DNA sequence design

slides © 2021, David Doty

ECS 232: Theory of Molecular Computation, UC Davis
Two layers of abstraction in DNA nanotech

DNA strands with abstract “binding domains”

DNA sequences

ACATC CATTCTACCATACTCTTTCTT

CATTCTACCATACTCTTTCTT

TGTAG GTAAGATGGTGATGAGAAAGAA
Two layers of abstraction in DNA nanotech

DNA strands with abstract “binding domains”

This describes ideally how we **want** strands to bind.
Two layers of abstraction in DNA nanotech

DNA strands with abstract “binding domains”

How to design DNA sequences to achieve “ideal” binding?

This describes ideally how we want strands to bind.
DNA sequence design

bad choice of DNA sequence

GGCCG GCCGTTTTTCCGGCCGGCCAAT

t d
DNA sequence design

bad choice of DNA sequence

most likely structure

GGCCG GCCGGTTTTTCCGGCCGGCCAAT

CCGGCCGCGCAAAT

GGCCGGCCGG
DNA sequence design

Why is this bad?
If we want the strand to bind to other strands, it first has to break up its own structure. i.e., effective binding rate/strength is lowered.
Common DNA sequence design goals: **What to avoid**

- Excessive secondary structure of strands
Common DNA sequence design goals: **What to avoid**

- Excessive secondary structure of strands
- Significant interaction between non-complementary domains
Common DNA sequence design goals: **What to avoid**

- Excessive secondary structure of strands

- Significant interaction between non-complementary domains

- Certain string-based rules, e.g.
 - some patterns such as GGGG (forms “G-tetraplex”: https://www.idtdna.com/pages/education/decoded/article/g-repeats-structural-challenges-for-oligo-design)
 - > 70 % or < 30% G/C content (G/C binds more strongly)
 - domains ending in A/T (they “breathe” more)

- And often other constraints
DNA energy models

How do we predict what structures DNA strands are likely to form?
DNA duplex energy model (simple versions)

• How strongly does a DNA strand bind to its perfect complement?
DNA duplex energy model (simple versions)

• How strongly does a DNA strand bind to its perfect complement?

• 1st approximation: proportional to length:
 • $\Delta G(5’\text{-AAGTTAC-3’},$
 $3’\text{-TTCCAATG-5’}) = 1+1+1+1+1+1+1+1 = 8$
DNA **duplex** energy model (simple versions)

• How strongly does a DNA strand bind to its **perfect complement**?

• **1st approximation**: proportional to length:
 • $\Delta G(5'-\text{AAGTTAC-3'},$

 $3'-\text{TTCCAATG-5'}) = 1+1+1+1+1+1+1+1 = 8$

• **2nd approximation**: depends on base pair:
 • G/C about twice as strong as A/T
 • $\Delta G(5'-\text{AAGTTAC-3'},$

 $3'-\text{TTCCAATG-5'}) = 1+1+2+2+1+1+1+2 = 11$
DNA duplex energy model (simple versions)

• How strongly does a DNA strand bind to its perfect complement?

• 1st approximation: proportional to length:
 • $\Delta G(5'-AAGTTAC-3', 3'-TTCCAATG-5') = 1+1+1+1+1+1+1+1 = 8$

• 2nd approximation: depends on base pair:
 • G/C about twice as strong as A/T
 • $\Delta G(5'-AAGTTAC-3', 3'-TTCCAATG-5') = 1+1+2+2+1+1+1+2 = 11$

• 3rd approximation: nearest neighbor model (used in practice):
 • depends on base pair, and on the neighboring base pairs
Why do the neighbors matter?

Much of DNA stability is not from base pair (formed by hydrogen bonds) but from “stacking” interactions between adjacent bases.

Why do the neighbors matter?

Much of DNA stability is not from base pair (formed by hydrogen bonds) but from “stacking” interactions between adjacent bases.

Why do the neighbors matter?

Much of DNA stability is not from base pair (formed by hydrogen bonds) but from “stacking” interactions between adjacent bases.

Nearest neighbor energy model

\[\Delta G_{\text{init}} = \text{penalty for bringing together two strands (TODO: maybe not... not explained in paper) (different terms if end is C/G or A/T)} \]

\[\Delta G^\circ_{37}(\text{pred.}) = \Delta G^\circ(\text{CG/GC}) + \Delta G^\circ(\text{GT/CA}) + \Delta G^\circ(\text{TT/AA}) \]

\[+ \Delta G^\circ(\text{TG/AC}) + \Delta G^\circ(\text{GA/CT}) + \Delta G^\circ(\text{init.}) \]

\[= -2.17 - 1.44 - 1.00 - 1.45 - 1.30 + 0.98 + 1.03 \]

\[\Delta G^\circ_{37}(\text{pred.}) = -5.35 \text{ kcal/mol} \]

\[\Delta G^\circ_{37}(\text{obs.}) = -5.20 \text{ kcal/mol} \]

[A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics, John SantaLucia Jr., PNAS 1998]
Energy of non-duplex secondary structures

What about DNA strands that are not perfectly complementary, but *some* bases match?
Energy of **non-duplex** secondary structures

What about DNA strands that are not perfectly complementary, but *some* bases match?

Definition: A secondary structure of a set of DNA strands is a set of base pairs among complementary bases. Formally, it is a *matching* on the graph $G=(V,E)$, where $V = \{ \text{bases in each strand} \}$, $E = \{ \{u,v\} \mid \{u,v\} = \{A,T\} \text{ or } \{u,v\} = \{G,C\} \}$.
Energy of **non-duplex** secondary structures

What about DNA strands that are not perfectly complementary, but *some* bases match?

Definition: A secondary structure of a set of DNA strands is a set of base pairs among complementary bases. Formally, it is a *matching* on the graph $G=(V,E)$, where $V = \{ \text{bases in each strand} \}$

$E = \{ \{u,v\} \mid \{u,v\} = \{A,T\} \text{ or } \{u,v\} = \{G,C\} \}$

Definition: A secondary structure is **unpseudoknotted** (with respect to a particular circular ordering of the strands) if, drawing strands in 5'–3' order in a *circle* and connecting the base pairs by *straight lines*, no lines cross.

unpseudoknotted:

sometimes drawn with strands straight and base pairs as curved arcs:
Energy of **non-duplex** secondary structures

What about DNA strands that are not perfectly complementary, but *some* bases match?

Definition: A secondary structure of a set of DNA strands is a set of base pairs among complementary bases. Formally, it is a *matching* on the graph $G = (V,E)$, where $V = \{\text{bases in each strand}\}$, $E = \{\{u,v\} | \{u,v\} = \{A,T\} \text{ or } \{u,v\} = \{G,C\}\}$

Definition: A secondary structure is unpseudoknotted (with respect to a particular circular ordering of the strands) if, drawing strands in 5'-3' order in a *circle* and connecting the base pairs by *straight lines*, no lines cross.

definition: A secondary structure is unpseudoknotted (with respect to a particular circular ordering of the strands) if, drawing strands in 5'-3' order in a circle and connecting the base pairs by straight lines, no lines cross.

unpseudoknotted:
sometimes drawn with strands straight and base pairs as curved arcs:

circular:

Definition: A secondary structure is pseudoknotted if the above conditions are not met.

pseudoknots:
sometimes drawn with strands straight and base pairs as curved arcs:
Equivalent definitions of unpseudoknotted

Definition 1: Drawing strands in 5’-3’ order in a *circle* and connecting the base pairs by *straight lines*, no lines cross.
Equivalent definitions of unpseudoknotted

Definition 1: Drawing strands in 5’-3’ order in a circle and connecting the base pairs by straight lines, no lines cross.

Definition 2: Base pair indices obey the nesting property: there are no base pairs \((a,b) \in \mathbb{N}^2\) and \((x,y) \in \mathbb{N}^2\) such that \(a < x < b < y\) (e.g., it can be \(a < b < x < y\) or \(a < x < y < b\))
Equivalent definitions of unpseudoknotted

Definition 1: Drawing strands in 5’-3’ order in a circle and connecting the base pairs by straight lines, no lines cross.

Definition 2: Base pair indices obey the nesting property: there are no base pairs \((a,b) \in \mathbb{N}^2\) and \((x,y) \in \mathbb{N}^2\) such that \(a < x < b < y\) (e.g., it can be \(a < b < x < y\) or \(a < x < y < b\)).

Definition 3: Balanced parentheses describe base pairs in dot-parens (a.k.a., dot-bracket) notation.
Equivalent definitions of unpseudoknotted

Definition 1: Drawing strands in 5’-3’ order in a *circle* and connecting the base pairs by *straight lines*, no lines cross.

Definition 2: Base pair indices obey the *nesting property*: there are no base pairs \((a,b) \in \mathbb{N}^2\) and \((x,y) \in \mathbb{N}^2\) such that \(a < x < b < y\) (e.g., it can be \(a < b < x < y\) or \(a < x < y < b\)).

Definition 3: Balanced parentheses describe base pairs in *dot-parens* (a.k.a., *dot-bracket*) notation.

- **((......))....(((......)))**
- **((......[[[]]])....[[]])..**
Equivalent definitions of unpseudoknotted

Definition 1: Drawing strands in 5'-3' order in a *circle* and connecting the base pairs by *straight lines*, no lines cross.

Definition 2: Base pair indices obey the **nesting property**: there are no base pairs \((a, b) \in \mathbb{N}^2\) and \((x, y) \in \mathbb{N}^2\) such that \(a < x < b < y\) (e.g., it can be \(a < b < x < y\) or \(a < x < y < b\)).

Definition 3: Balanced parentheses describe base pairs in *dot-parens* (a.k.a., *dot-bracket*) notation.

Definition 4: The graph \(G = (V, E)\) is *outerplanar*, where \(V = \{\text{bases in each strand}\}\) and \(E = \{\{u, v\} \mid \{u, v\} \text{ are a paired base pair, or }\{u, v\} \text{ are adjacent}\}\).

Outerplanar = can be drawn with no edges crossing (planar), and all vertices incident to the outer face.

pseudoknotted: need multiple parenthesis types to describe

outerplanar

not outerplanar
Back to first approximation of energy model

• (For now, consider only one strand.)

• Given a DNA sequence S, what is the maximum number of base pairs that can be formed in any unpseudoknotted secondary structure?
Back to first approximation of energy model

• (For now, consider only one strand.)

• Given a DNA sequence S, what is the maximum number of base pairs that can be formed in any unpseudoknotted secondary structure?
 • Without unpseudoknotted constraint, this is trivial: $\min(\#C, \#G) + \min(\#A, \#T)$
Back to first approximation of energy model

• (For now, consider only one strand.)

• Given a DNA sequence S, what is the maximum number of base pairs that can be formed in any unpseudoknotted secondary structure?
 • Without unpseudoknotted constraint, this is trivial: $\min(#C,#G) + \min(#A,#T)$

• Can be taken as a rough approximation of the minimum free energy structure of S, i.e., the most probable structure “at thermodynamic equilibrium” (what you’d see if you heat it up and slowly cool it).
Computing maximally bound unpseudoknotted secondary structure in polynomial time

Recursive solution:
- Strand length is n.
- For $1 \leq i < j \leq n$, let $\text{OPT}(i,j) = \text{max base pairs possible using only bases } i \text{ through } j$.
Computing maximally bound unpseudoknotted secondary structure in polynomial time

pair \(j \) with another base or not?

Recursive solution:
- Strand length is \(n \).
- For \(1 \leq i < j \leq n \), let \(\text{OPT}(i,j) = \max \text{ base pairs possible using only bases } i \text{ through } j \).
- Question: do we pair base \(j \) with some other base between \(i \) and \(j-1 \)?
Computing maximally bound unpseudoknotted secondary structure in polynomial time

pair j with another base or not?

Recursive solution:
• Strand length is n.
• For $1 \leq i < j \leq n$, let $\text{OPT}(i,j) = \text{max base pairs possible using only bases } i \text{ through } j$.
• Question: do we pair base j with some other base between i and $j-1$?
• If not, recursively, the optimal value is:
 • $\text{OPT}(i,j) = \text{OPT}(i,j-1)$
Computing maximally bound unpseudoknotted secondary structure in polynomial time

Recursive solution:
- Strand length is \(n \).
- For \(1 \leq i < j \leq n \), let \(\text{OPT}(i,j) = \max \text{ base pairs possible using only bases } i \text{ through } j \).
- **Question**: do we pair base \(j \) with some other base between \(i \) and \(j-1 \)?
 - If **not**, recursively, the optimal value is:
 - \(\text{OPT}(i,j) = \text{OPT}(i,j-1) \)
 - If we pair \(j \) with \(k \), **nesting property** implies no base pair can form between any base in \([i,... k-1]\) and any base in \([k+1,j-1]\)
Computing maximally bound unpseudoknotted secondary structure in polynomial time

Recursive solution:
• Strand length is n.
• For $1 \leq i < j \leq n$, let $OPT(i,j) = \max$ base pairs possible using only bases i through j.
• Question: do we pair base j with some other base between i and $j–1$?
• If not, recursively, the optimal value is:
 • $OPT(i,j) = OPT(i,j–1)$
• If we pair j with k, nesting property implies no base pair can form between any base in $[i,... k–1]$ and any base in $[k+1,j–1]$
• Recursively, optimal value depends on:
 • $OPT(i,k–1)$ and $OPT(k+1,j–1)$
Computing maximally bound unpseudoknotted secondary structure in polynomial time

Recursive solution:
- Strand length is \(n \).
- For \(1 \leq i < j \leq n \), let \(\text{OPT}(i,j) = \text{max base pairs possible using only bases } i \text{ through } j \).
- **Question**: do we pair base \(j \) with some other base between \(i \) and \(j-1 \)?
- If **not**, recursively, the optimal value is:
 - \(\text{OPT}(i,j) = \text{OPT}(i,j-1) \)
- If we pair \(j \) with \(k \), **nesting property** implies no base pair can form between any base in \([i,...,k-1]\) and any base in \([k+1,j-1]\)
- Recursively, optimal value depends on:
 - \(\text{OPT}(i,k-1) \) and \(\text{OPT}(k+1,j-1) \)

Recursive algorithm (implement w/ dynamic programming):
\[
\text{OPT}(i,j) = \text{max of:}
\]
- pair \(j \) with another base or not?
Computing maximally bound unpseudoknotted secondary structure in polynomial time

Recursive solution:
- Strand length is n.
- For $1 \leq i < j \leq n$, let $\text{OPT}(i,j) = \max$ base pairs possible using only bases i through j.
- **Question**: do we pair base j with some other base between i and $j-1$?
- If not, recursively, the optimal value is:
 - $\text{OPT}(i,j) = \text{OPT}(i,j-1)$
- If we pair j with k, **nesting property** implies no base pair can form between any base in $[i, \ldots, k-1]$ and any base in $[k+1, j-1]$
- Recursively, optimal value depends on:
 - $\text{OPT}(i,k-1)$ and $\text{OPT}(k+1,j-1)$

Recursive algorithm (implement w/ dynamic programming):
$\text{OPT}(i,j) = \max$ of:
- $\text{OPT}(i,j-1)$, \hspace{1cm} // don’t form base pair with j
- $\text{OPT}(i,k-1)$ and $\text{OPT}(k+1,j-1)$
Computing maximally bound unpseudoknotted secondary structure in polynomial time

Recursive solution:
- Strand length is n.
- For $1 \leq i < j \leq n$, let $OPT(i,j) = \text{max base pairs possible using only bases } i \text{ through } j$.
- Question: do we pair base j with some other base between i and $j−1$?
- If not, recursively, the optimal value is:
 - $OPT(i,j) = OPT(i,j−1)$
- If we pair j with k, nesting property implies no base pair can form between any base in $[i, \ldots, k−1]$ and any base in $[k+1, j−1]$.
- Recursively, optimal value depends on:
 - $OPT(i,k−1)$ and $OPT(k+1, j−1)$

Recursive algorithm (implement w/ dynamic programming):
$OPT(i,j) = \text{max of:}$
- $OPT(i,j−1)$, // don’t form base pair with j
- $\max_{i \leq k < j} 1 + OPT(i,k−1) + OPT(k+1, j−1)$ // form k,j base pair
Computing maximally bound unpseudoknotted secondary structure in polynomial time

Recursive solution:
- Strand length is n.
- For $1 \leq i < j \leq n$, let $\text{OPT}(i, j) = \text{max base pairs possible using only bases } i \text{ through } j$.
- Question: do we pair base j with some other base between i and $j-1$?
 - If not, recursively, the optimal value is:
 - $\text{OPT}(i, j) = \text{OPT}(i, j-1)$
 - If we pair j with k, nesting property implies no base pair can form between any base in $[i, \ldots, k-1]$ and any base in $[k+1, j-1]$
 - Recursively, optimal value depends on:
 - $\text{OPT}(i, k-1)$ and $\text{OPT}(k+1, j-1)$

Recursive algorithm (implement w/ dynamic programming):
$\text{OPT}(i, j) = \text{max of:}$
- $\text{OPT}(i, j-1)$, \hspace{1cm} // don’t form base pair with j
- $\max_{i \leq k < j} 1 + \text{OPT}(i, k-1) + \text{OPT}(k+1, j-1)$ \hspace{1cm} // form k, j base pair
- only if k and j are complementary bases
Computing maximally bound unpseudoknotted secondary structure in polynomial time

Recursive solution:
- Strand length is n.
- For $1 \leq i < j \leq n$, let $OPT(i,j) = \max$ base pairs possible using only bases i through j.
- Question: do we pair base j with some other base between i and $j-1$?
- If not, recursively, the optimal value is:
 - $OPT(i,j) = OPT(i,j-1)$
- If we pair j with k, nesting property implies no base pair can form between any base in $[i,...k-1]$ and any base in $[k+1,j-1]$.
- Recursively, optimal value depends on:
 - $OPT(i,k-1)$ and $OPT(k+1,j-1)$

Recursive algorithm (implement w/ dynamic programming):
$OPT(i,j) = \max$ of:
- $OPT(i,j-1)$, // don’t form base pair with j
- $\max_{i \leq k < j} 1 + OPT(i,k-1) + OPT(k+1,j-1)$ // form k,j base pair
- base case: $OPT(i,i) = 0$

Only if k and j are complementary bases
Computing maximally bound unpseudoknotted secondary structure in polynomial time

Recursive solution:
- Strand length is n.
- For $1 \leq i < j \leq n$, let $\text{OPT}(i,j) = \text{max base pairs possible using only bases } i \text{ through } j$.
- **Question:** do we pair base j with some other base between i and $j−1$?
- If **not**, recursively, the optimal value is:
 - $\text{OPT}(i,j) = \text{OPT}(i,j−1)$
- If we pair j with k, **nesting property** implies no base pair can form between any base in $[i, \ldots, k−1]$ and any base in $[k+1, j−1]$
- Recursively, optimal value depends on:
 - $\text{OPT}(i,k−1)$ and $\text{OPT}(k+1,j−1)$

Recursive algorithm (implement w/ dynamic programming):
- $\text{OPT}(i,j) = \text{max of:}$
 - $\text{OPT}(i,j−1)$, \hspace{2cm} // don’t form base pair with j
 - $\max_{i \leq k < j} 1 + \text{OPT}(i,k−1) + \text{OPT}(k+1,j−1)$ \hspace{1cm} // form k, j base pair
- **base case:** $\text{OPT}(i,i) = 0$
- **optimal value for whole strand** = $\text{OPT}(1,n)$
Computing maximally bound unpseudoknotted secondary structure in polynomial time

Recursive solution:
- Strand length is n.
- For $1 \leq i < j \leq n$, let $\text{OPT}(i,j) = \text{max base pairs possible using only bases } i \text{ through } j$.
- **Question:** do we pair base j with some other base between i and $j-1$?
- If **not**, recursively, the optimal value is:
 - $\text{OPT}(i,j) = \text{OPT}(i,j-1)$
- If we pair j with k, **nesting property** implies no base pair can form between any base in $[i, \ldots, k-1]$ and any base in $[k+1, j-1]$
- Recursively, optimal value depends on:
 - $\text{OPT}(i,k-1)$ and $\text{OPT}(k+1,j-1)$

Recursive algorithm (implement w/ dynamic programming):

\[
\text{OPT}(i,j) = \max \begin{cases}
\text{OPT}(i,j-1), & \text{// don't form base pair with } j \\
1 + \text{OPT}(i,k-1) + \text{OPT}(k+1,j-1), & \text{// form } k,j \text{ base pair} \\
\end{cases}
\]
- **base case:** $\text{OPT}(i,i) = 0$
- Optimal value for whole strand = $\text{OPT}(1,n)$

Running time:
- There are $O(n^2)$ subproblems: choices i,j with $1 \leq i < j \leq n$.

pair j with another base or not?
Computing maximally bound unpseudoknotted secondary structure in polynomial time

Recursive solution:
- Strand length is n.
- For $1 \leq i < j \leq n$, let $\text{OPT}(i,j) =$ max base pairs possible using only bases i through j.
- **Question**: do we pair base j with some other base between i and $j−1$?
 - If *not*, recursively, the optimal value is:
 - $\text{OPT}(i,j) = \text{OPT}(i,j−1)$
 - If we pair j with k, **nesting property** implies no base pair can form between any base in $[i,...,k−1]$ and any base in $[k+1,j−1]$
 - Recursively, optimal value depends on:
 - $\text{OPT}(i,k−1)$ and $\text{OPT}(k+1,j−1)$

Recursive algorithm (implement w/ dynamic programming):
- $\text{OPT}(i,j) =$ max of:
 - $\text{OPT}(i,j−1)$, // don’t form base pair with j
 - $\max_{i \leq k < j} 1 + \text{OPT}(i,k−1) + \text{OPT}(k+1,j−1)$ // form k,j base pair
- base case: $\text{OPT}(i,i) = 0$
- optimal value for whole strand = $\text{OPT}(1,n)$

Running time:
- There are $O(n^2)$ subproblems: choices i,j with $1 \leq i < j \leq n$.
- Each takes time $O(n)$ to search all values of k, so $O(n^3)$ total.
Computing maximally bound unpseudoknotted secondary structure in polynomial time

Recursive solution:
- Strand length is n.
- For $1 \leq i < j \leq n$, let OPT(i,j) = max base pairs possible using only bases i through j.
- Question: do we pair base j with some other base between i and $j−1$?
- If not, recursively, the optimal value is:
 - OPT(i,j) = OPT($i,j−1$)
- If we pair j with k, nesting property implies no base pair can form between any base in $[i,...,k−1]$ and any base in $[k+1,j−1]$
- Recursively, optimal value depends on:
 - OPT($i,k−1$) and OPT($k+1,j−1$)

Recursive algorithm (implement w/ dynamic programming):

OPT(i,j) = max of:
- OPT($i,j−1$), // don’t form base pair with j
- $\max_{i\leq k<j} 1 +$ OPT($i,k−1$) + OPT($k+1,j−1$) // form k,j base pair

base case: OPT(i,i) = 0

optimal value for whole strand = OPT($1,n$)

Running time:
There are $O(n^2)$ subproblems: choices i,j with $1 \leq i < j \leq n$.
Each takes time $O(n)$ to search all values of k, so $O(n^3)$ total.
Example of dynamic programming algorithm

strand sequence = ATTGATC
Example of dynamic programming algorithm

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>T</th>
<th>T</th>
<th>G</th>
<th>A</th>
<th>T</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>(j)</td>
<td>i=1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

strand sequence = ATTGATC
Example of dynamic programming algorithm

strand sequence = ATTGATC

<table>
<thead>
<tr>
<th>j/i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>2</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>3</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>4</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>5</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>6</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>7</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Example of dynamic programming algorithm

strand sequence = ATTGATC
Example of dynamic programming algorithm

<table>
<thead>
<tr>
<th>j/i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

strand sequence = ATTGATC

base cases
Example of dynamic programming algorithm

Strand sequence = ATTGATC

Base cases
Example of dynamic programming algorithm

strand sequence = ATTGATC

<table>
<thead>
<tr>
<th>j/i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

base cases
Example of dynamic programming algorithm

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>T</th>
<th>T</th>
<th>G</th>
<th>A</th>
<th>T</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>j/i</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>2</td>
<td>x</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>3</td>
<td>x</td>
<td>x</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>4</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>5</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>6</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>7</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

strand sequence = ATTGATC

base cases
Example of dynamic programming algorithm

<table>
<thead>
<tr>
<th>j/i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

strand sequence = ATTGATC

base cases
Example of dynamic programming algorithm

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>T</th>
<th>T</th>
<th>G</th>
<th>A</th>
<th>T</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>j/i</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>2</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>3</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
</tr>
<tr>
<td>G</td>
<td>4</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
</tr>
<tr>
<td>A</td>
<td>5</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
</tr>
<tr>
<td>T</td>
<td>6</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>7</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

strand sequence = ATTGATC

base cases
Example of dynamic programming algorithm

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>T</th>
<th>T</th>
<th>G</th>
<th>A</th>
<th>T</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>j/i</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>2</td>
<td>×</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>3</td>
<td>×××</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>4</td>
<td>×××</td>
<td>×××</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>5</td>
<td>×××</td>
<td>×××</td>
<td>×××</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>6</td>
<td>×××</td>
<td>×××</td>
<td>×××</td>
<td>×××</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>7</td>
<td>×××</td>
<td>×××</td>
<td>×××</td>
<td>×××</td>
<td>×××</td>
<td>0</td>
</tr>
</tbody>
</table>

strand sequence = ATTGATC

base cases
Example of dynamic programming algorithm

strand sequence = ATTGATC

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>T</th>
<th>T</th>
<th>G</th>
<th>A</th>
<th>T</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>j</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>2</td>
<td>X</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>3</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>4</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>5</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>6</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>7</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
</tr>
</tbody>
</table>

base cases

recursive cases with complementary bases
Example of dynamic programming algorithm

<table>
<thead>
<tr>
<th>j/i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T</td>
<td>2</td>
<td>✗</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T</td>
<td>3</td>
<td>✗ ✗</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G</td>
<td>4</td>
<td>✗ ✗ ✗</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A</td>
<td>5</td>
<td>✗ ✗ ✗ ✗</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T</td>
<td>6</td>
<td>✗ ✗ ✗ ✗ ✗ ✗</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>7</td>
<td>✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

strand sequence = ATTGATC

- **base cases**
- **recursive cases with complementary bases**
Example of dynamic programming algorithm

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>T</th>
<th>T</th>
<th>G</th>
<th>A</th>
<th>T</th>
<th>C</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>2</td>
<td></td>
<td></td>
<td>X</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>3</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>4</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>5</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
</tr>
<tr>
<td>T</td>
<td>6</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>C</td>
<td>7</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

strand sequence = ATTAGATC

- base cases
- recursive cases with complementary bases
- recursive cases without complementary bases
Example of dynamic programming algorithm

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>T</th>
<th>T</th>
<th>G</th>
<th>A</th>
<th>T</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>j</td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Base cases

Recursive cases with complementary bases

Recursive cases without complementary bases

Strand sequence =

ATTGATC
Example of dynamic programming algorithm

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>T</th>
<th>T</th>
<th>G</th>
<th>A</th>
<th>T</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i)</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

strand sequence = ATTGATC

- base cases
- recursive cases with complementary bases
- recursive cases without complementary bases
Example of dynamic programming algorithm

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>T</th>
<th>T</th>
<th>G</th>
<th>A</th>
<th>T</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>j/i</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>2</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>3</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>4</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>5</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>6</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>7</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

strand sequence =

ATTGATC

- **base cases**
- **recursive cases with complementary bases**
- **recursive cases without complementary bases**
Example of dynamic programming algorithm

strand sequence = ATTGATC

<table>
<thead>
<tr>
<th>j\i</th>
<th>A</th>
<th>T</th>
<th>T</th>
<th>G</th>
<th>A</th>
<th>T</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Example of dynamic programming algorithm

<table>
<thead>
<tr>
<th>j (i)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

strand sequence = ATTGATC

- **base cases**
- **recursive cases with complementary bases**
- **recursive cases without complementary bases**
Example of dynamic programming algorithm

<table>
<thead>
<tr>
<th>j (\backslash i)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

strand sequence = \textbf{ATTGATC}

- **Base cases**
- **Recursive cases with complementary bases**
- **Recursive cases without complementary bases**
Example of dynamic programming algorithm

<table>
<thead>
<tr>
<th>(j/i)</th>
<th>A</th>
<th>T</th>
<th>T</th>
<th>G</th>
<th>A</th>
<th>T</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

strand sequence = ATTGATC

base cases

recursive cases with complementary bases

recursive cases without complementary bases
Example of dynamic programming algorithm

<table>
<thead>
<tr>
<th>(j/i)</th>
<th>A</th>
<th>T</th>
<th>T</th>
<th>G</th>
<th>A</th>
<th>T</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

strand sequence = ATTGATC
Example of dynamic programming algorithm

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>T</th>
<th>T</th>
<th>G</th>
<th>A</th>
<th>T</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>j/i</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>2</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
</tr>
<tr>
<td>T</td>
<td>3</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
</tr>
<tr>
<td>G</td>
<td>4</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
</tr>
<tr>
<td>A</td>
<td>5</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
</tr>
<tr>
<td>T</td>
<td>6</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
</tr>
<tr>
<td>C</td>
<td>7</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
</tr>
</tbody>
</table>

strand sequence = \text{ATTGATC}

- base cases
- recursive cases with complementary bases
- recursive cases without complementary bases
Example of dynamic programming algorithm

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>T</th>
<th>T</th>
<th>G</th>
<th>A</th>
<th>T</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

strand sequence = ATTGATC

- **Base cases**
- **Recursive cases with complementary bases**
- **Recursive cases without complementary bases**
Example of dynamic programming algorithm

<table>
<thead>
<tr>
<th>i</th>
<th>A</th>
<th>T</th>
<th>T</th>
<th>G</th>
<th>A</th>
<th>T</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>j</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>2</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>3</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>4</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>5</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>T</td>
<td>6</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>7</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
</tr>
</tbody>
</table>

strand sequence = **ATTGATC**

- **base cases**
- **recursive cases with complementary bases**
- **recursive cases without complementary bases**
Example of dynamic programming algorithm

strand sequence = ATTGATC

<table>
<thead>
<tr>
<th>(j) (i)</th>
<th>A</th>
<th>T</th>
<th>T</th>
<th>G</th>
<th>A</th>
<th>T</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
</tr>
</tbody>
</table>

- **base cases**
- **recursive cases with complementary bases**
- **recursive cases without complementary bases**
Example of dynamic programming algorithm

strand sequence = ATTGATC
Example of dynamic programming algorithm

strand sequence = ATTGATC

- **base cases**
- **recursive cases with complementary bases**
- **recursive cases without complementary bases**
Example of dynamic programming algorithm

<table>
<thead>
<tr>
<th>j(i)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>T</td>
<td>2</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>T</td>
<td>3</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>G</td>
<td>4</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>5</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>T</td>
<td>6</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>7</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
</tr>
</tbody>
</table>

strand sequence = ATTGATC

- **base cases**
- **recursive cases with complementary bases**
- **recursive cases without complementary bases**
Example of dynamic programming algorithm

<table>
<thead>
<tr>
<th>j\i</th>
<th>A</th>
<th>T</th>
<th>T</th>
<th>G</th>
<th>A</th>
<th>T</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>X</td>
<td>0</td>
<td>X</td>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>X</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

strand sequence = ATTGATC

- base cases
- recursive cases with complementary bases
- recursive cases without complementary bases
Example of dynamic programming algorithm

<table>
<thead>
<tr>
<th>j/i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>T</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>T</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>G</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>T</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

strand sequence = \text{ATTGATC}

base cases
recursive cases with complementary bases
recursive cases without complementary bases
Example of dynamic programming algorithm

strand sequence = ATTGATATC

<table>
<thead>
<tr>
<th>j/i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example of dynamic programming algorithm

<table>
<thead>
<tr>
<th>(\hat{j})</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>T</td>
<td>2</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>T</td>
<td>3</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>G</td>
<td>4</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>5</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>T</td>
<td>6</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>7</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

strand sequence = **ATTGATC**

- **base cases**
- **recursive cases with complementary bases**
- **recursive cases without complementary bases**
Example of dynamic programming algorithm

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>T</td>
<td>2</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>T</td>
<td>3</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>G</td>
<td>4</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>5</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>T</td>
<td>6</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>7</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

strand sequence = **ATTGATC**

- **Base cases**
- Recursive cases with complementary bases
- Recursive cases without complementary bases
Extensions to more realistic energy models

• base pairs on one strand must be separated by at least 4 other bases
Extensions to more realistic energy models

• base pairs on one strand must be separated by at least 4 other bases
 • base case switches from $\text{OPT}(i,i) = 0$ to $\text{OPT}(i,j)=0$ if $j-i \leq 4$
Extensions to more realistic energy models

• base pairs on one strand must be separated by at least 4 other bases
 • base case switches from $\text{OPT}(i,i) = 0$ to $\text{OPT}(i,j) = 0$ if $j-i \leq 4$
• G/C twice as strong as A/T?
Extensions to more realistic energy models

• base pairs on one strand must be separated by at least 4 other bases
 • base case switches from $OPT(i,i) = 0$ to $OPT(i,j)=0$ if $j–i \leq 4$

• G/C twice as strong as A/T?
 • $\max_{i \leq k < j} \left(1 \text{ if } k,j \text{ is A/T base pair, else } 2 \right) + OPT(i,k−1) + OPT(k+1,j−1)$
Extensions to more realistic energy models

• base pairs on one strand must be separated by at least 4 other bases
 • base case switches from $\text{OPT}(i,i) = 0$ to $\text{OPT}(i,j) = 0$ if $j-i \leq 4$

• G/C twice as strong as A/T?
 • $\max_{i \leq k < j} (1$ if k,j is A/T base pair, else $2) + \text{OPT}(i,k-1) + \text{OPT}(k+1,j-1)$

• nearest-neighbor interaction?
 • $\max_{i \leq k < j} (\text{more complex lookup here}) + \text{OPT}(i,k-1) + \text{OPT}(k+1,j-1)$
Extensions to more realistic energy models

- base pairs on one strand must be separated by at least 4 other bases
 - base case switches from $\text{OPT}(i,i) = 0$ to $\text{OPT}(i,j) = 0$ if $j-i \leq 4$
- G/C twice as strong as A/T?
 - $\max_{i \leq k < j} (1 \text{ if } k,j \text{ is A/T base pair, else } 2) + \text{OPT}(i,k-1) + \text{OPT}(k+1,j-1)$
- nearest-neighbor interaction?
 - $\max_{i \leq k < j} (\text{more complex lookup here}) + \text{OPT}(i,k-1) + \text{OPT}(k+1,j-1)$
- multiple strands?
 - a ΔG_{assoc} term for each strand beyond the first one
Extensions to more realistic energy models

• base pairs on one strand must be separated by at least 4 other bases
 • base case switches from $\text{OPT}(i,i) = 0$ to $\text{OPT}(i,j)=0$ if $j-i \leq 4$
• G/C twice as strong as A/T?
 • $\max_{i \leq k < j} (1 \text{ if } k,j \text{ is A/T base pair, else } 2) + \text{OPT}(i,k-1) + \text{OPT}(k+1,j-1)$
• nearest-neighbor interaction?
 • $\max_{i \leq k < j} \text{(more complex lookup here)} + \text{OPT}(i,k-1) + \text{OPT}(k+1,j-1)$
• multiple strands?
 • a ΔG_{assoc} term for each strand beyond the first one
• https://piercelab-caltech.github.io/nupack-docs/definitions/
Software to compute minimum free energy DNA structures

ViennaRNA
https://www.tbi.univie.ac.at/RNA/

NUPACK
http://www.nupack.org/

Free energy of secondary structure: -8.78 kcal/mol
What is “free energy”?

A way to express probability of seeing a structure, in units of energy (kcal/mol). Energy and probability are exponentially related.
What is “free energy”?

A way to express probability of seeing a structure, in units of energy (kcal/mol). Energy and probability are exponentially related.

- If \(S \) is a secondary structure, let \(\Pr[S] \) denote probability of seeing it (“at equilibrium”).
What is “free energy”?

A way to express probability of seeing a structure, in units of energy (kcal/mol). Energy and probability are exponentially related.

- If S is a secondary structure, let $Pr[S]$ denote probability of seeing it (“at equilibrium”).
- At fixed temperature, $\ln(Pr[S]) \approx \Delta G(S)$ (recall free energy $\Delta G(S)$ is negative)
What is “free energy”?

A way to express probability of seeing a structure, in units of energy (kcal/mol). Energy and probability are exponentially related.

• If S is a secondary structure, let $\text{Pr}[S]$ denote probability of seeing it (“at equilibrium”).
• At fixed temperature, $\ln(\text{Pr}[S]) \approx \Delta G(S)$ (recall free energy $\Delta G(S)$ is negative)
• Some constants: $\ln(\text{Pr}[S]) \approx \Delta G(S)/(RT)$, usually expressed as $\text{Pr}[S] \propto e^{-\Delta G(S)/(RT)}$

$T =$ temperature in K (Kelvin), $R =$ Boltzmann's constant ≈ 0.001987204 kcal/mol/K
What is “free energy”?

A way to express probability of seeing a structure, in units of energy (kcal/mol). Energy and probability are exponentially related.

- If S is a secondary structure, let $Pr[S]$ denote probability of seeing it (“at equilibrium”).
- At fixed temperature, $\ln(Pr[S]) \approx \Delta G(S)$ (recall free energy $\Delta G(S)$ is negative)
- Some constants: $\ln(Pr[S]) \approx \Delta G(S)/(RT)$, usually expressed as $Pr[S] \propto e^{-\Delta G(S)/(RT)}$
 - $T = \text{temperature in K (Kelvin)}, R = \text{Boltzmann's constant} \approx 0.001987204 \text{ kcal/mol/K}$
- To convert $e^{-\Delta G(S)/(RT)}$ to a probability, need to normalize so they sum to 1.
What is “free energy”?

A way to express **probability** of seeing a structure, in units of energy (kcal/mol). Energy and probability are *exponentially* related.

- If S is a secondary structure, let $\Pr[S]$ denote probability of seeing it (“at equilibrium”).
- At fixed temperature, $\ln(\Pr[S]) \approx \Delta G(S)$ (*recall free energy $\Delta G(S)$ is negative*)
- Some constants: $\ln(\Pr[S]) \approx \Delta G(S)/(RT)$, usually expressed as $\Pr[S] \propto e^{-\Delta G(S)/(RT)}$
 - $T =$ temperature in K (Kelvin), $R =$ Boltzmann's constant ≈ 0.001987204 kcal/mol/K
- To convert $e^{-\Delta G(S)/(RT)}$ to a probability, need to normalize so they sum to 1.
- For a DNA strand/set of DNA strands, let Ω denote set of all secondary structures.
What is “free energy”?

A way to express probability of seeing a structure, in units of energy (kcal/mol). Energy and probability are exponentially related.

- If S is a secondary structure, let $Pr[S]$ denote probability of seeing it (“at equilibrium”).
- At fixed temperature, $\ln(Pr[S]) \approx \Delta G(S)$ (recall free energy $\Delta G(S)$ is negative)
- Some constants: $\ln(Pr[S]) \approx \Delta G(S)/(RT)$, usually expressed as $Pr[S] \propto e^{-\Delta G(S)/(RT)}$

 $T = $ temperature in K (Kelvin), $R =$ Boltzmann's constant ≈ 0.001987204 kcal/mol/K
- To convert $e^{-\Delta G(S)/(RT)}$ to a probability, need to normalize so they sum to 1.
- For a DNA strand/set of DNA strands, let Ω denote set of all secondary structures.

Definition: The partition function of Ω is $Q = \sum_{S \in \Omega} e^{-\Delta G(S)/(RT)}$.
What is “free energy”?

A way to express probability of seeing a structure, in units of energy (kcal/mol). Energy and probability are exponentially related.

- If S is a secondary structure, let $Pr[S]$ denote probability of seeing it (“at equilibrium”).
- At fixed temperature, $\ln(Pr[S]) \approx \Delta G(S)$ (recall free energy $\Delta G(S)$ is negative)
- Some constants: $\ln(Pr[S]) \approx \Delta G(S)/(RT)$, usually expressed as $Pr[S] \propto e^{-\Delta G(S)/(RT)}$
 - T = temperature in K (Kelvin), R = Boltzmann’s constant ≈ 0.001987204 kcal/mol/K
- To convert $e^{-\Delta G(S)/(RT)}$ to a probability, need to normalize so they sum to 1.
- For a DNA strand/set of DNA strands, let Ω denote set of all secondary structures.

Definition: The partition function of Ω is $Q = \sum_{S \in \Omega} e^{-\Delta G(S)/(RT)}$.

For any secondary structure S, $Pr[S] = (1/Q) \cdot e^{-\Delta G(S)/(RT)}$.
Recall: For any secondary structure \(S \),
\[
\Pr[S] = \frac{1}{Q} \cdot e^{-\Delta G(S)/(RT)}
\]

Minimum free energy structure \(S \) is the most likely structure.
Minimum free energy versus complex free energy

Recall: For any secondary structure S,
$Pr[S] = \frac{1}{Q} \cdot e^{-\Delta G(S)/(RT)}$

Minimum free energy structure S is the most likely structure.

Problem: What if *most likely* structure S is *not very likely*?

$Pr[\text{structure}] = 0.2$, but

$Pr[\text{structure}] = Pr[\text{structure}] = Pr[\text{structure}]$

$= Pr[\text{structure}] = 0.199$
Minimum free energy versus complex free energy

Recall: For any secondary structure S, $\Pr[S] = (1/Q) \cdot e^{-\Delta G(S)/(RT)}$

Minimum free energy structure S is the **most likely** structure.

Problem: What if *most likely* structure S is *not very likely*?

$\Pr[\text{---}] = 0.2$, but $\Pr[\text{ }\hat{\text{}}\text{ }\text{ }] = 0.199$

This strand spends nearly 80% of its time bound.
Minimum free energy versus complex free energy

Recall: For any secondary structure S, $\Pr[S] = (1/Q) \cdot e^{-\Delta G(S)/(RT)}$

Minimum free energy structure S is the **most likely** structure.

Problem: What if *most likely* structure S is *not very likely*?

Solution: Consider energy of *all secondary structures at once*.

$\Pr[\text{---}] = 0.2$, but

$\Pr[\begin{smallmatrix} \text{ } \end{smallmatrix}] = \Pr[\begin{smallmatrix} \text{ } \end{smallmatrix}] = \Pr[\begin{smallmatrix} \text{ } \end{smallmatrix}]$

$= \Pr[\begin{smallmatrix} \text{ } \end{smallmatrix}] = 0.199$ **This strand spends nearly 80% of its time bound.**
Minimum free energy versus complex free energy

Recall: For any secondary structure S, $\Pr[S] = \frac{1}{Q} \cdot e^{-\Delta G(S)/(RT)}$

Problem: What if *most likely* structure S is not very likely?

Solution: Consider energy of *all secondary structures at once.*

$\Pr[] = 0.2$, but

$\Pr[] = \Pr[] = \Pr[]$

$= \Pr[] = 0.199$ This strand spends nearly 80% of its time bound.

Definition: The *complex free energy* of Ω is $\Delta G = -RT \ln Q$.

Intuitively captures how much we expect strand to be bound/structured: higher (closer to 0) means more unstructured.

https://piercelab-caltech.github.io/nupack-docs/definitions/#complex-free-energy
Minimum free energy versus complex free energy

Recall: For any secondary structure S, $\Pr[S] = \frac{1}{Q} \cdot e^{-\Delta G(S)/(RT)}$

Definition: The complex free energy of Ω is $\Delta G = -RT \ln Q$.

Intuitively captures how much we expect strand to be bound/structured: higher (closer to 0) means more unstructured.

Problem: What if most likely structure S is not very likely?

Solution: Consider energy of all secondary structures at once.

$\Pr[\text{structure}] = 0.2$, but

$\Pr[\text{structure}] = \Pr[\text{structure}] = \Pr[\text{structure}]$

$= \Pr[\text{structure}] = 0.199$ This strand spends nearly 80% of its time bound.

ΔG can also be computed in time $O(n^3)$.

https://piercelab-caltech.github.io/nupack-docs/definitions/#complex-free-energy
Example: DNA sequence design for single-stranded tiles

Given many single-stranded tiles with four domains each (lengths 10 and 11), assign DNA sequences to them satisfying:

Example: DNA sequence design for single-stranded tiles

Given many single-stranded tiles with four domains each (lengths 10 and 11), assign DNA sequences to them satisfying:

• ∀strands \(s \), \(\Delta G(s) \geq -1.65 \text{ kcal/mol} \)

Example: DNA sequence design for single-stranded tiles

Given many single-stranded tiles with four domains each (lengths 10 and 11), assign DNA sequences to them satisfying:

- \(\forall \text{strands } s, \Delta G(s) \geq -1.65 \text{ kcal/mol} \)
- \(\forall \text{strand pairs } s,t, \Delta G(s,t) \geq -5.4 \text{ kcal/mol if no complementary domains,} \)
 \(\geq -7.4 \text{ kcal/mol otherwise} \)

Example: DNA sequence design for single-stranded tiles

Given many single-stranded tiles with four domains each (lengths 10 and 11), assign DNA sequences to them satisfying:

• \(\forall \) strands \(s \), \(\Delta G(s) \geq -1.65 \text{ kcal/mol} \)

• \(\forall \) strand pairs \(s,t \), \(\Delta G(s,t) \geq -5.4 \text{ kcal/mol} \) if no complementary domains, \(\geq -7.4 \text{ kcal/mol} \) otherwise

• all domains end with A or T

Example: DNA sequence design for single-stranded tiles

Given many single-stranded tiles with four domains each (lengths 10 and 11), assign DNA sequences to them satisfying:

• \forall strands s, $\Delta G(s) \geq -1.65$ kcal/mol

• \forall strand pairs s,t, $\Delta G(s,t) \geq -5.4$ kcal/mol if no complementary domains, ≥ -7.4 kcal/mol otherwise

• all domains end with A or T

• all domains have nearest-neighbor duplex energy between -9.2 and -8.9 kcal/mol

Example: DNA sequence design for single-stranded tiles

Given many single-stranded tiles with four domains each (lengths 10 and 11), assign DNA sequences to them satisfying:

- \forall strands s, $\Delta G(s) \geq -1.65$ kcal/mol
- \forall strand pairs s, t, $\Delta G(s, t) \geq -5.4$ kcal/mol if no complementary domains, ≥ -7.4 kcal/mol otherwise
- all domains end with A or T
- all domains have nearest-neighbor duplex energy between -9.2 and -8.9 kcal/mol
- tiles with even subscript domains on top have at most one G per domain (helps to satisfy first constraint)

Example: DNA sequence design for single-stranded tiles

Given many single-stranded tiles with four domains each (lengths 10 and 11), assign DNA sequences to them satisfying:

- \forall strands s, $\Delta G(s) \geq -1.65$ kcal/mol
- \forall strand pairs s,t, $\Delta G(s,t) \geq -5.4$ kcal/mol if no complementary domains, ≥ -7.4 kcal/mol otherwise
- all domains end with A or T
- all domains have nearest-neighbor duplex energy between -9.2 and -8.9 kcal/mol
- tiles with even subscript domains on top have at most one G per domain (helps to satisfy first constraint)
- pairs of domains d_1,d_2 that could result in one-domain mismatches during tile binding have $\Delta G(d_1,d_2) \geq -1.6$ kcal/mol

DNA sequence design

• If we have DNA sequences, we can compute MFE/complex free energies of individual strands, pairs of strands, etc. in polynomial time.

• DNA sequence design problem: given abstract strands with abstract domains, assign concrete DNA sequences to the domains to satisfy a list of (experiment-specific) constraints.

• This is almost certainly \textbf{NP}-hard for any “reasonable” choice of constraints.
Stochastic local search for finding DNA sequences

https://github.com/UC-Davis-molecular-computing/nuad
Stochastic local search for finding DNA sequences

1. Assign DNA sequences randomly to domains.

https://github.com/UC-Davis-molecular-computing/nuad
Stochastic local search for finding DNA sequences

1. Assign DNA sequences randomly to domains.
 • Each domain has a fixed length.

https://github.com/UC-Davis-molecular-computing/nuad
Stochastic local search for finding DNA sequences

1. Assign DNA sequences randomly to domains.
 • Each domain has a fixed length.
 • Implicitly assign complement sequence to complement domains.

https://github.com/UC-Davis-molecular-computing/nuad
Stochastic local search for finding DNA sequences

1. Assign DNA sequences randomly to domains.
 - Each domain has a fixed length.
 - Implicitly assign complement sequence to complement domains.
 - “Easy” single-domain constraints such as [no GGGG] or [domains have A or T at each end] can be automatically satisfied at this step.

https://github.com/UC-Davis-molecular-computing/nuad
Stochastic local search for finding DNA sequences

1. Assign DNA sequences randomly to domains.
 - Each domain has a fixed length.
 - Implicitly assign complement sequence to complement domains.
 - “Easy” single-domain constraints such as \([\text{no GGGG}]\) or \([\text{domains have A or T at each end}]\)
 can be automatically satisfied at this step.
2. Check list of all constraints, tallying violations and “blaming” appropriate domains.

https://github.com/UC-Davis-molecular-computing/nuad
Stochastic local search for finding DNA sequences

1. Assign DNA sequences randomly to domains.
 • Each domain has a fixed length.
 • Implicitly assign complement sequence to complement domains.
 • “Easy” single-domain constraints such as [no GGGG] or [domains have A or T at each end] can be automatically satisfied at this step.

2. Check list of all constraints, tallying violations and “blaming” appropriate domains.
 • For example, if a strand s has too low $\Delta G(s)$, all domains on strand are blamed.

https://github.com/UC-Davis-molecular-computing/nuad
Stochastic local search for finding DNA sequences

1. Assign DNA sequences randomly to domains.
 • Each domain has a fixed length.
 • Implicitly assign complement sequence to complement domains.
 • “Easy” single-domain constraints such as [no GGGG] or [domains have A or T at each end] can be automatically satisfied at this step.

2. Check list of all constraints, tallying violations and “blaming” appropriate domains.
 • For example, if a strand s has too low $\Delta G(s)$, all domains on strand are blamed.

3. If no constraints violated, we’re done!

https://github.com/UC-Davis-molecular-computing/nuad
1. Assign DNA sequences randomly to domains.
 - Each domain has a fixed length.
 - Implicitly assign complement sequence to complement domains.
 - “Easy” single-domain constraints such as \([no GGGG]\) or \([domains have A or T at each end]\)
 can be automatically satisfied at this step.
2. Check list of all constraints, tallying violations and “blaming” appropriate domains.
 - For example, if a strand \(s\) has too low \(\Delta G(s)\), all domains on strand are blamed.
3. If no constraints violated, we’re done!
4. Otherwise, pick a domain \(d\) at random in proportion to total “score” of violations it caused.

https://github.com/UC-Davis-molecular-computing/nuad
Stochastic local search for finding DNA sequences

1. Assign DNA sequences randomly to domains.
 - Each domain has a fixed length.
 - Implicitly assign complement sequence to complement domains.
 - “Easy” single-domain constraints such as [no GGGG] or [domains have A or T at each end] can be automatically satisfied at this step.

2. Check list of all constraints, tallying violations and “blaming” appropriate domains.
 - For example, if a strand s has too low $\Delta G(s)$, all domains on strand are blamed.

3. If no constraints violated, we’re done!

4. Otherwise, pick a domain d at random in proportion to total “score” of violations it caused.

5. Assign new random DNA sequence to d.

https://github.com/UC-Davis-molecular-computing/nuad
Stochastic local search for finding DNA sequences

1. Assign DNA sequences randomly to domains.
 - Each domain has a fixed length.
 - Implicitly assign complement sequence to complement domains.
 - “Easy” single-domain constraints such as [no GGGG] or [domains have A or T at each end] can be automatically satisfied at this step.
2. Check list of all constraints, tallying violations and “blaming” appropriate domains.
 - For example, if a strand s has too low $\Delta G(s)$, all domains on strand are blamed.
3. If no constraints violated, we’re done!
4. Otherwise, pick a domain d at random in proportion to total “score” of violations it caused.
5. Assign new random DNA sequence to d.
 - This change propagates through to all instances of d and d^* on all strands.

https://github.com/UC-Davis-molecular-computing/nuad
Stochastic local search for finding DNA sequences

1. Assign DNA sequences randomly to domains.
 • Each domain has a fixed length.
 • Implicitly assign complement sequence to complement domains.
 • “Easy” single-domain constraints such as \([\text{no GGGG}]\) or \([\text{domains have A or T at each end}]\) can be automatically satisfied at this step.

2. Check list of all constraints, tallying violations and “blaming” appropriate domains.
 • For example, if a strand \(s\) has too low \(\Delta G(s)\), all domains on strand are blamed.

3. If no constraints violated, we’re done!

4. Otherwise, pick a domain \(d\) at random in proportion to total “score” of violations it caused.

5. Assign new random DNA sequence to \(d\).
 • This change propagates through to all instances of \(d\) and \(d^*\) on all strands.

6. Repeat step 2; if the new DNA sequence for \(d\) results in lower score of violations, keep it, otherwise, ignore it and pick a new random domain at step 4.

https://github.com/UC-Davis-molecular-computing/nuad
Stochastic local search for finding DNA sequences

1. Assign DNA sequences randomly to domains.
 • Each domain has a fixed length.
 • Implicitly assign complement sequence to complement domains.
 • “Easy” single-domain constraints such as \([\text{no GGGG}]\) or \([\text{domains have A or T at each end}]\)
 can be automatically satisfied at this step.
2. Check list of all constraints, tallying violations and “blaming” appropriate domains.
 • For example, if a strand \(s\) has too low \(\Delta G(s)\), all domains on strand are blamed.
3. If no constraints violated, we’re done!
4. Otherwise, pick a domain \(d\) at random in proportion to total “score” of violations it caused.
5. Assign new random DNA sequence to \(d\).
 • This change propagates through to all instances of \(d\) and \(d^*\) on all strands.
6. Repeat step 2; if the new DNA sequence for \(d\) results in lower score of violations, keep it,
 otherwise, ignore it and pick a new random domain at step 4.
7. Repeat until no constraints are violated.

https://github.com/UC-Davis-molecular-computing/nuad
Stochastic local search for finding DNA sequences

1. Assign DNA sequences randomly to domains.
 - Each domain has a fixed length.
 - Implicitly assign complement sequence to complement domains.
 - “Easy” single-domain constraints such as [no GGGG] or [domains have A or T at each end] can be automatically satisfied at this step.

2. Check list of all constraints, tallying violations and “blaming” appropriate domains.
 - For example, if a strand s has too low $\Delta G(s)$, all domains on strand are blamed.

3. If no constraints violated, we’re done!

4. Otherwise, pick a domain d at random in proportion to total “score” of violations it caused.

5. Assign new random DNA sequence to d.
 - This change propagates through to all instances of d and d^* on all strands.

6. Repeat step 2; if the new DNA sequence for d results in lower score of violations, keep it, otherwise, ignore it and pick a new random domain at step 4.

7. Repeat until no constraints are violated.

https://github.com/UC-Davis-molecular-computing/nuad

Slow and unclesver, but it works for any set of constraints.