
ECS-165A WQ’11 123

7. Indexing

Contents:

• Single-Level Ordered Indexes

• Multi-Level Indexes

• B+ Tree based Indexes

• Index Definition in SQL

Basic Concepts

• Indexing mechanisms are used to optimize certain accesses

to data (records) managed in files. For example, the author

catalog in a library is a type of index.

• Search Key (definition): attribute or combination of attributes

used to look up records in a file.

• An Index File consists of records (called index entries) of the

form

search key value pointer to block in data file

• Index files are typically much smaller than the original file

because only the values for search key and pointer are stored.

• There are two basic types of indexes:

– Ordered indexes: Search keys are stored in a sorted order

(main focus here in class).

– Hash indexes: Search keys are distributed uniformly across

“buckets” using a hash function.

Dept. of Computer Science UC Davis 7. Indexes

ECS-165A WQ’11 124

Index Evaluation Criteria

Indexing techniques are evaluated on the basis of:

• Access types that are efficiently supported; for example,

– search for records with specified values for an attribute

(select ∗ from EMP where EmpNo = 4711;)

– search for records with an attribute value in a specified

range

(select ∗ from EMP where DeptNo between 20 and 50;)

• Access time (index entry→ record)

• Insertion time (record→ index entry)

• Deletion time (record→ index entry)

• Space and time overhead (for maintaining index)

Dept. of Computer Science UC Davis 7. Indexes

ECS-165A WQ’11 125

Types of Single Level Ordered Indexes

• In an ordered index file, index entries are stored sorted by the

search key value.

– most versatile kind of index: supports lookup by search key

value or by range of search key values

• Primary Index: in a sequentially ordered file (e.g., for a

relation), the index whose search key specifies the sequential

order of the file. For a relation, there can be at most one

primary index. (; index-sequential file)

• Secondary Index: an index whose search key is different from

the sequential order of the file (i.e., records in the file are not

ordered according to secondary index).

• If search key does not correspond to primary key (of a relation),

then multiple records can have the same search key value

• Dense Index Files: index entry appears for every search key

value in the record file.

• Sparse Index Files: only index entries for some search key

values are recorded.

– To locate a record with search key value K, first find index

entry with largest search key value < K, then search file

sequentially starting at the record the index entry points to

– Less space and maintenance overhead for insertions and

deletions

– Generally slower than dense index for directly locating

records

Dept. of Computer Science UC Davis 7. Indexes

ECS-165A WQ’11 126

Secondary Indexes

• Often one wants to find all records whose values in a certain

field (which is not the search key of the primary index) satisfy

some condition

– Example 1: In the EMPLOYEE database, records are stored

sequentially by EmpNo, we want to find employees working

in a particular department.

– Example 2: as above, but we want to find all employees

with a specified salary or range of salary

• One can specify a secondary index with an index entry for

each search key value; index entry points to a bucket, which

contains pointers to all the actual records with that particular

search key.

Primary Indexes vs. Secondary Indexes

• Secondary indexes have to be dense

• Indexes offer substantial benefits when searching for records

• When a record file is modified (e.g., a relation), every index on

that file must be updated. Updating indexes imposes overhead

on database performance.

• Sequential scan using primary index is efficient, but a

sequential scan using a secondary index is expensive (each

record access may fetch a new block from disk)

Dept. of Computer Science UC Davis 7. Indexes

ECS-165A WQ’11 127

Multi-Level Index

• If primary index does not fit in memory, access to records

becomes expensive

• To reduce number of disk accesses to index entries, treat

primary index on disk as sequential file and construct a sparse

index on it.

– outer index→ a sparse index of primary index

– inner index→ the primary index file

• Multilevel Index structure

outer index

inner index

Data

block 0

Data

block 1

Index

block 0

Index

block 1

record file

• If even outer index is too large to fit in main memory, yet

another level of index can be created, and so on.

• Note that indexes at all levels must be updated on insertions

or deletions of records from a file.

Dept. of Computer Science UC Davis 7. Indexes

ECS-165A WQ’11 128

Dynamic Multi-Level Indexes using B+-Trees

B+-Tree indexes are an alternative to index sequential files.

• Disadvantage of index-sequential files: performance degrades

as sequential file grows, because many overflow blocks are

created. Periodic reorganization of entire file is required.

• Advantage of B+-Tree index file: automatically reorganizes

itself with small, local changes in the case of insertions and

deletions. Reorganization of entire file is not required to

maintain performance.

• Disadvantage of B+-Trees: extra insertions and deletion

overhead, space overhead.

• Advantages of B+-Trees outweigh disadvantages, and B+-

Trees are used extensively in all DBMS.

Dept. of Computer Science UC Davis 7. Indexes

ECS-165A WQ’11 129

A B+-Tree is a rooted tree satisfying the following properties:

• All paths from the root to leaf have the same length

(=⇒ a B+ tree is a balanced tree).

• Each node that is not the root or a leaf node has between

dn/2e and n children (where n is fixed for a particular tree).

• A leaf node has between d(n− 1)/2e and n− 1 values.

• Special case: if the root is not a leaf, it has at least 2 children.

If the root is a leaf, it can have between 0 and n− 1 values.

• Typical structure of a node:

P1 K1 P2 . . . Pn−1 Kn−1 Pn

– Ki are the search key values

– Pi are pointers to children (for non-leaf nodes) or pointers

to records or buckets of records (for leaf nodes)

• The search keys in a node are ordered, i.e,

K1 < K2 < K3 . . . < Kn−1

Dept. of Computer Science UC Davis 7. Indexes

ECS-165A WQ’11 130

Example of a B+-Tree

2 TID TID S55 n TID TID S60 2 TID TID....... TIDS51

PnPnPnPn

S25 S70

S8 S13 S20 S33 S45 S61 S75 S86 S99

L Lji

Leaf Nodes in a B+-Tree

• For i = 1, 2, . . . , n − 1, pointer Pi either points to a file

record with search key value Ki (using the tuple identifier,

tid), or to a bucket of pointers to file records, each record

having search key value Ki.

Note that one only needs bucket structure if search key

does not correspond to primary key of relation the index

is associated with.

• If Li, Lj are leaf nodes and i < j, Li’s search key values are

less than Lj’s search key values.

• Pn points to next leaf node in search key order.

Dept. of Computer Science UC Davis 7. Indexes

ECS-165A WQ’11 131

Non-Leaf Nodes in a B+-Tree

• All the search keys in the subtree to which P1 points are less

than K1; all search keys in the subtree to which Pm points

are greater than or equal to Km−1.

Observations about B+-Trees

• Since the inter-node connections are done by pointers, there

is no assumption that in the B+-Tree logically close blocks are

also “physically” close.

• The non-leaf levels of the B+-Tree form a hierarchy of sparse

indices.

• The B+-Tree contains a relatively small number of levels

(logarithmic in size of the main file), thus searches can be

done efficiently.

• Insertions and deletions to the main file can be handled

efficiently, as the index can be restructured in logarithmic

time. (+ ECS 110)

Dept. of Computer Science UC Davis 7. Indexes

ECS-165A WQ’11 132

Queries on B+-Trees

Find all records with a search key value of k

• Start with the root node

– Examine the node for the smallest search key value > k.

– If such a value exists, assume it is Ki. Then follow Pi to

the child node.

– Otherwise, k ≥ Km−1, where are m pointers in the node.

Then follow Pm to the child node.

• If the node is reached by following the pointer above is not a

leaf node, repeat the above procedure on the node, and follow

the corresponding pointer.

• Eventually reach a leaf node. Scan entries Ki in the leaf node.

If Ki = k, follow pointer Pi to the desired record or bucket.

Otherwise no record with search key value k exists.

• Further comments:

– If there are V search key values in the file, the path from

the root to a leaf node is no longer than dlogdn/2e(V)e.

– In general a node has the same size as a disk block, typically

4KB, and n ≈ 100 (40 bytes per index entry).

– With 1, 000, 000 search key values and n = 100, at most

log50(1, 000, 000) = 4 nodes are accessed in the lookup!

Dept. of Computer Science UC Davis 7. Indexes

ECS-165A WQ’11 133

B+-Tree File Organization

• Index file degradation problem is solved by using B+-Tree

indices. Data file degradation problem is solved by using a

B+-Tree file organization.

• Leaf nodes in a B+-Tree file organization can store records

instead of just pointers.

Clustered vs. Unclustered Indices

Clustered: Order of data records is the same as order of index

entries.

Data records
(blocks)

Data records
(blocks)

Clustered Tree Index

Unclustered Tree Index

............

............ Leaf nodes

Leaf nodes

Dept. of Computer Science UC Davis 7. Indexes

ECS-165A WQ’11 134

Index Definition in PostgreSQL

• Indexes are not part of SQL standard, but nearly all DBMS’s

support them via a syntax like the one below.

• PostgreSQL syntax:

create [unique] index <index name> on <relation name>

(<list of attributes>);

drop index <index name>;

• Many more options available, including clauses to specify

sort order, partial indexes, fill factor, tablespace, concurrent

construction, index method, . . .

• By default, indexes are created in ascending order.

• With primary key in a relation, an index is associated.

Dept. of Computer Science UC Davis 7. Indexes

ECS-165A WQ’11 135

• Information about indexes is stored in the system catalogs.

Relevant tables are pg index and pg class.

The system catalog table pg index:

Column Description

indexrelid The OID of the pg class entry for

this index

indrelid The OID of the pg class entry for

the table this index is for

indnatts The number of columns in the index

(duplicates pg class.relnatts)

indisunique If true, this is a unique index

indisprimary If true, this index represents the

primary key of the table

. . .

• Example:

create index city name idx on CITY(name);

Dept. of Computer Science UC Davis 7. Indexes

