scadnano
scriptable, web-based port of caDNAno
for designing DNA nanostructures

David Doty
University of California, Davis
joint work with Benjamin Lee, Tristan Stérin

FNANO 2020: Foundations of Nanoscience virtual conference, April 2020
Acknowledgements

co-developers:

Benjamin Lee
undergraduate CS student, UC-Davis

Tristan Stéрин
Ph.D. student, Maynooth University

beta-tester:

Matt Patitz
Associate Professor, University of Arkansas
What is scadnano?

• web application: scadnano.org

• *scriptable-*caDNAno

• If you know caDNAno, it’s like that, except...
 • browser-based, so *no installation necessary*
 • scriptable: comes with *well-documented scripting library* (Python) for creating and modifying DNA structure designs *programmatically*

• If you don’t know caDNAno... scadnano is a program to design DNA nanostructures, with an overall goal of being *easy to use.*
Comparison with other DNA design software

<table>
<thead>
<tr>
<th>software</th>
<th>main goal</th>
<th>other goals</th>
</tr>
</thead>
<tbody>
<tr>
<td>scadnano</td>
<td>design DNA structures (parallel helices)</td>
<td>ease of installation and use, easy to script, easy to edit manually</td>
</tr>
<tr>
<td>cadnano</td>
<td>design DNA structures (parallel helices)</td>
<td></td>
</tr>
<tr>
<td>codenano</td>
<td>design DNA structures (no parallel constraint)</td>
<td>predict 3D structure of DNA from its secondary structure, (only scripting; no manual editing)</td>
</tr>
<tr>
<td>Adenita</td>
<td>design DNA structures (no parallel constraint)</td>
<td>modular reuse</td>
</tr>
<tr>
<td>ATHENA</td>
<td>design DNA structures (no parallel constraint)</td>
<td>edges connecting parts of structure are rigid, six-helix bundle (6HB) or more compliant, two-helix bundle (2HB or DX)</td>
</tr>
<tr>
<td>MrDNA</td>
<td>predict 3D structure of DNA from its secondary structure</td>
<td>predict kinetics</td>
</tr>
<tr>
<td>CanDo</td>
<td>predict 3D structure of DNA from its secondary structure</td>
<td></td>
</tr>
<tr>
<td>NUPACK/Vienna RNA</td>
<td>analyze thermodynamic energy of DNA strands</td>
<td>design sequences with prescribed energetics</td>
</tr>
<tr>
<td>oxDNA</td>
<td>predict kinetics of DNA by molecular dynamics simulation</td>
<td></td>
</tr>
</tbody>
</table>
web interface
Other features

• features shared with cadnano v2:
 • import/export cadnano files (v. 2/2.2, not yet v. 2.5)
 • export SVG figures
 • export DNA sequences in CSV file
 • square/honeycomb grids
 • visualize backbone angle for help placing crossovers

• scadnano features not found in cadnano v2:
 • export DNA sequences in Excel and text files readable by IDTDNA
 • cut/copy/paste strands
 • saves DNA assignment in file
 • can hide certain helices to help with 3D design
 • loopouts (single-stranded DNA not on any helix)

• DNA modifications (e.g., biotin, fluorophore)
• well-documented Python scripting library
• easily-readable file format
• gridless helix placement
Hiding helices
Easily readable file format

helpful when debugging Python scripts
```
import scadnano as sc

def main():
    design = precursor_scaffolds()
    add_scaffold_nicks(design)
    add_scaffold_crossovers(design)
    scaffold = design.strands[0]
    scaffold.set_scaffold()
    add_precursor_staples(design)
    add_staple_nicks(design)
    add_staple_crossovers(design)
    design.assign_m13_to_scaffold()
    return design

def precursor_scaffolds() -> sc.DNADesign:
    helices = [sc.Helix(max_offset=384) for _ in range(24)]
    scaffolds = [sc.Strand([sc.Substrand(helix=helix,
                                 forward=helix % 2 == 0, start=8, end=296)])
                 for helix in range(24)]
    return sc.DNADesign(helices=helices, strands=scaffolds,
                        grid=sc.square)

def add_scaffold_nicks(design: sc.DNADesign):
    for helix in range(1, 24):
        design.add_nick(helix=helix, offset=152,
                        forward=helix % 2 == 0)

def add_scaffold_crossovers(design: sc.DNADesign):
    crossovers = []
    # scaffold interior
    for helix in range(1, 23, 2):
        crossovers.append(sc.Crossover(helix1=helix, helix2=helix + 1,
                                        offset1=152, forward1=helix % 2 == 1, half=True))
    # scaffold edges
    for helix in range(0, 23, 2):
        crossovers.append(sc.Crossover(helix1=helix, helix2=helix + 1,
                                        offset1=8, forward1=True, half=helix % 2 == 0))
    design.add_crossovers(crossovers)
```

```
def add_staple_crossovers(design: sc.DNADesign):
    for helix in range(23):
        start_offset = 24 if helix % 2 == 0 else 40
        for offset in range(start_offset, 296, 32):
            if offset != 152:  # skip crossover near seam
                design.add_full_crossover(helix1=helix, helix2=helix + 1,
                                           offset=offset, forward=helix % 2 == 1)

def add_staple_nicks(design: sc.DNADesign):
    for helix in range(24):
        start_offset = 32 if helix % 2 == 0 else 48
        for offset in range(start_offset, 280, 32):
            design.add_nick(helix, offset, forward=helix % 2 == 1)

if __name__ == '__main__':
    design = main()
    design.write_scadnano_file()
```
DNA modifications
Future work

• Eventually support Safari browser (currently only Chrome/Firefox)
• Maybe...
 • Visualize 3D structures
 • file format allows for non-parallel helices, but currently they are displayed in parallel
 • Integrate finite-element modeling for “rough approximation” of CanDo-style 3D structural prediction
 • codenano is a related project that has already implemented a web-based API for this (https://dna.hamilton.ie/2019-07-18-codenano.html)
 • Collaborative editing (a la Google Docs)
• Why maybe?
 • Primary goal of scadnano that I don’t want to compromise: simple and easy to use.
 • So I have a secondary goal of being unambitious with it. (hopefully keeping it broadly useful)
Try it out!

• scadnano.org

• help available from menu:
 • web interface help
 • Python scripting library help
 • web interface tutorial for making 24-helix DNA origami rectangle
 • Python scripting tutorial for making 24-helix DNA origami rectangle
 • Python scripting API

• feature requests/bug reports at
 • https://github.com/UC-Davis-molecular-computing/scadnano/issues
 • https://github.com/UC-Davis-molecular-computing/scadnano-python-package/issues
Thank you!