. *(every terminal producible assembly puts blue tiles exactly on X.)*
 - example: weak self-assembly of the discrete Sierpinski triangle.
Basic stability result

Observation: Let $\alpha \subseteq \beta$ be stable assemblies and $p \in \mathbb{Z}^2 \setminus S_\beta$ such that $\alpha + (p \mapsto t)$ is stable. Then $\beta + (p \mapsto t)$ is also stable.

Proof:
1. Since β is stable and glue strengths are nonnegative, the only potentially unstable cut is $\{(p), S_\beta\}$.
2. But:
 1. $\alpha \subseteq \beta$,
 2. $\alpha + (p \mapsto t)$ is stable,
 3. compared to α, β only has extra tiles on the other side of the cut (t, S_β).
 4. so the cut (t, S_β) is also stable. QED

Intuition: if a tile can attach to α, it can attach in the presence of extra tiles on α.

Example:

- α
 - p
 - t
- \Rightarrow
- β
 - p
 - t
Basic reachability result

Rothemund’s Lemma: Let $\alpha \subseteq \beta \subseteq \gamma$ be stable assemblies such that $\alpha \rightarrow \gamma$. Then $\beta \rightarrow \gamma$.

Proof:
1. Let $\alpha = \alpha_0, \alpha_1, \ldots$ be an assembly sequence with result γ.
2. For each i, let $p_i = S_{\alpha_{i+1}} \setminus S_{\alpha_i}$ (i’th attachment position) and t_i the i’th tile added.
3. Let $i(0) < i(1) < \ldots$ such that $S_\gamma \setminus S_\beta = \{i(0), i(1), \ldots\}$ (subsequence of indices of tile attached outside of β).
4. Define assembly sequence $\beta = \beta_0, \beta_1, \ldots$ by $\beta_{i+1} = \beta_i + (p_{i(i)} \mapsto t_{i(i)})$. (adding tiles to $S_\gamma \setminus S_\beta$ in order they were added to α, skipping tiles already in S_β.)
5. Then for each j, $\alpha_{i(j)} \subseteq \beta_j$, so previous Observation implies that $\beta_j + (p_{i(j)} \mapsto t_{i(j)})$ is stable.
6. Thus the assembly sequence is valid (each tile attachment is stable), showing $\beta \rightarrow \gamma$. QED

Intuition: if α can grow into γ, then if some of what will attach is already present (β), the remaining tiles can still attach.

example:
example of usefulness of Rothemund’s Lemma

• Recall two alternate characterizations of deterministic tile systems:
 (a) \(|A_\square[\Theta]| = 1. \)
 (b) for all \(\alpha, \beta \in A[\Theta] \) and all \(p \in S_{\alpha} \cap S_{\beta}, \alpha(p) = \beta(p). \)

• Rothemund’s Lemma can be used to show that (b) implies (a)
 • will skip in lecture (optional problem on homework 1)
Fair assembly sequences

Definition: Let $\alpha_0, \alpha_1, \ldots$ be an assembly sequence. We say it is fair if, for all $i \in \mathbb{N}$ and all $p \in \partial \alpha_i$, there exists $j > i$ such that $p \in S_{\alpha_j}$.

Lemma: Let $\alpha_0, \alpha_1, \ldots$ be a fair assembly sequence. Then its result γ is terminal.

Intuition: Every frontier location eventually gets a tile; none are “starved”

Proof:
1. Suppose for the sake of contradiction that γ is not terminal, i.e., it has frontier location $p \in \partial \gamma$; note in particular $p \notin S_{\gamma}$.
2. Simpler if assembly sequence is finite:
 1. In this case, $\gamma = \alpha_{k-1}$, so p never receives a tile.
 2. Thus the assembly sequence is not fair. (*there is no $j > k-1$ such that $p \in S_{\alpha_j}$*)
3. Now assume assembly sequence is infinite. (*actually, rest of proof works in finite case*)
4. Since $p \in \partial \gamma$, there are positions adjacent to p with enough strength to bind a tile t. Let N be the set of these positions. Note N is finite since p has at most four neighbors.
5. Since $S_{\gamma} = \bigcup_i S_{\alpha_i}$, there exists i such that $N \subseteq \partial \alpha_i$ (*after some finite number of tile attachments, all of the positions in N are on the frontier of the current assembly*)
6. Thus $p \in \partial \alpha_i$. (*the tile t can attach to α_i reached after only i steps*)
7. By fairness, there exists j such that $p \in S_{\alpha_j} \subseteq S_{\gamma}$ (*eventually p gets a tile*), which contradicts the claim that $p \notin S_{\gamma}$. QED

Corollary: For every assembly α, there is a terminal assembly γ such that $\alpha \rightarrow \gamma$.

Proof: Pick any fair assembly sequence $\alpha=\alpha_0, \alpha_1, \ldots$; its result γ is terminal and $\alpha \rightarrow \gamma$. QED

Concrete example of simulation algorithm creating a fair assembly sequence?
How computationally powerful are self-assembling tiles?
Turing machines

initial state = s

state ≈ line of code

tape ≈ memory

transitions
(instructions)
Tile assembly is Turing-universal
Complexity of self-assembled shapes

• We’ve seen how use algorithmic tiles to:
 • self-assemble $n \times n$ squares with “few” tile types $O(\log n / \log \log n)$
 • simulate a Turing machine that grows a “wedge” describing its space-time configuration history

• What other shapes can be self-assembled?
 • Define a shape to be a finite, connected subset of \mathbb{N}^2.
 • Any shape with n points can be self-assembled with at most how many tile types? n

• Is there an infinite family of shapes S_1, S_2, \ldots, with $|S_n| = n$, such that each S_n requires at least n tile types to self-assemble?

$S_1 = \boxed{\text{}}$ $S_2 = \boxed{\text{}}$ $S_3 = \boxed{\text{}}$ $S_4 = \boxed{\text{}}$...
Complexity of self-assembled shapes

Suppose we are content to create a scaled up version of the shape:

Theorem: For any shape S, there is a constant c so that S^c can be self-assembled with $O(k / \log k)$ tile types, where k is the length in bits of the shortest program (input to a universal Turing machine) that, on input (x,y), indicates whether $(x,y) \in S$.

Theorem (that we won’t prove): This is optimal! No smaller tile system could self-assemble any scaling of S. If one existed, we could turn it into a program with $< k$ bits “describing” S in this way. (Why?)

Fig. 5.1. Forming a shape out of blocks: (a) A coordinated shape S. (b) An assembly composed of $c \times c$ blocks that grow according to transmitted instructions such that the shape of the final assembly is \tilde{S} (not drawn to scale). Arrows indicate information flow and order of assembly. The seed block and the circled growth block are schematically expanded in Figure 5.2. (c) The nomenclature describing the types of block sides.
Programming a shape (inaccurate cartoonish overview)

- base-conversion to produce k bits from $k/\log k$ tile types
- program for UTM
- input to P

compute $P(0,0)$

slight modification of how P “computes” shape S: $P(x,y)$ computes spanning tree of S, outputs children of point (x,y)
More accurate detailed overview

seed block

growth block
fully-detailed example of growth block
Two interpretations

as stated for single seed tile:

Theorem: For any shape S, there is a constant c so that S^c can be self-assembled with $O(k / \log k)$ tile types where k is the length in bits of the shortest program (input to a universal Turing machine) that, on input (x,y), indicates whether $(x,y) \in S$.

most of the tile complexity is encoding the binary string representing the program P that encodes shape S, and $O(1)$ tile types can read that string and self-assemble S^c from it.

i.e., T is a **universal** set of tile types that can self-assemble any shape, by giving it the right seed.

alternative statement for larger seed:

Theorem: There is a single set T of tile types ($O(1)$ tile types), so that, for any finite shape S, there a constant c and a seed assembly σ_S “encoding” S, so that T self-assembles S^c from σ_S.

$\sigma_S =$

```
program for UTM
0
input to P
0
```
Strict and weak self-assembly

Computability-theoretic questions about self-assembly
Strict and weak self-assembly

Recall:

Let $X \subseteq \mathbb{Z}^2$ be a shape, a connected subset of \mathbb{Z}^2. Θ strictly self-assembles X if, for all $\alpha \in A_{\square}[\Theta]$, $S_\alpha = X$.

(every terminal producible assembly has shape X)

Let $X \subseteq \mathbb{Z}^2$. Θ weakly self-assembles X if there is a subset $B \subseteq T$ (the “blue tiles”) such that, for all $\alpha \in A_{\square}[\Theta]$, $X = \alpha^{-1}(B)$.

(every terminal producible assembly puts blue tiles exactly on X.)

Tile system on right strictly self-assembles the whole second quadrant, and it weakly self-assembles the discrete Sierpinski triangle.
Strict self-assembly

Observation: There is an infinite shape $S \subseteq \mathbb{Z}^2$ that cannot be strictly self-assembled by any tile system.

Proof:
There are uncountably many shapes but only countably many tile systems.

Observation is *non-constructive*:
Doesn’t tell us what is the shape S. Can we devise a concrete example of a shape that cannot be strictly self-assembled?

Homework problem: you will show that any shape $S \subseteq \mathbb{Z}^2$ that can be strictly self-assembled is also computably enumerable.

Use that fact now to define an explicit shape that cannot be strictly self-assembled.

Path in block n has a “turnout” if and only if n’th Turing machine halts on empty input.

Question: Is there a *computable* shape $S \subseteq \mathbb{Z}^2$ that cannot be strictly self-assembled?
A famous fractal

- Let $S_0 = \{(0,0)\}$
- Let $V = \{(0,0), (0,1), (1,0)\}$ be three vectors for “recursive translation”.
- S is known as the *discrete Sierpinski triangle*...

Observation: S is computable (easily).
The discrete Sierpinsky triangle cannot be strictly self-assembled

Proof:
1. The shape is a tree: no cycles in the grid graph.
2. The x-axis has infinitely many pinch points: points where the subtree above the point is distinct from any other pinch point.
3. The north glue must be distinct at each pinch point, so no finite tile set suffices to self-assemble X. QED

Weak self-assembly

Theorem: Every computable set $X \subseteq \mathbb{N}$, “embedded straightforwardly” in \mathbb{Z}^2, can be weakly self-assembled.

Proof:
1. The Time Hierarchy Theorem says there is a computable set $A \subseteq \{1\}^*$ not computable in $O(n^4)$ time.
2. Let $R = \{|x| : x \in A\}$ be the set of lengths of strings in A.
3. Define $X \subseteq \mathbb{Z}^2$ to be the set of “concentric diamonds” whose L_1 radii are in R, e.g., if $R = \{1, 4, 8, \ldots\}$
4. Suppose X could be weakly self-assembled. Then simulating self-assembly for $(2n)^2$ steps necessarily places a tile at some point at L_1 radius n from the origin; the tile’s color tells us whether $n \in R \iff 1^n \in A$.
5. This can be done in time $O(n^4)$ time (why?), a contradiction. QED
Randomized self-assembly
Tile complexity of universal shape construction

• Recall: if we can have a seed structure encoding a shape S (in a binary string $x \in \{0,1\}^*$, in glues on one side), we can self-assemble some scaling S^c of S with $O(1)$ additional tile types that read and interpret x.

• $\Theta(K(x) / \log K(x))$ tile types are necessary and sufficient to create x from a single seed tile in the aTAM. ($K(x) =$ length in bits of shortest program for universal Turing machine that prints x)

• We’ll see how to get this down to $O(1)$ with high probability by concentration programming.
 • i.e., move the effort from designing new tile types to (the plausibly simpler lab step of) altering concentrations of existing tile types
Nondeterministic binding

\[\text{Pr}[G] = \frac{11}{12}\]

\[\text{Pr}[S] = \frac{1}{12}\]
Programming polymer length with concentrations

[Becker, Rapaport, Rémiла, FSTTCS 2006]

expected length 12

Large variance
Programming polymer length (improved)

Concentration 1

Concentration 3

3 "stages", each of expected length 12

Lower variance... how much lower?
Bounding the probability the length deviates much from its mean

• r total stages, each with $\Pr[\text{next tile increments stage}] = p$.
• Let $L(r,p) = \text{total length; number of tile attachments until attaching}$.
• Expected total length $\mathbb{E}[L(r,p)] = r / p$.
• Recall: a binomial random variable $B(n,p) = \text{number of heads when flipping a coin } n \text{ times, with } \Pr[\text{heads}] = p$. $\mathbb{E}[B(n,p)] = np$.
• for any n,r,p: $\Pr[L(r,p) \leq n] = \Pr[B(n,p) \geq r]$.

 flipping a coin until the r'th heads requires $\leq n$ flips
 ↔

 flipping a coin n times results in $\geq r$ heads

• similarly, $\Pr[L(r,p) \geq n] = \Pr[B(n,p) \leq r]$.
Chernoff bound

Chernoff bound: For a binomial random variable \(\text{B}(n,p) \) (recall \(E[\text{B}(n,p)] = np \)), and for any \(0 < \delta < 1 \),

\[
\Pr[\text{B}(n,p) > (1+\delta)np] < \exp(-\delta^2 np/3)
\]
\[
\Pr[\text{B}(n,p) < (1-\delta)np] < \exp(-\delta^2 np/2)
\]

Let \(\delta \approx 0.27 \) and set \(p \) such that \(r/p(1-\delta) = 2^k \).

Let \(\delta' \approx 0.44 \): then \(r/p(1+\delta') \approx 2^{k-1} \).

Applying this to our setting gives

\[
\Pr[\text{L}(r,p) \text{ is not between } 2^{k-1} \text{ and } 2^k] < 2 \cdot 0.9421^r
\]
Programming polymer length (improved)

if \(r = 90 \) stages, expected length midway in \([2^{k-1}, 2^k)\)

with probability > 99%, **actual** length in \([2^{k-1}, 2^k)\)

\[
\begin{align*}
& [G] \approx 7 \quad [S] = [S] \approx 2 \\
& \text{i.e., we can't target a precise length } L, \\
& \text{but we can target precisely the number of bits } \lceil \log L \rceil \text{ in } L's \text{ binary expansion.}
\end{align*}
\]
Programming polymer length 2^k precisely
Programming a binary string

length $2^k \approx 13^2$

blue tiles

low-order bits absorb error

with high probability, $13/16 \leq \text{fraction of } \text{blue} < 14/16$

(again by Chernoff bound)
Programming a shape (inaccurate cartoonish overview)

Sampling tiles to (probably) produce a binary string

program for UTM input to P

compute $P(0,0)$

compute $P(1,0)$

compute $P(0,-1)$

slight modification of how P "computes" shape S: $P(x, y)$ computes spanning tree of S, outputs children of point (x, y)

computes spanning tree of S
Universal self-assembling molecules

A **fixed** set of tile types can assemble *any* finite (scaled) shape (with high probability) by mixing them in the right concentrations.

Other plausible modifications of aTAM model that can reduce tile complexity

• staged self-assembly:
 • https://doi.org/10.1007/s11047-008-9073-0

• temperature programming:
 • https://dl.acm.org/doi/10.5555/1109557.1109620
The power of nondeterminism in self-assembly
Can nondeterminism help to self-assemble shapes?
Nondeterminism in Biology

Nondeterminism can allow complex structures to be created from a compact encoding.
Nondeterminism in Computer Science

Algorithm types:

- **Deterministic**: entire computation uniquely determined by input
- **Randomized**: flips coins; realistic
- **Nondeterministic**: flips coins; magical
- **Trivially nondeterministic ("pseudodeterministic")**: flips coins, but *final output* independent of flip results
- **Deterministic**: entire computation uniquely determined by input
Nondeterminism in Self-Assembly

Perhaps:

≥ 2 potential binding sites

More meaningful:

at a single binding site, ≥ 2 tile types attachable

... only one possible terminal assembly.

So the tile set is still deterministic.

... ≥ 2 possible terminal assemblies.

If tile types compete ...
Nondeterminism in Self-Assembly

- A tile set is **deterministic** if it has only one terminal assembly (map of tile types to points).
- This tile set has multiple terminal assemblies, *but* they all have the same shape.
- The tile set **self-assembles** a 2 x 2 square.
Power of Nondeterminism

Question: Let \(S \) be a finite shape self-assembled by some nondeterministic tile set. Does some deterministic tile set also self-assemble \(S \)?

In this example, we can convert this nondeterministic tile set that self-assembles a 2 x 2 square to this deterministic tile set that self-assembles the same shape.

In general???
Answer: Trivially yes.

Question: Let S be a finite shape self-assembled by some nondeterministic tile set. Does some deterministic tile set also self-assemble S?

Is there some way that nondeterminism helps to self-assemble shapes?
Power of Nondeterminism

Question 1: Let S be an infinite shape strictly self-assembled by some nondeterministic tile system. Does some deterministic tile set also self-assemble S?

Is tile computability unaffected by nondeterminism?

Answer: No

Question 2: Let S be a finite shape strictly self-assembled by some nondeterministic tile system with k tile types. Does some deterministic tile system with at most k tile types also self-assemble S?

Is tile complexity unaffected by nondeterminism?

Answer: No

There is an infinite shape S strictly self-assembled by only nondeterministic tile systems.

There is a finite shape S strictly self-assembled with at most k tile types by only nondeterministic tile systems.
Optimization Problems

\textbf{MinTilesSet}
- Given: finite shape \(S \)
- Find: size of smallest tile system that self-assembles \(S \)

\textbf{MindetTilesSet}
- Given: finite shape \(S \)
- Find: size of smallest \textbf{deterministic} tile system that self-assembles \(S \)

\textbf{False statement}: Nondeterminism does not affect tile complexity:
for every nondeterministic tile set of size \(k \) that self-assembles a shape \(S \),
there is a deterministic tile set of size at most \(k \) that self-assembles \(S \).
if true, would imply \textbf{MinDetTilesSet} = \textbf{MinTilesSet}
Main Result

- **We show**: MinTileSet is NP^{NP}-complete.
 a.k.a., Σ_2^P

- MinDetTileSet is NP-complete. (Adleman, Cheng, Goel, Huang, Kempe, Moisset de Espanés, Rothemund, *STOC* 2002)

- $\text{NP} \neq \text{NP}^{\text{NP}} \Rightarrow \text{MinTileSet} \neq \text{MinDetTileSet}$
Nondeterminism in Algorithms and Self-Assembly

<table>
<thead>
<tr>
<th>Algorithm that flips coins but always produces same output</th>
<th>Tile set that flips coins but always produces same shape</th>
</tr>
</thead>
<tbody>
<tr>
<td>• coin flips useless</td>
<td>• coin flips useful</td>
</tr>
</tbody>
</table>

But ... **finding** smallest tile set is harder if it flips coins.
A Finite Shape for which Nondeterminism Affects Tile Complexity

- Smallest tile set: \(\approx 2h \) tile types
- Smallest deterministic tile set: \(\approx 3h \) tile types
\textbf{NP}^{\text{NP}}\text{-hardness Reduction}

- \textbf{NP}^{\text{NP}}\text{-complete problem (Stockmeyer, Wrathall 1976)}:
 \exists \forall \text{CNF-UNSAT}

 - \textbf{Given}: CNF Boolean formula \(\Phi \) with \(k+n \) input bits
 \(x=x_1...x_k \) and \(y=y_1...y_n \)

 - \textbf{Question}: is \((\exists x)(\forall y)\neg \Phi(x,y) \) true?

- \textbf{Reduction goal}: Given \(\Phi \), output shape \(S \) and integer \(c \)
 such that \((\exists x)(\forall y)\neg \Phi(x,y) \) holds if and only if some tile
 set of size at most \(c \) self-assembles \(S \).
Main idea (due to Adleman et al. STOC 2002):

- Given a tree shape (no simple cycles), it is possible to compute its minimum tile set in polynomial time.
- Create a tree shape \(\Upsilon \) that “encodes” \(\Phi \).
- Compute \(\Upsilon \)'s minimal tile set \(T \). (\(c = |T| \))
- Create shape \(S \supset \Upsilon \) such that
 - If \((\exists x)(\forall y) \neg \Phi(x,y) \), tiles from \(T \) can be altered to assemble \(S \).
 - Otherwise, tiles from \(T \) cannot be altered to assemble \(S \).
 - “Since \(\Upsilon \subseteq S \),” every tile set that assembles \(S \) contains \(T \), so if tiles from \(T \) cannot be altered to assemble \(S \) then additional tiles are needed; i.e., \(S \) requires more than \(c = |T| \) tile types.
Evaluation of Formula

- Order variables $w = w_1...w_n$ (both existential and universal variables) and clauses $C_1…C_m$ arbitrarily.
- Fix an assignment to variables.
- For each clause C_j and variable w_i, let a_{ij} be the pair (U/S, T/F) representing whether C_j is satisfied by w_k for $k \leq i$, and whether w_k is true or false.
- The matrix $A = (a_{ij})$ looks like

$$w = 0011$$
$$\Phi = (w_1 \lor w_3) \land (w_1 \lor w_2 \lor w_4) \land (\neg w_1 \lor w_2)$$

<table>
<thead>
<tr>
<th></th>
<th>C_3</th>
<th>SF</th>
<th>SF</th>
<th>ST</th>
<th>ST</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_2</td>
<td>UF</td>
<td>UF</td>
<td>UT</td>
<td>ST</td>
<td></td>
</tr>
<tr>
<td>C_1</td>
<td>UF</td>
<td>UF</td>
<td>ST</td>
<td>ST</td>
<td></td>
</tr>
<tr>
<td>w_1</td>
<td>w_2</td>
<td>w_3</td>
<td>w_4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

highlighting when C_i goes from unsatisfied (U) to satisfied (S)
For each variable w_i and clause C_j, value of $w_i = T/F$ and

$SS_{ij} - C_j$ satisfied by a previous variable (w_k for $k < i$)
$US_{ij} - C_j$ unsatisfied by previous variables but is satisfied by w_i
$UU_{ij} - C_j$ unsatisfied by previous variables and by w_i
$T_\gamma = \text{tile types to self-assemble } \gamma$; size $c = |T_\gamma|$

$(\exists x)(\forall y)\neg \Phi(x,y)$ is true \iff tiles in T_γ can be modified to self-assemble S
Open Questions

- How large is the gap between deterministic tile complexity and unrestricted tile complexity? Our example has ratio 3/2; Schweller (unpublished) improved to quadratic gap: https://faculty.utrgv.edu/robert.schweller/papers/TheGap.pdf

- Hardness of approximation of minimum tile set problem

- Minimum tile set problem when shape is a square
 - Deterministic case in \(P \); likely not \(\text{NP} \)-hard by Mahaney's theorem (no sparse set is \(\text{NP} \)-hard unless \(P=\text{NP} \))

- Weak self-assembly (pattern painting): paint some tile types “black”, and say “pattern assembled” is set of points with a black tile
 - Power of nondeterminism: is it possible to uniquely paint a pattern, but only by assembling more than one shape on which the pattern is painted?
Errors in algorithmic self-assembly
Errors in self-assembly

• abstract Tile Assembly Model (aTAM, the model we’ve used so far):
 • tiles attach but never detach
 • tiles bind only with strength 2 or higher
• unrealistic... what’s a better model?
• kinetic Tile Assembly Model (kTAM); essential differences with aTAM:
 • tiles can detach
 • tiles can bind with strength 1
Modeling errors: kinetic Tile Assembly Model

• All tiles attach with rate r_f (no matter how many glues match)
• Tiles detach with rate $r_{r,b}$, if they are attached by total glue strength b
• “rate” = time until it occurs is exponential random variable with that rate; expected time $1/rate$
 • a.k.a., continuous time Markov process
• Take home message: tiles bound with fewer glues (potential errors) fall off faster, but could get locked in by subsequent neighboring attachment

main cause of algorithmic errors: tile matches one glue but not the other
kTAM simulators

- ISU TAS (developed by Matt Patitz) also does kTAM simulation:

- xgrow (developed by Erik Winfree)
 - https://www.dna.caltech.edu/Xgrow/
 - older and a bit less intuitive
Tradeoff between assembly speed and errors

- Attach rate r_f can be controlled through concentrations
 - "Energy" of attachment is called G_{mc} (monomer concentration): $r_f \propto e^{-G_{mc}}$

- Detach rate $r_{r,b}$ can be controlled through temperature
 - "Energy" of detachment is called G_{se} (sticky end): $r_{r,b} \propto e^{-b \cdot G_{se}}$

- Intuitively, setting $r_f \approx r_{r,2}$ is like "temperature $\tau = 2$" assembly
 - ... but with net zero growth rate
 - Make r_f a little larger, and growth is faster, but error rates go up

Theorem [Winfree, 1998]: To have total error rate ε, for fastest assembly speed, set $G_{se} = \ln(4/\varepsilon)$ and $G_{mc} = \ln(8/\varepsilon^2)$, i.e., $G_{mc} = 2G_{se} - \ln 2$, i.e., $r_f/r_{r,2} = 2$
Proofreading: Algorithmic error correction

$k \times k$ proofreading: replace each tile with all strength-1 glues by a $k \times k$ block of tiles:

Tile X ⇒ 2×2 block X (4 tiles)

- Glues internal to the block all unique
- Glues external to the block come in k versions that each represent an original glue

Proposition: No tiling of the $k \times k$ region with “consistent external glues” (all represent the same glue in original tile set) has m mismatches, where $0 < m < k$, i.e., if any mismatch occurs, then at least k mismatches occur before the $k \times k$ block can be completed to represent the wrong external glue.

Theorem(ish): If the error rate of the original tile system is ε, the error rate of the $k \times k$ proofreading tile system is $O(\varepsilon^k)$, e.g., if $\varepsilon = 0.01$, then 2×2 proofreading gets error rate about $\varepsilon^2 = 0.0001$.
Experimental algorithmic self-assembly
Crystals that think about how they’re growing

joint work with Damien Woods, Erik Winfree, Cameron Myhrvold, Joy Hui, Felix Zhou, Peng Yin

slides for ECS 232: Theory of Molecular Computation
Diverse and robust molecular algorithms using reprogrammable DNA self-assembly.
Damien Woods†, David Doty†, Cameron Myhrvold, Joy Hui, Felix Zhou, Peng Yin, Erik Winfree.
Nature 2019. †These authors contributed equally.
Hierarchy of abstractions

Bits: Boolean circuits compute
Tiles: Tile growth implements circuits
DNA: DNA strands implement tiles
Harmonious arrangement

a.k.a. sorting
Odd bits

a.k.a. parity

move 1’s to here
Parity
Circuit model

Gate: function with two input bits i_1, i_2 and two output bits o_1, o_2

<table>
<thead>
<tr>
<th>i_1</th>
<th>i_2</th>
<th>o_1</th>
<th>o_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Circuit model

7 rows in layer

one layer
Randomization: Each row may be assigned ≥ 2 gates, with associated probabilities, e.g., \(\Pr[g_{NN}] = \Pr[g_{XA}] = \frac{1}{2} \)
Circuit model

Programmer specifies layer: gates to go in each row

User gives n input bits

layers: 1 2 3
Example circuits with same gate in every row

COPY

![Copy Circuits Diagram](image)

SORTING

![Sorting Circuits Diagram](image)

Copy Gates

<table>
<thead>
<tr>
<th>i_1</th>
<th>i_2</th>
<th>o_1</th>
<th>o_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Sorting Gates

<table>
<thead>
<tr>
<th>i_1</th>
<th>i_2</th>
<th>o_1</th>
<th>o_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Example circuits with different gates in each row

Parity

Example 1:

| 011011₂ | 27₁₀ | 3·9 |

Example 2:

| 111011₂ | 59₁₀ | 3·19 + 2 |

MultipleOf3

Example 1:

011011₂ = 27₁₀ = 3·9

Example 2:

111011₂ = 59₁₀ = 3·19 + 2
Randomization: “Lazy” sorting

If 1 and 0 out of order, flip a coin to decide whether to swap them.

copy gate

sort gate
Deterministic circuits

Parity

- Yes

MultipleOf3

- No

Palindrome

- Yes

Theorem: Rule 110 can efficiently execute any algorithm.

[Cook, Complex Systems 2004]
[Neary, Woods, ICALP 2006]
Randomized circuits

LazyParity

RandomWalkingBit

DiamondsAreForever

FairCoin

use biased coin to simulate unbiased coin

$$\Pr = \frac{1}{2}$$

for any (positive) probabilities for the randomized gate
Hierarchy of abstractions

Bits: Boolean circuits compute

Tiles: Tile growth implements circuits

DNA: DNA strands implement tiles
Gates \rightarrow Tiles

A gate takes two input signals i_1 and i_2, and produces two output signals o_1 and o_2. The truth table for a particular gate is:

<table>
<thead>
<tr>
<th>i_1</th>
<th>i_2</th>
<th>o_1</th>
<th>o_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Each row of the truth table is encoded by a tile with 4 glues encoding bits.
How tiles compute while growing (algorithmic self-assembly)

“data-free” tile wraps top to bottom to form a tube

two glues match: cooperative binding

one mismatch

two mismatches
Hierarchy of abstractions

Bits: Boolean circuits compute
Tiles: Tile growth implements circuits
DNA: DNA strands implement tiles
DNA single-stranded tiles

Yin, Hariadi, Sahu, Choi, Park, LaBean, and Reif. *Programming DNA tube circumferences.* Science 2008
Single-stranded tiles for making any shape

Uniquely addressed self-assembly versus algorithmic

Unique addressing: each DNA “monomer” appears **exactly once** in final structure.

Algorithmic: DNA tiles are **reused** throughout the structure.

- **single DNA origami**
 - staple strand for position (4,2)

- **array of many DNA origamis**
 - origami for position (4,2)

- **uniquely-addressed tiles**
 - tile for position (4,2)
Single-stranded tile tubes

Seeded growth

DNA origami seed
single-stranded “input-adapter”
extensions encoding 6 input bits

need barrier to nucleation
(tile growth without seed);
[tile]=100 nM;
temperature=50.9°C

hold 8-48 hours

single-stranded tiles
implementing circuit gates

biotins where
output = 1

can later add streptavidin (5 nm wide protein) to bind biotins and visualize where the 1’s are
Tubes to ribbons

remove “seam” by strand displacement

AFM image

500 nm
DNA sequence design

Random sequences vs designed sequences

- More favorable energy distribution
- 1 domain vs 2 domains

Other goals:
- Low strand secondary structure
- Low interaction between strands
Bar-coding origami seed for imaging multiple samples at once

- Generate plate map
- Label with streptavidin
- Some staples of origami seed have version with a biotin
- Represents some combination of circuit and input, e.g., 013 = “parity circuit, input=011010”
Experimental protocol

To execute circuit γ on input $x \in \{0,1\}^*$:

- Mix
 - origami seed (bar-coded to identify γ and x)
 - “adapter” strands encoding x
 - tiles computing γ

- Anneal 90° C to 50.9° C in 1 hour (origami seeds form)
- Hold at 50.9° C for 1-2 days (tiles grow tubes from seed)
 - Add “unzipper” strands (remove seam to convert tube to ribbon)
 - Add “guard” strands (complements of output sticky ends, to deactivate tiles)
 - Deposit on mica, buffer wash, add streptavidin, AFM
def test_parity():
 actual = parity('100101')
 expected =
 assertEquals(expected, actual)
LAZY PARITY

LEADER ELECTION

LAZY SORTING

RANDOM WALKING BIT

WAVES

ABSORBING RANDOM WALKING BIT
Random walker absorbs to top/bottom
FairCoin

Unbiasing a biased coin

<table>
<thead>
<tr>
<th>$p = 0.5$</th>
<th>no</th>
<th>yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 0 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 1 1 0 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 1 1 0 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 1 1 0 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$p = 0.9$</th>
<th>no</th>
<th>yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 0 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 1 1 0 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 1 1 0 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 1 1 0 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$p = 0.1$</th>
<th>no</th>
<th>yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 0 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 1 1 0 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 1 1 0 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 1 1 0 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rule110

Simulation of a cellular automaton

![Graph showing probability of result vs bias and barcode](image)
Is there a 64-counter?

No!
Proof by Tristan Stérin, Maynooth University
Consequence of following theorem:
No Boolean function computes an odd permutation if some output bit does not depend on all input bits.
Parity tested on all inputs

$2^6 = 64$ inputs with 6 bits

32 inputs with even # of 1’s

32 inputs with odd # of 1’s

We used all 355 tiles in some experiment, so we’ve verified “all tiles work”.

For 14 circuits, every tile for that circuit was used for some input, verifying all gate tiles work “together”.

$\sigma(6$-bit input$) = 3$-digit barcode representing that input

150 nm
error statistics:

seeding fraction: 61% of origami seeds have tile growth into a tube

error rate: 0.03% ± 0.0008 per tile attachment
(1,419 observed errors out of an estimated 4,600,351 tile attachments, comparable to best previous algorithmic self-assembly experiments)
What did we learn?

A small(ish) library of molecules can be reprogrammed to self-assemble reliably into many complex patterns, by processing information as they grow.

Contrasting with other self-assembly work:

- **more algorithmic control** than periodic self-assembly
 - 2D tile lattices (Winfree et al., *Nature* 1998)
 - 1D tile tubes (Yin et al., *Science* 2008)

- **fewer types of DNA strands** required than uniquely-addressed self-assembly
 - hard-coded tile lattice (Wei et al., *Nature* 2012)

- **order of magnitude more tile types available** than previous algorithmic self-assembly
 - double-crossover tile lattices
 - (Fujibayashi et al., *Nano Letters* 2008)
 - (Barish et al., *PNAS* 2009)
 - (Evans, Ph.D. thesis 2014)
Next big challenge: **Algorithmically control shape**

We “drew” interesting patterns on a boring shape (infinite rectangle)

Can we run algorithms to **grow interesting shapes**?

Theorem: There is a single set T of tile types, so that, for any finite shape S, from an appropriately chosen seed σ_S “encoding” S, T self-assembles S.

These tiles are **universally programmable** for building any shape.