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Abstract

In many real world applications one is concerned with the problem of visualizing and

approximating three-dimensional data, commonly referred to as scalar fields (points

in three-dimensional space with associated function values). The data themselves

can either be physical measurements or be obtained from a mathematical simula-

tion. Typical applications are found in medicine (computerized axial tomography,

magnetic resonance imaging), in geology and meteorology (temperature, pressure,

radiation), and in the CAD/CAM industry (car body, ship hull, airplane design).

Based on existing methods for visualizing bivariate functions new techniques

are presented for rendering three-dimensional data. Assigning transparency prop-

erties to the data, and using ray tracing is one possibility being discussed. Slicing

the data volume with hyperplanes allows the use of bivariate rendering routines

directly. The problem of approximating and modeling contours of scalar fields is

specifically emphasized.

The common approach treating scalar valued data in space consists of a two step

process. An approximating function to the given data is computed, later typically

rendered using contour plots. A different sequence of modeling steps is proposed

here. First, a piecewise linear approximation to a contour is constructed from the

given data yielding a set of triangulated surfaces. Second, all triangulated surfaces



are used for generating smooth contours. Scalar fields can be discontinuous by

nature, therefore determining a data set rapidly changing within small distances.

The boundaries of internal structures in a volume might be given by a contour

level close to a discontinuity. Computerized axial tomography (CAT) is an example

for the advantage of the new method. Scanning a bone yields thousands of density

values which consequently makes an overall approximation quite expensive. Because

it is the shape of the bone which is of interest, the contour corresponding to the

bone’s boundary should be considered only.

A technique for approximating curvatures for surfaces as well as for trivariate

functions are inferred from differential geometry. Curvature approximation is im-

portant both as input for surface schemes and as a tool for smoothness analysis. A

data reduction algorithm is introduced that iteratively eliminates knots for a general

triangulated surface, and a new scheme for producing a tangent-plane-continuous

surface is presented.
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Chapter 1

Introduction

Computerized axial tomography (CAT) and magnetic resonance imaging (MRI)

have been major breakthroughs in medical imaging. Both rendering techniques

supply people in the field of medical diagnosis with two-dimensional images revealing

internal structures of some part of the human body. They are based on slicing a

three-dimensional object and producing a sequence of two-dimensional pictures.

Scanning a human’s head, CAT produces slices taken perpendicular to the spine.

Each slice delivers an X-ray image representing density values in a particular plane.

The pictures obtained by this method show great detail in bone structures (see

Figure 1.1., created by the slicing method described in chapter 2.3.). MRI, on the

other hand, allows slicing a head in axial (top-to-bottom), saggital (ear-to-ear),

and coronal (nose-to-back) direction directly. It also gives better insight into soft

tissue. Looking at these slices requires a person’s ability to intuitively interpolate

between them in order to get a perception of the real three-dimensional structure.

People in the medical field are quite capable in performing this task, but creating

three-dimensional images on a computer screen instantaneously might be an even

more powerful tool in diagnosis.
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Fig. 1.1. Axial and saggital slice of human head (CAT).

CAT and MRI are examples serving well as a prelude for the topic of this

dissertation. Visualizing and approximating three-dimensional data belonging to a

scalar field (points in space with associated function values) is a difficult problem,

too, in meteorology (temperature, pressure, velocity measurements), in geography

(physical maps), physics, and mathematics itself. Mathematically, the data given

can be viewed as the discretization of an unknown scalar field with three spatial

variables sampled at certain points. It is quite common to approximate the data

with a trivariate function over some domain (either inside the bounding box or the

convex hull of the data points), evaluate the trivariate function on a regular grid and

then plot the result. New methods are developed for both visualizing and modeling

these data.
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Several approaches exist for visualizing bivariate functions. Among the most

common ones are contour lines (often called isolines) in the plane and surfaces

in three-dimensional space. Using the second possibility, a point on the surface

is simply given by the two spatial variables in the plane and the function value

there (which yields the perpendicular distance to the plane). These techniques

are extended to the trivariate case. Subdividing the three-dimensional domain of

a trivariate function, simulating transparency for volumetric data, and slicing the

domain with hyperplanes are methods being investigated.

A new path is followed modeling trivariate data. Traditionally, a continuous-

approximating function is constructed considering each of the given data points

and then evaluated. From a mathematical point of view, this is an obvious path to

choose. However, some physical data sets might belong to a discontinuous scalar

field. Discontinuities might have their explanation in the fact that physically dif-

ferent objects are present within the data. Different objects with their different

properties naturally lead to rather heterogeneous function values (measurements)

associated with them. Referring to the previous example of CAT and MRI, thou-

sands of density measurements are obtained throughout a volume. In those appli-

cations, the internal structures in the volume and their actual three-dimensional

geometry are of much greater interest than a trivariate function approximating all

the thousands of density values.

Algorithms producing precisely these internal structures (contours of the den-

sity function) are reviewed and extended such that a topologically complete rep-
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resentation of the boundaries of different objects is obtained. Being surfaces in

three-dimensional space, these boundaries are described in terms of triangulations.

Each triangulation belonging to a particular object (a single component of a con-

tour) can now be treated separately.

The triangulations in space might still be redundant in the sense that too many

triangles might be used to approximate the shape of contours. A data reduction

algorithm is developed examining the curvature of a surface. The number of trian-

gles in nearly planar regions is reduced significantly. The method used for locally

approximating the curvature of a polygonized surface in three-dimensional space

generalizes nicely to the case of a trivariate function whose domain is subdivided

into a set of tetrahedra. Curvature, in this generalized case, becomes more compli-

cated, but it still helps to reveal qualitative properties of trivariate functions.

Finally, the set of reduced triangulations approximating different components of

a contour is used to construct tangent-plane-continuous surfaces. A simple rational

curve scheme based on degree elevated conics is used for this purpose. Briefly,

methods for estimating normal vectors, needed for this construction, are discussed.

Overall, the sequence of modeling steps proposed in this dissertation makes

use of intrinsic properties of the data. If the existence of different objects within a

three-dimensional volume is known, and the corresponding contour level is apparent,

this new strategy is more satisfactory with respect to both storage and computing

efficiency.

Chapter 2 shows a variety of rendering methods for trivariate data. In chapter
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3, an algorithm is described for generating a piecewise linear approximation of a

contour. The result of this algorithm is a set of contour points, representing the

geometry of the contour in three-dimensional space, and topological information.

The topological information relates contour points to each other, determining which

points form the vertices in a triangulation; it also includes the neighborhood infor-

mation in the triangulation and associates each triangle with the component of a

contour it belongs to. The chapter is concluded with some remarks concerning the

estimation of gradients and normal vectors for three-dimensional points.

In chapter 4, principal curvatures are approximated for both surfaces and

trivariate functions (precisely, for two-dimensional and three-dimensional mani-

folds). The concept of an osculating paraboloid (as used in differential geometry)

derived from a local least squares fit serves as mathematical tool for this purpose.

Chapter 5 presents a data reduction technique for a triangulated surface. Triangles

are iteratively removed in areas with low curvature. In chapter 6, the reduced trian-

gulation is used to construct an overall tangent-plane-continuous surface. Chapter

7 concludes the dissertation, summarizing the main results and mentioning possi-

bilities for further research.

All algorithms described in this dissertation have been implemented in the

programming language C on a Silicon Graphics workstation, model 4D/220 GTX.
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Chapter 2

Visualization techniques for trivariate data

2.1. Existing methods and terminology

Several methodologies for visualizing trivariate data have been outlined in the first

chapter. Contemporary computer graphics equipment is capable of performing mil-

lions of arithmetic operations per second, providing an excellent tool for rendering

three-dimensional data sets in real time. All techniques presented here are designed

to allow interaction with the user.

Imaging three-dimensional data is known as volume visualization or vol-

ume rendering. Algorithms based on ray-tracing have been widely used for vol-

umetric data, e.g., in the medical field ([Fuchs et al. ’89], [Kajiya & Herzen ’84],

[Levoy ’88,’90], [Ney et al. ’90], [Sabella ’88], [Tiede et al. ’90]). Considering the

huge amount of data, ray-tracing is undoubtedly computing-intensive and hardly

interactive. In [Foley et al. ’90] nearly real time computing of ray-traced images

is discussed. All these algorithms simulate the behavior of light rays (X-rays, for

instance) passing through a finite volume containing the data to be visualized. “Ob-

jects” inside this volume usually appear more or less translucent. In Figure 2.1.,

CAT scan data (68 axial slices, each containing 64 · 64 integer density values in

{0, 1, ..., 255}) of a human skull are rendered using the algorithm from [Levoy ’88].
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Fig.2.1. Skull rendered using Levoy’s algorithm for CAT scan data.

Several rendering techniques are extensions of the bivariate to the trivariate

case. In order to make use of lower-dimensional methods, a three-dimensional vol-

ume is intersected with a hyperplane, the trivariate function is restricted to this

plane and rendered only for the single slice obtained (see examples in [Banchoff

’90]). Numerous volume visualization techniques based on drawing graphs of bi-

variate functions and general overviews can be found in [Drebin et al. ’88], [Nielson

et al. ’91], [Hamann ’90a], and [Nielson & Hamann ’90]. Algorithms based on

approximating contours of trivariate functions are not discussed in this chapter.

Generating linear contour approximations and modeling them is the content of the

following chapters. A definition is given to understand the common nomenclature

used in combination with visualizing and modeling multivariate data.
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Definition 2.1. A scattered trivariate data set is the set

{
(xiT , fi) = (xi, yi, zi, fi) | xi ∈ IR3, fi ∈ IR, i = 0...n

}
, (2.1.)

a rectilinear trivariate data set is the set

{
(xi

T , fi) = (xi, yj , zk, fi,j,k) | xi ∈ IR3, fi ∈ IR, i = 0...nx, j = 0...ny, k = 0...nz
}
.

(2.2.)

Often, these two data sets are simply referred to as scattered or rectilinear data. It is

this kind of data that is visualized and modelled. Physical measurements are usually

given as scattered data, whereas rectilinear data arise from evaluating some known

trivariate function in a structured fashion. The geometry of an equidistantly-spaced

rectilinear data set is directly reflected by the data’s indices:

xi = x0 + i
xnx − x0

nx
, i = 0...nx,

yj = y0 + j
yny − y0

ny
, j = 0...ny,

zk = z0 + k
znz − z0

nz
, k = 0...nz.

The convex hull C of a rectilinear data set is therefore given by

C = [x0, xnx ]× [y0, yny ]× [z0, znz ] = [xmin, xmax]× [ymin, ymax]× [zmin, zmax].

In the case of scattered data, there is no underlying structure hidden in the geometry

of the data points. For modeling purposes, the convex hull of scattered data points

is split into a set of tetrahedra, usually, to obtain the Delaunay triangulation implied

by the points (see [Preparata & Shamos ’90]).
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The different approaches used in computer-aided geometric design to model

scattered or rectilinear data are not reviewed in detail in this dissertation. Gen-

erally, the modeling process can be divided into derivative estimation (typically,

first and second order derivatives), construction of some trivariate function approx-

imating the given function values and evaluation and visualization of that function.

Normally, the function constructed to approximate either scattered or rectilinear

data is evaluated on a rectilinear grid. This is the motive to primarily develop

rendering techniques for rectilinear data sets.

Methods addressing the problem of estimating derivatives and approximating

scattered and rectilinear data can be found in [Alfeld ’89], [Barnhill & Little ’84],

[Boehm et al. ’84], [Dahmen ’89], [Davis ’75], [Farin ’83], [Farin ’90], [Franke &

Nielson ’91], [Hoschek & Lasser ’89], [Sederberg ’85], [Stead ’84], and [Worsey &

Farin ’87].

2.2. Domain subdivision and transparency techniques

The objective is to develop simple algorithms which can easily be implemented and

can be used in a real-time, interactive fashion. All algorithms described here visu-

alize rectilinear data sets. The domain-subdivision technique is based on extracting

subvolumes Vr,s,t from the convex hull C of the data points and coloring the surfaces

of these subvolumes according to the function values on the surfaces of each such

subvolume (Vr,s,t is a box defined by its width, depth, and height).

Here, the idea is to allow for space between all subvolumes so that it is possible
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to “look inside” the data set when all subvolumes are rendered simultaneously. It

is sufficient for this technique to specify resolution parameters qx, qy, and qz for the

three spatial directions and ratios αx, αy, and αz determining the relative length of

space between two consecutive subvolumes and an edge of a subvolume. Denoting

the three edge lengths of a subvolume by 4x, 4y, and 4z, a subvolume Vr,s,t is

given by its left-front-lower corner point (xr, ys, zt)T and its three edge lengths:

xr = xmin + r (1 + αx) 4x, 4x =
xmax − xmin
qx + αx(qx − 1)

, r = 0...(qx − 1),

ys = ymin + s (1 + αy) 4y, 4y =
ymax − ymin

qy + αy(qy − 1)
, s = 0...(qy − 1),

zt = zmin + t (1 + αz) 4z, 4z =
zmax − zmin
qz + αz(qz − 1)

, t = 0...(qz − 1).

If the function to be rendered is known, it is evaluated at the eight corner points

of each subvolume Vr,s,t; if it is not known, i.e., one is solely given a rectilinear data

set, function values for Vr,s,t’s corner points are obtained by trilinear interpolation of

those eight given function values in the rectilinear data set associated with a certain

corner point. For example, if xr ∈ [xi, xi+1], ys ∈ [yj , yj+1], and zt ∈ [zk, zk+1], the

function value at (xr, ys, zt)T is the value of the trilinear interpolant to the set of

known values {fi,j,k, fi+1,j,k, ..., fi+1,j+1,k+1} at (xr, ys, zt)T .

Now, minimal and maximal function values are determined among the corner

function values of all subvolumes. They are denoted by fmin and fmax. A linear

map is used to assign (integer) color values to each corner point of each subvolume.

If cmin and cmax are the extreme (integer) color indices referring to a predefined
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color map, a (real) corner function value f is mapped to the color (-index) c, where

c =
⌈ fmax − f
fmax − fmin

cmin +
f − fmin

fmax − fmin
cmax

⌉
.

Each face of the subvolumes is then Gouraud-shaded, i.e., a face’s color is

obtained by bilinear interpolation of the four colors (color-indices) associated with

that face. If the function to be rendered is known and the extension of a subvolume

Vr,s,t (given by 4x, 4y, 4z) is relatively large compared to the extension of the

convex hull C of the entire data set, it is appropriate to evaluate the function

at more points than at the eight corner points of each subvolume. In principle,

(k+1)(l+1) function (and color) values are determined for points xi,j , i = 0...k, j =

0...l, arranged in a rectilinear fashion on a subvolume’s face. Each two-dimensional

grid cell on a single face, given by the four points xi,j , xi+1,j , xi,j+1, and xi+1,j+1,

is then Gouraud-shaded itself.

Rendering all qxqyqz subvolumes and rotating them in real-time is possible. The

impression of the three-dimensional structure can further be improved by drawing

lines between the centroid of Vr,s,t and the centroids of the six “neighbor” subvol-

umes Vr−1,s,t, Vr+1,s,t, ..., and Vr,s,t+1. Two examples for the domain-subdivision

method using different resolution parameters are shown in Figures 2.2. and 2.3.

The trivariate function visualized in both cases is

f (x, y, z) = 15 ( e−0.005((x−10)2+(y−10)2+(z−10)2)

+ e−0.0025((x−15)2+(y−20)2+(z−20)2)+e−0.005((x−25)2+(y−25)2+(z−25)2)),

x, y, z ∈ [0, 39]. Low values are mapped to green, high ones to white.
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Fig. 2.2. Domain subdivision method for exponential function,
qx = qy = qz = 5, αx = αy = αz = 1.

Fig. 2.3. Domain subdivision method for exponential function,
qx = qy = qz = 8, αx = αy = αz = 2.
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The domain-subdivision technique can also be applied to volumes obtained by

a map from three-dimensional uvw−space to three-dimensional xyz−space,

(x, y, z) =
(
x(u, v, w), y(u, v, w), z(u, v, w)

)
,

u ∈ [umin, umax], v ∈ [vmin, vmax], w ∈ [wmin, wmax].

Here, x, y, and z are continuous functions in all three variables. The function

to be rendered is defined in xyz−space and the subdivision parameters actually

refer to uvw−space. Using this approach, it is possible to visualize functions de-

fined over more general volumes, such as volumes bounded by spheres, ellipsoids or

paraboloids. Figure 2.4. shows the function

f (x, y, z) = cos
(

2
√
x2 + y2 + z2

)
,

defined over a part of the unit ball.

Fig. 2.4. Domain subdivision method for trigonometric function,
unit ball, qu = qv = qw = 5, αu = αv = αw = 2.
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The volume considered is the set of points (x, y, z)T , where

(x, y, z) = ( u cos v, u sin v cosw, u sin v sinw ), u ∈ [0, 1], v ∈ [0, π], w ∈ [0, 3
2π].

Some graphics-workstations support a technique called alpha blending. It is

a tool used for rendering transparent objects. Objects to be visualized in three-

dimensional space are approximated by a set of planar polygons, where the term

polygon is understood as the area bounded by a planar, closed, and non-self -

intersecting piecewise linear curve. Alpha-blending requires an ordered set of poly-

gons sorted with respect to their distance to the screen. Among a polygon’s corner

points one can use the one closest to the screen as sorting criterion.

A parameter, denoted by t, specifies the degree of transparency of polygons. If

cold is the color currently displayed at a screen position (i, j), and another polygon

is to be rendered covering this particular area of the screen, the new color cnew for

(i, j) is obtained by linear interpolation of the current color and cpoly, the color of

the polygon at (i, j) : cnew = (1− t)cpoly + tcold, t ∈ [0, 1]. This implies that objects

appear non-transparent, if t is 0.

In order to utilize alpha-blending, a trivariate function defined over [x0, xnx ]×

[y0, yny ]× [z0, znz ] is evaluated on a rectilinear grid yielding (nx+1)(ny +1)(nz +1)

points and function values. Three sets of polygons are constructed: the first set

consists of rectangles parallel to the xy−plane, the second of rectangles parallel to

the xz−plane, and the third of rectangles parallel to the yz−plane. Each rectangle

in the rectilinear grid in the first set is defined by the points xi,j,k, xi+1,j,k, xi,j+1,k,

and xi+1,j+1,k, i = 0...(nx − 1), j = 0...(ny − 1), k = 0...nz. Similarly, one generates
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the rectangles of the other two sets. Again, the function values at these points

determine the colors used for rendering.

The transparency parameter t and an orientation for the domain must be spec-

ified. Sorting all 3 nxnynz +nxny +nxnz +nynz rectangles becomes an obstacle for

using alpha-blending as an interactive visualization technique with high resolution

parameters nx, ny, and nz. Real-time performance can be achieved for varying t and

fixed domain-orientation, but not conversely. The re-sorting of all rectangles takes

too long in this case. In Figures 2.5. and 2.6., a gas-concentration is shown using

different values for t (see [Long et al. ’89]). Transparency definitely increases the

visual understanding of a trivariate function by providing the possibility to perceive

contours inside the function’s domain.

Fig. 2.5. Domain subdivision and transparency,
nx = ny = nz = 8, t = 0.5.
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Fig. 2.6. Domain subdivision and transparency,
nx = ny = nz = 8, t = 0.95.

2.3. Slicing methods

Slicing methods are based on intersecting the domain D of a trivariate function

with a hyperplane

P =
{

x | (x− x0) · n = 0, x,x0 ∈ IR3, n normal to P
}

usually determining an area A bounded by a closed polygon. The trivariate function

to be rendered is then restricted to A, evaluated and rendered for A only.

It is supposed that D is [xmin, xmax] × [ymin, ymax] × [zmin, zmax], and the

hyperplanes used have normal vectors n1 = (1, 0, 0)T , n2 = (0, 1, 0)T , and n3 =

(0, 0, 1)T . Three mutually perpendicular planes Pi, i = 1, 2, 3, are defined such that
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Ai = Pi ∩D 6= ∅. The trivariate function is then evaluated on three (ki + 1)(li + 1)

rectilinear grids, one grid per area Ai. These three areas can be visualized in two

different ways.

The first possibility to visualize the function on all three areas Ai can be char-

acterized as follows:

• assign colors (color indices referring to a predefined color map)

to each point in each rectilinear grid,

• use Gouraud shading to color each rectangle given by the points

xir,s, xir+1,s, xir,s+1, xir+1,s+1, r = 0...(ki − 1), s = 0...(li − 1),

i = 1, 2, 3, in each rectilinear grid and

• allow the user to interactively move any of the hyperplanes Pi

in x−, y−, and z−direction, respectively.

Rotating the three hyperplanes in real-time and modifying the resolution parameters

ki and li can be accomplished interactively as well. In Figures 2.7. and 2.8., the

same gas-concentration is visualized as in Figures 2.5. and 2.6. Depending on the

data to be rendered, one might prefer a color map using multiple colors or a single

color.
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Fig. 2.7. Slicing method, coloring hyperplanes, multiple colors,
k1 = l1 = 80, k2 = l2 = 130, k3 = l3 = 20.

Fig. 2.8. Slicing method, coloring hyperplanes, single color,
k1 = l1 = 80, k2 = l2 = 130, k3 = l3 = 20.
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The second possibility to visualize the function on all three areas Ai is similar

to the standard procedure rendering a bivariate function. One generally evaluates a

bivariate function over a specified (rectangular) domain. The result is a set of two-

dimensional (domain-) points with associated function values. Points and function

values combined are then interpreted as a set X of three-dimensional points yielding

the graph of the bivariate function:

X =
{

(xi, yj , fi,j)T | i = 0...k, j = 0...l
}
.

The points in X are usually mapped into [0, 1]3. The graph can either be a curve

network of piecewise linear curves or a shaded surface. In the first case, curves are

defined by the line segments

(xi, yj , fi,j)T (xi+1, yj , fi+1,j)T , i = 0...(k − 1), j = 0...l and

(xi, yj , fi,j)T (xi, yj+1, fi,j+1)T , i = 0...k, j = 0...(l − 1).

In the second case, a surface is defined by two sets, I1 and I2, of index triples, each

triple referring to three points in X,

I1 =
{ (

(i, j), (i+ 1, j), (i+ 1, j + 1)
)
| i = 0...(k − 1), j = 0...(l − 1)

}
and

I2 =
{ (

(i, j), (i+ 1, j + 1), (i, j + 1)
)
| i = 0...(k − 1), j = 0...(l − 1)

}
.

Each triangle determined by an index triple is shaded on the screen.

To utilize this rendering technique for a trivariate function, the function is

restricted to the three areas Ai, i = 1, 2, 3, again, evaluated on a rectilinear grid

for each Ai and finally visualized as a set of three graphs, each graph either a

curve network or a shaded surface. It is convenient to choose P1 =
{
x|x = c1 ∈

[xmin, xmax]
}
, P2 =

{
x|y = c2 ∈ [ymin, ymax]

}
and P3 =

{
x|z = c3 ∈ [zmin, zmax]

}
.
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The curve networks or shaded surfaces are then plotted over planes parallel

to the xy−, xz−, and yz−plane, respectively. Special care must be taken to avoid

intersections among the three graphs. To gain a better visual understanding of

the position and orientation of the three areas Ai relative to each other and to the

trivariate function’s domain, the areas Ai are represented as single-colored rectan-

gles in a box indicating the function’s domain. Figure 2.9. is an example for this

surface-based rendering technique using the same exponential function as in Figures

2.2. and 2.3.

Fig. 2.9. Slicing method, bivariate surfaces, Gouraud-shaded,
k1 = k2 = k3 = l1 = l2 = l3 = 30.
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Chapter 3

Trilinear contour approximation for trivariate data

3.1. Previous work and basic definitions

Visualizing contour levels of a trivariate function is another possibility to obtain

insight into a function’s behavior by displaying them as surfaces. This has not yet

been examined in greater detail in chapter 2, due to the fact that contours are

not primarily approximated for rendering purposes, but for modeling the contours

themselves as surfaces in three-dimensional space.

In principle, a point set is determined such that each point in this set is close to

a certain contour, the point set is triangulated (yielding a two-dimensional triangu-

lation in three-dimensional space), the neighbors for each triangle in the resulting

triangulation are determined, and each triangle is associated with a particular part

of the contour. Normal vectors are estimated for each point, needed for further

modeling the data.

In [Bloomquist ’90], [Petersen ’84], and [Petersen et al. ’87] different approaches

are described to contour trivariate functions given in explicit form. Other references

can be found there as well. Approximating contours from rectilinear trivariate

data sets alone is explored in [Hamann ’90b], [Lorensen & Cline ’87], and [Nielson

& Hamann ’91b]. An error in the marching-cubes method by Lorensen has been

pointed out in [Dürst ’88]: Approximating a contour using Lorensen’s technique

results in a triangulation which might lead to “holes” (locally missing or improperly

constructed triangles) for special data configurations. An optimization algorithm
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for a two-dimensional triangulation in three-dimensional space is given in [Choi et

al. ’88].

Ways for resolving the inaccuracy in Lorensen’s contouring method are shown

in 3.2. For further modeling this piecewise planar contour approximation, deriva-

tive information must be provided. Estimating gradients for trivariate functions is

discussed in [Stead ’84] and [Zucker & Hummel ’81]. These estimates determining

additional geometrical information (tangent planes with orientation) for the vertices

in the triangulation are needed to create overall tangent-plane-continuous surfaces

for each part of a contour. Again, contours of trivariate functions are interpreted

here as two-dimensional boundaries of objects. Therefore, triangulations approxi-

mating such contours are used as input for a surface scheme.

Definition 3.1. Let f : IR3→IR; a trivariate contour is the point set

Cf (α) =
{

x | f(x) = α, α ∈ IR
}
⊂ IR3. (3.1.)

Contours of trivariate functions are also referred to as contour surfaces, isosur-

faces, level surfaces or niveau sets.

A contour might be partitioned into several unconnected subsets. This motivates

the next definition.
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Definition 3.2. Let f : IR3→IR be a continuous function; a component Cjf (α) ⊆

Cf (α) is the set of points such that for each pair of points x,y ∈ Cjf (α) a curve

c ⊂ Cjf (α) exists connecting x and y.

Definition 3.3. Let f : IR3→IR be a partially differentiable function (a C1 func-

tion). The gradient of f in x ∈ IR3 is the triple

5f(x) =
( ∂f

∂x
(x),

∂f

∂y
(x),

∂f

∂z
(x)

)
=
(
fx(x), fy(x), fz(x)

)
. (3.2.)

Theorem 3.1. Let f : IR3→IR be a C1 function and 5f(x) 6= (0, 0, 0) for all

x ∈ IR3. Then, every contour Cf (α) is a surface (a two-dimensional manifold).

Proof. The Taylor series for f at a point x0 ∈ Cf (α) is

f(x) = 5f(x0) (x− x0, y − y0, z − z0)T +R(x) = 0.

This is the equation of an implicitly defined surface of at least first degree.

q.e.d.

Remark 3.1. For computing purposes it must be assured that a contour of a

trivariate function is not (locally) a three-dimensional volume. This would be the

case if f = α on such a volume, implying a vanishing gradient.

For the further discussion the domain of the triavariate function is restricted

to a subset of IR3. In most applications this subset is a box. This restriction implies

that a single component of a contour can be divided into several unconnected parts

inside a subset. Therefore, the following definitions are necessary.

Definition 3.4. Let U = (x0, x1) × (y0, y1) × (z0, z1) ⊂ IR3 and U be the closure

of U. If
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B = (U \ U) ∩ Cf (α) 6= ∅,

then B is called the boundary of Cf (α) with respect to U.

Remark 3.2. U \ U constitutes the faces of U.

Definition 3.5. Let U be defined as in 3.4. and Cf (α) =
⋃m
j=1 C

j
f (α) be a contour

of a function f : IR3→IR; a part

P kj |U , j = 1...m, k = 1...mj , of a component Cjf (α), P kj (U) ⊆ Cjf (α),

is the subset of points such that for each pair of points x,y ∈ P kj |U a curve c ⊂ P kj |U

exists connecting x and y.

Remark 3.3. If a part P kj |U of a component Cjf (α) coincides with a face, an edge

or a corner of U, a special case treatment is necessary. Only for the first of these

three cases a part is considered, in the other two cases the dimension of the part

(relative to U) is less than 2 and therefore neglected.

Remark 3.4. It is usually difficult to determine that two parts belong to the same

component of a contour, if one restricts oneself to U. As a result of this, the term

part is used only, the connection between parts and the component they actually

belong to is no longer made when limiting a contour to U.

A contour of an arbitrary trivariate function usually can not be described in

an explicit form. For this reason, a finite set of points is created, each point lying

on the contour. This point set is then triangulated to yield a piecewise planar

approximation to the true contour.

Definition 3.6. Let P kj |U be a part of a component such that it has a non-empty

intersection with the faces of U, P kj |U ∩ (U \U) 6= ∅. Let Y be a finite set of points
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in P kj (U), Y =
{
y|y ∈ P kj |U

}
. Y is a closed contour point set with respect to

U, if it contains points yr which can be ordered such that they describe a closed

polygon on the faces of U,{
yryr+1 | yryr+1 ∩ U = ∅,yr ∈ Y, r = 0...(pm − 1), indices mod pm

}
is a closed polygon.

The segments defining such a polygon are called boundary edges.

Definition 3.7. Two triangles T1 and T2 are neighbors, if they have exactly two

vertices in common.

The above definitions allow to introduce the term of a contour triangulation.

Definition 3.8. Let Cf (α) =
⋃m
j=1 Cjf (α), Cjf (α) =

⋃mj
k=1 P

k
j (U) be the contour

of f : IR3→IR restricted onto U, f being a C1 function, such that f ’s gradient does

not vanish on Cf (α), 5f(x)
∣∣
Cf (α)

6= (0, 0, 0). Let

X =
{

xi | xi ∈ Cf (α), i = 1...n
}
⊂ U

be a finite set of points in Cf (α). A two-dimensional contour triangulation T

of the point set X is the set of index triples

T =
{
Tj = (rj , sj , tj) | rj , sj , tj ∈ {1, ..., n}, rj 6= sj , rj 6= tj , sj 6= tj

}
(3.3.)

such that

(i) xrj , xsj , and xtj are the vertices of a triangle Tj ,

(ii) each point in X is the vertex of at least one triangle,

(iii) the intersection of the interior of two triangles is empty,
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(iv) an edge xy, x,y ∈ X, in the triangulation is shared

by at most two triangles,

(v) each point y on a face of U belongs to exactly one closed

contour point set Y, y ∈ Y ⊂ X,

(vi) each triangle has exactly three neighbors, except those

triangles having at least one boundary edge,

(vii) there is no edge connecting points x and y, if x ∈ Cjf (α) and

y ∈ Ckf (α), j 6= k, or, if x ∈ P lj |U and y ∈ Pmj |U , l 6= m,

(viii) Tj ’s outward unit normal nj is defined as

nj = (xsj − xrj )× (xtj − xrj ) / ||(xsj − xrj )× (xtj − xrj )||,

where ||(x, y, z)T || =
√
x2 + y2 + z2.

Remark 3.5. There is no distinction made between the permutations of the index

triples (rj , sj , tj), (sj , tj , rj), and (tj , rj , sj); only the sequence of three indices in a

triple determining a triangle’s orientation is of importance ((viii) in Definition 3.8.).

The term triangulation is used instead of two-dimensional contour triangulation

whenever it is obvious from the context what is meant.

Figure 3.1. illustrates the concept of a triangulated contour divided into two parts

inside a box (black dots at cell corners representing function values greater than

the contour level α).
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Fig. 3.1. Contour triangulation, contour divided into two parts.

To effectively test whether two triangles belong to the same part of a contour,

a criterion must be given.

Definition 3.9. Two triangles Tl1 , Tlm ∈ T belong to the same part P kj |U of a

component Cjf (α) of a contour, if triangles Tl2 , ..., Tlm−1 ∈ T exist such that∧m−1
i=1 (Tli and Tli+1 are neighbors ).

Definition 3.10. A hole in a contour triangulation T is defined by a set of m

ordered edges {
ei = xixi+1 | i = 0...(m− 1), indices mod m

}
forming a closed polygon, where each edge belongs to exactly one triangle in T . A

hole is an interior hole if at least one edge ei is not a boundary edge.

Remark 3.6. Holes in a contour triangulation T can naturally occur because
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the function f is restricted to U. Interior holes are unnatural and undesired when

approximating a trivariate contour with triangles in U.

Definition 3.11. A two-dimensional contour triangulation T is continuous, if it

does not contain interior holes.

3.2. Piecewise triangular contour approximation for rectilinear data

In several applications one is given a rectilinear data set as the result of physical

measurements or simulations. Methods whose purpose is to approximate a contour

of some underlying trivariate function (which is unknown itself) should take advan-

tage of the structure implied by rectilinear data. An appropriate data element for

a local contour approximation is a cell.

Definition 3.12. LetX =
{

(xi
T , fi)

}
be a rectilinear trivariate data set (Definition

2.1.). A cell Ci is the set of points

Ci = [xi, xi+1]× [yj , yj+1]× [zk, zk+1], xi ∈ X.

Remark 3.7. The fact that three edges intersecting at a corner of a cell are

mutually orthogonal to each other inspires the term rectilinear.

Remark 3.8. It is assumed throughout the next sections in this chapter that

fi 6= α at all data points. If this condition is violated for a particular datum, the

corresponding function value is incremented (or decremented) by ε � max{fi} −

min{fi}. This is inevitable because the number of special cases which must otherwise

be taken care of is simply tremendous.

The approach described in [Lorensen & Cline ’87] assumes that the underlying
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trivariate function f varies linearly along the edges of each cell: if y0 and y1 are

the end points of an edge with corresponding function values f0 and f1, then

(xT , f)(t) =
(
xT (t), f(t)

)
= (1− t)(y0

T , f0) + t(y1
T , f1), t ∈ [0, 1].

If a contour intersects an edge (f(t) = α, t ∈ (0, 1)) the corresponding point x(t) is

determined.

All points found on the edges of a cell are finally connected, thus forming closed

polygons on the faces of a cell. These (non-planar) polygons are then triangulated.

Using Lorensen’s cell-by-cell method does not guarantee a continuous triangulation

throughout the convex hull of the data set X (see [Dürst ’88]). The reason for

this is an inconsistency in constructing the polygons on a cell face shared by two

neighbor cells: if four contour points are found on a face shared by two cells, they

might be connected differently when the second of the two cells is considered. This

is illustrated in Figure 3.2. (black dots at cell corners representing function values

greater than the contour level α).

Fig. 3.2. Discontinuous piecewise planar contour approximation.
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One solution to this problem is to subdivide a cell Ci into a set of tetrahedra

whose union is Ci and whose intersections are tetrahedral faces. One way to split a

cell Ci is to partition it into six tetrahedra:

T 1
i =

{
x | x(u) = u1xi,j,k + u2xi+1,j,k + u3xi,j+1,k + u4xi,j,k+1

}
,

T 2
i =

{
x | x(u) = u1xi+1,j,k + u2xi,j+1,k + u3xi,j,k+1 + u4xi,j+1,k+1

}
,

T 3
i =

{
x | x(u) = u1xi+1,j,k + u2xi+1,j,k+1 + u3xi,j,k+1 + u4xi,j+1,k+1

}
,

T 4
i =

{
x | x(u) = u1xi+1,j,k + u2xi+1,j+1,k + u3xi,j+1,k + u4xi,j+1,k+1

}
,

T 5
i =

{
x | x(u) = u1xi+1,j,k + u2xi+1,j+1,k + u3xi+1,j,k+1 + u4xi,j+1,k+1

}
,

T 6
i =

{
x | x(u) = u1xi+1,j+1,k + u2xi+1,j,k+1 + u3xi,j+1,k+1 + u4xi+1,j+1,k+1

}
,

where
∑4
l=1 ul = 1, ul ≥ 0 (barycentric coordinates). Assuming that f is a linear

polynomial over each tetrahedron, f(u) =
∑4
l=1 ulfl, u representing the barycentric

coordinates of a point x in a tetrahedron with function values fl at its four vertices,

the contour of f is planar whenever it passes through the interior of a tetrahedron

(see [Bloomquist ’90] or [Foley & Lane ’90]).

Both Lorensen’s and the tetrahedral split-technique yield precise contours if

the underlying function f originally is a linear polynomial defined over IR3, f(x) =∑
|l|≤1 cix

l, |l| = i + j + k, cl ∈ IR, xl = xiyjzk. However, if one prefers to avoid

the tetrahedral split-approach and derive a piecewise planar contour approximation

from the cells themselves, Lorensen’s method must be modified in order to achieve

a continuous triangulation.

The data for a cell are interpolated over the whole cell using an appropriate

and simple interpolation method.
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Definition 3.13. Let Ci be a cell; the associated trilinear cell interpolant is

the trivariate polynomial

(xT , f)(u, v, w) =
(
xT (u, v, w), f(u, v, w)

)
=

1∑
t=0

1∑
s=0

1∑
r=0

(xr
T , fr)

[i]
B1
r (u)B1

s (v)B1
t (w), (3.4.)

where (xr
T , fr)[i] = (xi+r,j+s,k+t

T , fi+r,j+s,k+t) are so-called Bézier points, B1
l (t) =

(1 − t)1−ltl, t ∈ [0, 1], l = 0, 1, are the Bernstein polynomials of degree one and

u, v, w ∈ [0, 1].

Theorem 3.2. The component f(u, v, w) of the trilinear cell interpolant is a linear

polynomial along each cell edge and a bilinear polynomial over each cell face.

Proof. It is

f(u, v, w) =
∑1
r=0 f

[i]
r B1

r (u)

for v, w ∈ {0, 1}, u ∈ [0, 1], s, t ∈ {0, 1} (analogous for the other edges, given by

u,w ∈ {0, 1}, v ∈ [0, 1], r, t ∈ {0, 1} and u, v ∈ {0, 1}, w ∈ [0, 1], r, s ∈ {0, 1}), and

it is

f(u, v, w) =
∑1
s=0

∑1
r=0 f

[i]
r B1

r (u)B1
s (v)

for w ∈ {0, 1}, u, v ∈ [0, 1], t ∈ {0, 1} (analogous for the other faces, v ∈ {0, 1},

u, w ∈ [0, 1], s ∈ {0, 1}, and u ∈ {0, 1}, v, w ∈ [0, 1], r ∈ {0, 1}).

q.e.d.

If a face shared by two cells contains two contour points on two edges of that

face, only one possibility exists to connect them by a line segment. If there are

four contour points (one on each edge of a face), an ambiguity arises for connecting
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pairs of points on that face to construct two line segments. It is this case that leads

to discontinuities in the contour triangulation obtained from Lorensen’s technique.

The trilinear cell interpolant solves this problem. Denoting the four corner data on

a cell face by (xi,jT , fi,j), i, j ∈ {0, 1}, one is concerned with the ambiguous case if

f0,0, f1,1 > (<) α and f1,0, f0,1 < (>) α. (3.5.)

The contour points on the edges are again obtained from linear interpolation along

the edges, consistent connections between them are assured by considering the con-

tour

f(u, v) =
1∑
j=0

1∑
i=0

fi,j B
1
i (u)B1

j (v) = α, (3.6.)

u, v ∈ [0, 1], over the whole face. Equation (3.6.) is equivalent to the equation

f(u, v) =
1∑
j=0

1∑
i=0

4i,jf0,0 u
ivj = α, (3.7.)

where

41,0f0,0 = f1,0 − f0,0, 40,1f0,0 = f0,1 − f0,0 and

41,1f0,0 = 41,0(f0,1 − f0,0) = (f1,1 − f1,0)− (f0,1 − f0,0)

are the forward differences for two indices.

Theorem 3.3. The contour defined by equation (3.7.) is a hyperbola with asymp-

totes given by

u = u0 = −4
0,1f0,0

41,1f0,0
and v = v0 = −4

1,0f0,0

41,1f0,0
, u0, v0 ∈ [0, 1]. (3.8.)
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Proof. Let 4i,j be the abbreviation for 4i,jf0,0 and equation (3.5.) be satisfied

(ambiguous case). The asymptotic behavior for f(u, v) = α is proven quite easily:

lim
v→∞

u(v) = lim
v→∞

α−40,0 −40,1v

41,0 +41,1v
= −4

0,1

41,1
,

lim
u→∞

v(u) = lim
u→∞

α−40,0 −41,0u

40,1 +41,1u
= −4

1,0

41,1
.

By performing an appropriate coordinate transformation it can be shown that

f(u, v) = α is a hyperbola. A new coordinate system S is defined by its origin

(u0, v0) and
√

2
2 (1,−1) and

√
2

2 (1, 1) as its two orthogonal unit vectors determining

a right-handed system. A point (u, v) is linearly mapped by the composition of a

translation by −(u0, v0) followed by a rotation by −π4 onto the point (u, v),

u =
√

2
2

(
(u− u0) + (v − v0)

)
,

v =
√

2
2

(
−(u− u0) + (v − v0)

)
.

The inverse map is given by

u =
√

2
2 ( u− v ) + u0,

v =
√

2
2 ( u+ v ) + v0.

Expressing the function f in terms of u and v and inserting it into equation (3.7.)

yields the equation of a hyperbola in standard position:

u2 − v2 = 2
(41,1)2

(
41,1(α−40,0) +41,040,1

)
= (−) a2,

which is equivalent to

u2

a2
− v2

a2
= 1

(
v2

a2
− u2

a2
= 1

)
, a 6= 0. (3.9)

q.e.d.
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It is now obvious how to derive a criterion for a proper connection of pairs of

contour points on a cell face in the ambiguous case. The asymptotes u = u0 and

v = v0 define four quadrants in the uv−domain square [0, 1]2, namely

[0, u0]× [0, v0], [u0, 1]× [0, v0],

[0, u0]× [v0, 1], and [u0, 1]× [v0, 1].

Two contour points are connected to form a line segment if they lie in the

same quadrant. The problem for the special case that the contour f(u, v) = α

coincides with the two straight lines u = u0 and v = v0 (which is the case when

equation (3.9.) collapses to u2 = v2) still remains. The ambiguity can be solved

in two different ways. Either, one decides to connect pairs of contour points on

opposite edges on the face (which is in accordance with the fact that the contour

actually consists of two straight lines intersecting somewhere in the face’s interior),

or, one chooses an adhoc solution: connect pairs of contour points such that the

quadrants in which the constructed line segments are lying in satisfy the condition

to contain a corner (i, j), i, j ∈ {0, 1}, for which f(i, j) > α. Connecting pairs of

points on opposite edges might lead to problems in the triangulation process of the

constructed contour polygons later on, thus making the adhoc solution preferable.

In Figure 3.3., the ambiguous case is shown. The trilinear cell interpolant is

restricted to a single cell face whose edges all yield a point on the contour f(u, v) = α

(corner ordinates drawn as black dots representing function values greater than the

contour level α). Contour points are drawn as circles, their connection is based on

the asymptotes u = u0 and v = v0 of f(u, v) = α.
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Fig. 3.3. Trilinear cell interpolant restricted to a cell face,
solution for the ambiguous case.

Connecting all contour points found along the edges of a cell obviously yields

a set of usually non-planar, closed polygons consisting of three (minimal number)

to twelve (maximal number) of vertices. A polygon of length twelve can only be

created if there are four contour points on each cell face, and all line segments be-

long to the same polygon. These polygons are interpreted as polygonal boundaries

of a piecewise planar (triangular) approximation of a contour of a trivariate func-

tion with respect to a particular cell. Therefore, points of each polygon must be

connected in order to constitute a contour triangulation inside a cell. Consistency

constraints with respect to cells sharing faces require that the following condition

is always satisfied:
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Condition 3.1. The only edges on cell faces in the contour triangulation are the

line segments constituting the closed polygons constructed over the cells’ faces. No

other edges connecting contour points on cell faces are allowed.

This rule guarantees that triangles completely lying on a cell face are never

constructed. Only in the case that a cell face contains four contour points belonging

to the same polygon one must assure that the above condition is not violated.

Theorem 3.4. (i) If a closed contour polygon P consisting of the line segments

yiyi+1, i = 0...(n − 1), indices mod n, has at most one line segment on each cell

face, every triangulation of P satisfies condition 3.1.

(ii) If a closed contour polygon has two line segments on the same face of a

cell, condition 3.1. is violated by at least one triangulation of P.

Proof. (i) All edges besides the line segments constituting P additionally needed

for any of P ’s triangulations necessarily pass through the cells’ interior.

(ii) If ykyk+1 and ylyl+1 are two line segments on the same face constituting

P, there is at least one triangulation of P with the edge ykyl

q.e.d.

Cells containing polygons whose triangulation might lead to a violation of con-

dition 3.1. are illustrated in Figure 3.4. Polygons of length six, eight, nine, and

twelve are shown. Black dots represent function values greater than α, circles are

the polygons’ vertices.
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Fig. 3.4. Cells containing contour polygons
of length six, eight, nine, and twelve.

Theorem 3.5. Let P be a closed contour polygon with line segments yiyi+1, i =

0...(n − 1), with four contour points on at least one cell face F. Let yn be a point

not in the same plane as F. Then the point set {y0, ...,yn} can be triangulated using

only P ’s line segments without any other edges on F than two of P ’s line segments.

Proof. The triangulation T =
{

(i, i + 1, n) | i = 0...(n− 1), indices mod n
}

is

a triangulation not violating condition 3.1.

q.e.d.

An appropriate choice for yn must be made in the case that a contour polygon

has four points on the same cell face. The obvious way to choose yn is to calculate

a point on the contour f(u) = α.
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Theorem 3.6. Let P be a contour polygon in a cell Ci with four points on the cell

face FL (without loss of generality) given by

FL = [yj , yj+1]× [zk, zk+1], x = xi.

Let P consist of the line segments yiyi+1, i = 0...(n− 1), indices mod n, and [0, 1]3

be the associated domain in uvw-space and{
(u = 0, v = v0, w) | v0 ∈ (0, 1), w ∈ IR

}
and{

(u = 0, v, w = w0) | w0 ∈ (0, 1), v ∈ IR
}

be the two asymptotes for the hyperbola f(u) = α (equation (3.8.) on FL’s corre-

sponding face in uvw-space. Then, the point

yn
(
u(t0)

)
= yn

(
(0, v0, w0) + t0(1, 0, 0)

)
, (3.10.)

where

t0 =
α−

∑1
k=0

∑1
j=0 40,j,kf0,0,0 v

j
0w

k
0∑1

k=0

∑1
j=0 41,j,kf0,0,0 v

j
0w

k
0 ,

(3.11.)

is a point on the contour f(u) = α.

Proof. Calculating the intersection of the line

u(t) = (0, v0, w0) + t(1, 0, 0)

t ∈ IR, in uvw−space and the contour f(u) = α of the trilinear cell interpolant

f(u) =
1∑
k=0

1∑
j=0

1∑
i=0

4i,j,kf0,0,0 u
ivjwk = α

and abbreviating the forward differences for three indices as 4i,j,k = 4i,j,kf0,0,0

yields

t0 =
α− (40,0,0 +40,1,0v0 +40,0,1w0 +40,1,1v0w0)
41,0,0 +41,1,0v0 +41,0,1w0 +41,1,1v0w0
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=
α−

∑1
k=0

∑1
j=0 40,j,kf0,0,0 v

j
0w

k
0∑1

k=0

∑1
j=0 41,j,kf0,0,0 v

j
0w

k
0

determining a point in xyz−space serving as the additional point yn.

q.e.d.

Remark 3.9. The denominator in equation (3.11.) must not vanish. If it does

vanish, the centroid of all contour points yi, i = 0...(n− 1),

yn =
1
n

n−1∑
i=0

yi,

is chosen. This choice guarantees that yn always is a point in the cell’s interior.

Remark 3.10. The additional contour point yn does not necessarily lie in a cell’s

interior (using the method from Theorem 3.6.). This might eventually lead to

a contour triangulation violating (iii) in Definition 3.8. (the intersection of the

interior of two triangles must be empty).

Figure 3.5. shows the exact and the piecewise linearly approximated contour

f(x) = 1.5 using the trilinear approach described above including the construction

of an additional contour point yn in a single domain cell’s interior for the trilinear

function

f (x) = 2 (1− x)(1− y)(1− z) + 1.6 x(1− y)(1− z) + 1.4 (1− x)y(1− z)

+1.4 (1− x)(1− y)z + .4 x(1− y)z + 2 (1− x)yz + 2 xyz,

where the cell is given by [0, 1]× [0, 1]× [0, 1].
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Fig. 3.5. Exact and piecewise linearly approximated contour in a cell,
f(x, y, z) = 2(1− x)(1− y)(1− z) + 1.6x(1− y)(1− z) + 1.4(1− x)y(1− z)
+1.4(1− x)(1− y)z + .4x(1− y)z + 2(1− x)yz + 2xyz = 1.5, x, y, z ∈ [0, 1].

Remark 3.11. The piecewise planar contour approximation is trilinearly precise

with respect to a single cell in the sense that all the contour points used for the

approximation are points of a contour of the trilinear cell interpolant. By construc-

tion it is a continuous two-dimensional contour triangulation in the sense of the

Definitions (3.8.) and (3.11.).

Remark 3.12. The problem of consistently connecting contour points on cells’

faces does not arise when using convex polyhedra having triangular faces only.

Therefore, it might be worth considering a decomposition of a subset of IR3 into a

set of octahedra as well. In this case, contour polygons would have maximally one

line segment on a face of an octahedron (using a linear interpolation approach).
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Figure 3.6. shows a piecewise triangular contour approximation for the function

f(x) = 1.2
(
(x− 10)2 − (y − 10)2 + (z − 10)2

)
and the contour level f(x) = 60.

The trivariate function is evaluated on an equidistantly spaced rectilinear data grid

of 21 · 21 · 21 points in [0, 20]3. All contour triangles are rendered using flat shading.

Fig. 3.6. Triangular approximation of contour level f(x, y, z) = 60
for f(x, y, z) = 1.2

(
(x− 10)2 − (y − 10)2 + (z − 10)2

)
, x, y, z ∈ [0, 20].

Remark 3.13. At this stage of the triangulation process the quality of the triangu-

lation within a single cell is not taken into account. As soon as one has obtained the

whole set of triangles approximating the contour throughout all cells, smoothness

criteria can be used to improve the triangulation.
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3.3. Computing topological information for a piecewise triangular

trivariate contour approximation

From a computational point of view, a rectilinear trivariate data set is investigated

iteratively, cell by cell, to generate a contour approximation. Considering a single

cell three tables are established, the first table storing all the contour points with

their three-dimensional coordinates (ordered),

Y =
{

(i,xiT ) = (i, xi, yi, zi) | i = 0...nC − 1
}
,

a second table defining which vertices in the first table constitute line segments of

closed polygons on the cell’s faces (ordered),

E =
{

(j, v1
j , v

2
j ) | j = 0...nC − 1

}
,

v1
j and v2

j being indices referring to Y, and a third table (derived from E) specifying

which line segments (ordered) form the edges of closed polygons on the cell’s faces,

P =
{

(p, e0
p, e

1
p, ..., e

np−1
p ) | p = 0...m− 1

}
,

ekp, k = 0...np − 1, being indices referring to E.

The three tables Y, E, and P are for temporary use only. As soon as a trian-

gulation for all the closed contour polygons in the set P has been computed, the

contour points from the temporary table Y are copied into a permanent, global

vertex table V (ordered),

V =
{

(i,xiT ) = (i, xi, yi, zi) | i = 0...nv − 1
}
, (3.12.)

containing all contour points found throughout the whole data set. The triangles

constructed in a single cell’s interior are also added to a permanent, global table T
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defining the overall triangular contour approximation,

T =
{
Tt = (t, v1

t , v
2
t , v

3
t ) | t = 0...nt − 1

}
. (3.13.)

Having computed the complete set T of all triangles approximating a certain

contour, it is essential to derive topological information still “hidden” in the tri-

angulation. Data reduction algorithms and surface generation schemes commonly

require neighborhood information. An algorithm is given that computes the neigh-

bors of each triangle considering the table T only. The contour approximation for

f(u) = α might be split into several non-connected parts, as mentioned before.

Therefore, it is also necessary to know to which part a particular triangle belongs

to if one wants to model the different contour parts separately.

Algorithm 3.1. determines the neighbors for each triangle, i.e., for a given

triangle Tt the algorithm generates the indices of its maximal three neighbors in T .

Algorithm 3.1. Neighborhood

Input: table T of triangles Tt, each given by its own index (referring
to T ) and its three vertex indices (referring to V ).

Output: number of neighbor triangles and their indices (referring to T )
for each triangle Tt in T .

for i = 0 to nt − 1
( cnt := 0; /* number of neighbors */

j := 0;
while j < nt and cnt < 3

( if i 6= j and Ti and Tj are neighbors
then
( cnt := cnt+ 1;

cnt− th neighbor of Ti := j;
)

j := j + 1;
)

number of neighbors of Ti := cnt;
)
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This algorithm is of order O(nt2) with respect to the total number of triangles.

Its performance can be improved by storing the index-triple (i, j, k) of the left-front-

lower corner of the cell Ci for each triangle Tt when Tt lies in Ci’s interior. Thus,

the search for the neighbors of a particular triangle inside a cell Ci can be restricted

to the cell Ci itself and its six neighbor cells, Ci−1,j,k, Ci+1,j,k, Ci,j−1,k, Ci,j+1,k,

Ci,j,k−1, and Ci,j,k+1. Hence, order O(nt) can be achieved.

Two triangles in T belong to the same part of the contour approximation if

there is a path from one triangle to the other one such that all triangles constituting

this path determine pairs of neighbor triangles (Definition 3.9.). To effectively

compute the part (index) a particular triangle belongs to, the following algorithm

is used:

At the beginning all triangles share the not-yet-assigned part index −1. The

first triangle T0 in T is assigned to the first part with index 0. For all the other

triangles Tt, one checks among its neighbors, whether at least one of them has

already been assigned to some part. If none of the neighbors has been assigned yet,

a new part (index) is introduced for triangle Tt; if at least one among its neighbors

already belongs to a certain part, the minimal part (index) among all Tt’s assigned

neighbors is selected as Tt’s part (index). If the neighbors of Tt which are assigned

to a part do not all agree with this minimal part (index), all triangles in T assigned

to such a different part (index) must now also be assigned to the selected minimal

part (index).
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Algorithm 3.2. Part of contour

Input: table T of triangles Tt (including the neighborhood information).
Output: part index for each triangle which determines the part

of the contour approximation it belongs to.

/* initially all triangles have a not-yet-assigned part index −1 */
p := 0; /* first valid part index */
for t = 0 to nt − 1

( determine minimal part index min among
all the part indices of Tt’s neighbors;
if min = −1

then
( part index for triangle Tt := p;

p := p+ 1; /* another part of contour introduced */
)
else
( part index for triangle Tt := min;

if there is 1 [are 2] valid part index p [indices p, p] 6= min
among Tt’s neighbors
then
( part index for all triangles assigned to p [p, p] := min;

/* connecting triangle has been found */
p := p− 1 [2]; /* reduce number of parts appropriately */

)
)

)

The case in brackets (“[ ]”) in algorithm 3.2. indicates the situation when a

triangle has three neighbors with valid part indices (6= −1) which are all different

from each other. At the end, each triangle is assigned to a certain part of the

triangular contour approximation. Obviously, algorithm 3.2. is of order O(nt).

The principal of selecting a part (index) for a triangle is shown in Figure 3.7.

The minimal part (index) among T5’s neighbors is 1. Therefore, T5 as well as all

triangles belonging to part 2 are assigned to part 1.
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Fig. 3.7. Assigning the part index to a triangle in a contour triangulation.

Remark 3.14. It might be worth considering some methods for improving the

triangulation of the contour approximation at this point. Knowing the neighbors for

each triangle in T , the “max−min” or “min−max” angle criteria could be used

to iteratively eliminate triangles with small angles ([Cline & Renka ’84], [Lawson

’77]). Common algorithms swap diagonals of quadrilaterals (given by two neighbor

triangles) in order to enhance the angle configuration.

Considering the fact that the triangulation to be improved is not a planar

triangulation, different optimization criteria might be appropriate. An algorithm

to increase the smoothness of a two-dimensional triangulation in three-dimensional

space is described in [Choi et al. ’88]. There, the (local) quality measure of a trian-
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gulation is the angle between normal vectors of neighbor triangles. The objective

is to minimize these angles by swapping diagonals of quadrilaterals.

3.4. Gradient approximation for rectilinear data

It is not the purpose of this chapter to discuss or derive new ways for gradi-

ent/normal approximation in full detail. Rather, the principal problem is stated,

and general solutions are reviewed in a more survey fashion. Gradient/normal in-

formation is necessary for curvature approximation, data reduction, and surface

generation, discussed in the following chapters. The quality of these subsequent

modeling steps is very much dependent on the quality of the gradient/normal esti-

mation.

In order to construct trivariate functions approximating trivariate data sets

given in either rectilinear or scattered form or to generate smooth surfaces fitting

the different parts of a given two-dimensional contour triangulation of some trivari-

ate function, gradients and normals must be estimated if positional information is

available only. In the case of normal vector approximation, outward unit normal

vectors are estimated defining oriented tangent planes for all contour points in the

contour triangulation.

General information about the construction of bivariate/trivariate functions

approximating scattered data can be found in [Alfeld ’89], [Barnhill ’85], [Foley

’87], [Franke & Nielson ’91], [Hoschek & Lasser ’89], [Nielson & Franke ’83], and

[Worsey & Farin ’87]. In [Stead ’84] different schemes are compared for estimating
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gradients. A local operator generating normal vector estimates for rectilinear a data

set in an “optimal” sense is described in [Zucker & Hummel ’81].

With respect to the strategy pursued here, it is of greater interest to approxi-

mate normal vectors since it is a two-dimensional contour triangulation which will

be modelled later on. One can choose among two possibilities how to obtain normal

vector estimates. The first possibility consists of constructing a trivariate function

locally approximating the rectilinear/scattered data, hence also defining gradients

at the points in a contour triangulation. The second possibility rather derives nor-

mal vector estimates from a contour triangulation directly.

If the first possibility is chosen, it is important to realize that the gradients at

contour points also determine normal vectors:

Theorem 3.7. Let f : IR3→IR be a C1 function and 5f(x0) be non-vanishing. Let

x0 be a point in Cf (α) and v any tangent vector to Cf (α) at x0; then 5f(x0) is

normal to the contour Cf (α) at x0,

5f(x0) v = 0. (3.14.)

Proof. Let c(t) ⊂ Cf (α) be a curve on the contour such that c(0) = x0 and

ċ(0) = v; considering the fact that f(c(t)) = α, and using the chain rule yields

0 = d
dtf(c(t))

∣∣
t=0

= 5f(x0) ċ(0) = 5f(x0) v.

q.e.d.
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Definition 3.14. Let f : IR3→IR be a C1 function and 5f(x0) be non-vanishing.

The outward unit normal vector to Cf (α) at x0 is the vector

n0 =
(
5f(x0) / || 5 f(x0)||

)T
, (3.15.)

where ||(x, y, z)|| =
√

(x2 + y2 + z2). The oriented tangent plane at x0 is given

by the set of all points x = (x, y, z)T ∈ IR3 satisfying the equation

5f(x0) (x− x0, y − y0, z − z0)T = 0. (3.16.)

Choosing the alternative of constructing an approximating function in a neigh-

borhood around a contour point, one must be aware to keep the original rectilin-

ear/scattered trivariate data set.

A method for normal estimation which has proven to yield rather good results

is discussed in [Zucker & Hummel ’81]. Summing up the approach, Zucker reduces

normal estimation to a minimization problem. The expression minimized is

|| f(x)− E{a,b,c}(x) ||.

Here, f(x) is a known trivariate function defined over the unit ball B (B =
{
x|x2 +

y2 + z2 ≤ 1
}

) and E{a,b,c}(x) is the function

E{a,b,c}(x) =
{

+1, if ax+ by + cz ≥ 0;
−1, otherwise.

The coefficients a, b, and c are the unknowns defining an oriented plane through

the origin with normal vector n = (a, b, c)T used as the normal estimate. The norm

is the L2-norm,
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||f(x)|| =
√ ∫ ∫ ∫

B
f2(x) dxdydz.

The result is then applied to the discrete case, given a rectilinear data set with

equal, equidistant spacing in all three spatial directions, ∆ = 4xi = 4yj = 4zk,

all i, j, k. A simple, local operator is derived in order to optimally approximate the

outward normal vector at a grid point xi fixed as the origin of a local coordinate

system for the discrete minimization problem.

Theorem 3.8. Considering solely the 27 neighbor data (xi+r,j+s,k+t, fi+r,j+s,k+t),

r, s, t ∈ {−1, 0, 1}, nearest to (xi
T , fi) in an equally, equidistantly spaced rectilinear

data set, a normal vector ni = (nxi, nyi, nzi)T at xi is optimally approximated by

nxi =
∑

r∈{−1,1}, s,t∈{−1,0,1}

r ci+r,j+s,k+t fi+r,j+s,k+t,

nyi =
∑

s∈{−1,1}, r,t∈{−1,0,1}

s ci+r,j+s,k+t fi+r,j+s,k+t,

nzi =
∑

t∈{−1,1}, r,s∈{−1,0,1}

t ci+r,j+s,k+t fi+r,j+s,k+t, (3.17.)

where ci+r,j+s,k+t =
√
|r|+|s|+|t|
|r|+|s|+|t| , subject to minimizing || f(x)−E{a,b,c}(x) || in this

particular discrete case.

Proof. See [Zucker & Hummel ’81], pages 326 and 329-331.

Normalizing ni yields the desired outward unit normal vector at the point xi.

The principle for computing the x-coordinate of ni is sketched in Figure 3.8. The

involved function values and their weights for the normal vector approximation at

a grid point xi are shown using Zucker’s “3 · 3 · 3” operator.
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Fig. 3.8. The 18 function values and their weights needed for approximating
the x−coordinate for a normal using Zucker’s operator.

The normal vector for a contour point xi ∈ V (formula (3.12.)) on an edge of

a cell Ci is approximated by linear interpolation of the estimated normal vectors

at the rectilinear grid points defining that edge, a normal vector in Ci’s interior is

approximated by trilinear interpolation of the eight normal vectors estimated for

the cell’s corner points. For the case that a contour point xi is along the cell edge

ab one chooses the outward normal vector ni at this point to be

ni = ni
∣∣
x=xi

= (1− t)n
∣∣
x=a

+ tn
∣∣
x=b

, t =
||xi − a||
||b− a||

, (3.18.)

where t ∈ [0, 1] and ||(x, y, z)T || is the Euclidean norm. In the case that xi is in the
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interior of the cell Ci one chooses

ni = ni
∣∣
x=xi

=
1∑
t=0

1∑
s=0

1∑
r=0

nr B
1
r (u)B1

s (v)B1
t (w),

u =
|xi − xxi |

∆
, v =

|yi − xyi |
∆

, w =
|zi − xzi |

∆
, (3.19.)

where nr = ni+r,j+s,k+t, r, s, t ∈ {0, 1}, are the eight outward normal vector es-

timates at Ci’s corner points, where an equally, equidistantly spaced rectilinear

point set is assumed, ∆ = 4xi = 4yj = 4zk, all i, j, k, xi = (xi, yi, zi)T is the

contour point, xi = (xxi ,x
y
i ,x

z
i )T is the left-front-lower corner point of the cell Ci,

B1
l (t) = (1− t)1−ltl, t ∈ [0, 1], l = 0, 1, are the Bernstein polynomials of degree one

and u, v, w ∈ [0, 1].

Normalizing the estimates ni finally determines the set of (ordered) outward

unit normal vectors at each contour point,

N =
{

(i,niT ) = (i, nxi, nyi, nzi) | ||ni|| = 1, i = 0...nv − 1
}
. (3.20.)

Figure 3.9. is obtained from the same data set as the one used for Figure 2.1.

CAT scan density measurements are given as an equally, equidistantly spaced recti-

linear data set of 68 · 64 · 64 points with associated density values fi ∈ [0, 255]. The

contour level approximated is f(x) = 12.5. The triangular approximation consists

of almost 30, 000 contour points and 60, 000 triangles. Outward unit normal vectors

for each contour point are estimated using Zucker’s approach and required for this

Gouraud-shaded rendering of the contour approximation.
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Fig. 3.9. Human skull obtained from a rectilinear CAT scan data set,
68 · 64 · 64 points, fi,j,k ∈ [0, 255], approximation for f(x, y, z) = 12.5.

Remark 3.15. The problem of estimating normal vectors for points in a two-

dimensional triangulation in three-dimensional space using the triangulation alone

has hardly been investigated. A possible good solution to the problem might be the

following approach.

It is well known in differential geometry that a surface in three-dimensional

space can locally be approximated by the graph of a differentiable bivariate func-

tion. In the case of a two-dimensional triangulation in three-dimensional space, one

usually considers the points yj ∈ V, j = 1...m, (equation (3.12.)) determining an

edge with a particular point xi = y0 ∈ V in the triangulation as a localization of
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the triangulation,

Y =
{

xi = y0

}
∪
{

yj | xiyj is an edge in the triangulation, j = 1...m
}
.

By introducing a local, right-handed coordinate system S, defined by xi as

origin and three mutually perpendicular unit vectors d1, d2, and n, a plane P is

defined by the origin and the first two unit vectors. The points in Y can now be

projected into the plane P and their distances dj , j = 0...m, from P be calculated.

Assuming that all projected points in P are different, a bivariate function, e.g.,

a second degree polynomial, can be constructed using the least squares method to

approximate them+1 function values fj = dj , j = 0...m, considering the constraints

f(xj , yj) =
∑

r+s+t≤2, r,s,t≥0

cr,s,t xj
ryj

szj
t = dj , j = 0...m,

where x and y are the coordinates of a projected point in P with respect to the two-

dimensional coordinates system defined by xi (origin) and the unit vectors d1 and

d2, and dj is interpreted as the function value of f at the corresponding projected

point in the direction of n.

Assuming that the linear system of equations for the least squares solution

does not imply a vanishing determinant, the unknown coefficients cr,s,t determine

a residual vector r which can be measured using the L2-norm,

|| r || =

√√√√ m∑
j=0

(
f(xj , yj)− dj

)2
.

This expression really depends on the choice of the orientation of the system

S. Changing the orientation of n (determining the f -axis) appropriately, might lead



55

to a minimization of || r ||. Choosing the normal of the graph of f at xi based on

such an “optimally oriented” coordinate system S presumably is a good estimation

for a normal vector ni. The direction for the normal vector is still ambiguous (ni

or −ni).

Remark 3.16. It is also worth considering a contour approximation for a finite

data set G in either scattered or rectilinear form obtained by computing the length

of the gradient estimates for each point in an original trivariate data set,

G =
{

(xiT , gi) = (xiT , || 5 f(xi)||) | xi ∈ IR3, gi ∈ IR, i = 0...n
}
.

This is a common approach in computer vision for edge detection. Boundaries of

objects in an image (brightness or density functions) are characterized by large

gradients.
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Chapter 4

Curvature approximation for triangulated

surfaces and trivariate functions

4.1. Introduction and essential terms of differential geometry

Methods for exactly calculating and approximating curvatures are important in

geometric modeling for two reasons. In order to judge the quality of a surface

one commonly computes curvatures for points on the surface, renders the surface’s

curvature as a texture map onto the surface and can thereby detect regions with

undesired curvature behavior, such as surface regions locally changing from an ellip-

tic to a hyperbolic shape. On the other hand, surface schemes are being developed

requiring higher order geometric information as input, e.g., normal vectors and

normal curvatures.

Definitions and theorems from classical differential geometry are reviewed as

far as they are needed for the proceeding. In classical differential geometry a surface

is understood as a mapping from IR2 to IR3,

x (u) =
(
x(u, v), y(u, v), z(u, v)

)T ⊂ IR3, u ∈ D ⊂ IR2. (4.1.)

The standard formulae are then used to derive techniques for approximating normal

curvatures when a two-dimensional triangulation of a finite point set with associated

outward unit normal vectors is given in three-dimensional space. Consequently,

curvature estimates can be incorporated into existing surface generating schemes

allowing curvature input. The quality of the curvature approximation is tested for
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triangulated surfaces obtained from a known parametric surface x(u).

The theory of two-dimensional surfaces can easily be extended to the case of

three-dimensional surfaces, e.g., graphs of trivariate functions approximating scalar

fields over a three-dimensional domain,

(
xT , f(x)

)T =
(
x, y, z, f(x, y, z)

)T ⊂ IR4, x ∈ D ⊂ IR3. (4.2.)

If the approximating function f(x) is known, normal curvatures for its graph can

be computed accurately, thus allowing to visualize the graph’s curvature behavior

using one of the rendering techniques for trivariate data sets introduced in chapter

2. Qualitative changes in f ’s three-dimensional graph in four-dimensional space

can be observed, hence providing a quality measure for the chosen approximation

method.

Future trivariate scattered data approximation schemes might as well require

input such as normal curvatures when the approximation process is seen from a more

geometric point of view interpreting the result as a three-dimensional hypersurface.

An estimation method is presented for approximating normal curvatures at four-

dimensional points
(
xi, yi, zi, f(xi, yi, zi)

)T on a three-dimensional hypersurface in

order to generate a smooth graph obtained by solving the trivariate approximation

problem. Again, the quality of the curvature estimation technique is tested for

known trivariate functions. Possibly, multivariate approximation schemes for even

higher dimensions (f(x1, ..., xn), n ≥ 4) will consider such geometric information

shortly.
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Good introductions to differential geometry are [Brauner ’81], [do Carmo ’76],

[Lipschutz ’80], [Strubecker ’55,’58,’59], and [Struik ’61]. Differential geometry is

treated more analytically in [O’Neill ’69]. One of the most comprehensive works on

this subject is [Spivak ’70]. Some information can also be found in [Farin ’88]. An

example for estimating curvatures from a discrete point set is [Calladine ’86]. There,

a technique for approximating Gaussian curvature for points in a two-dimensional

triangulation in three-dimensional space is discussed. An example for a surface

scheme allowing curvature input is introduced in [Hagen & Pottmann ’89]; a trian-

gular surface scheme is described considering positional, normal vector, and normal

curvature information.

Definition 4.1. A regular parametric two-dimensional surface of class Cm

(m ≥ 1) is the point set S in real three-dimensional space IR3 defined by the

mapping

x = x (u) =
(
x(u, v), y(u, v), z(u, v)

)T (4.3.)

of an open set U ⊂ IR2 into IR3 such that

(i) all partial derivatives of x, y, and z of order m or less

are continuous in U, and

(ii) xu × xv 6= (0, 0, 0)T for all (u, v) ∈ U

(the subscripts u and v indicating partial differentiation with respect to u and v,

respectively).

Since condition (ii) in Definition 4.1. implies the linear independence of the two
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vectors xu and xv at any point on the regular surface, they determine the tangent

plane at every surface point.

Definition 4.2. The tangent plane at a point x0 = x(u0) on a regular parametric

two-dimensional surface in three-dimensional space is defined as the set of all points

y in IR3 satisfying the equation

y = x0 + axu(u0) + bxv(u0), a, b ∈ IR. (4.4.)

Definition 4.3. The outward unit normal vector n0 = n(u0) of a regular

parametric surface at a point x0 is given by

n0 =
xu(u0)× xv(u0)
||xu(u0)× xv(u0)||

=
xu × xv
||xu × xv||

, (4.5.)

where || · || indicates the Euclidean norm.

Definition 4.4. Let x(u) be a regular parametric surface of class m, m ≥ 2, and

c(t) = c
(
u(t), v(t)

)
be a (regular) curve of class 2 on the surface through the point

x0 = x(u0). The normal curvature vector to c(t) at x0 is the projection of the

curvature vector k = ṫ/||ṫ||, t = ċ/||ċ||, onto the unit surface normal vector n0,

kn = (k · n0) n0. (4.6.)

The proportionality factor k · n0 is called the normal curvature, denoted by κn.

Definition 4.5. The second degree polynomial

I (du, dv) = xu · xu du2 + 2 xu · xv du dv + xv · xv dv2

= E du2 + 2F du dv +G dv2, (4.7.)
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where du, dv ∈ IR, is called the first fundamental form of a regular paramet-

ric surface x(u). The coefficients E, F, and G are called the first fundamental

coefficients.

Definition 4.6. Assuming that the regular parametric surface x(u) is at least of

order 2, the second degree polynomial

II (du, dv) = −xu · nu du2 − (xu · nv + xv · nu) du dv − xv · nv dv2

= xuu ·n du2 + 2 xuv ·n du dv+xvv ·n dv2 = L du2 + 2M du dv+N dv2, (4.8.)

where du, dv ∈ IR, is called the second fundamental form of x(u). The coeffi-

cients L, M, and N are called the second fundamental coefficients.

Definition 4.7. The two (real) eigenvalues κ1 and κ2 of the matrix

−A = −
(
a1,1 a1,2

a2,1 a2,2

)
=
(
L M
M N

) (
E F
F G

)−1

, (4.9.)

where

a1,1 =
MF − LG
EG− F 2

, a1,2 =
LF −ME

EG− F 2
,

a2,1 =
NF −MG

EG− F 2
, a2,2 =

MF −NE
EG− F 2

,

of a regular surface of class of at least 2 at a point x0 are called principal curva-

tures of the regular parametric surface at x0. The associated eigenvectors determine

the principal curvature directions. Therefore, the principal curvatures are the

(real) roots of the characteristic polynomial of −A, the quadratic polynomial

κ2 + (a1,1 + a2,2) κ+ a1,1a2,2 − a1,2a2,1. (4.10.)
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Remark 4.1. The equations for the matrix elements ai,j in equation (4.9.) are

known as the Gauss-Weingarten equations (or the Gauss-Weingarten map).

Remark 4.2. It is shown in [Spivak ’70] that the eigenvalues of the matrix −A in

equation (4.9.) are always real, and the associated eigenvectors are orthogonal to

each other.

Definition 4.8. The average H of the two principal curvatures κ1 and κ2 is called

the mean curvature, the product K is called the Gaussian curvature of the

regular parametric surface x(u) at x0,

H =
1
2

(κ1 + κ2), K = κ1κ2. (4.11.)

Fig.4.1. Texture map of mean and Gaussian curvature onto a torus,(
(2 + cosu) cos v, (2 + cosu) sin v, sinu

)T
, u, v ∈ [0, 2π];

green/yellow representing negative values,
magenta/blue representing positive values.
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4.2. Curvature approximation for triangulated two-dimensional

surfaces

The graph of a bivariate function f(x, y), f in class Cm, m ≥ 2, mapping an open set

U ⊂ IR2 into IR, can be interpreted as a regular parametric two-dimensional surface

in three-dimensional space using the parametrization x(u, v) = u, y(u, v) = v, and

z(u, v) = f(u, v),

x (u) =
(
u, v, f(u, v)

)T
, (u, v) ∈ D ⊂ IR2. (4.12.)

For this particular surface, one easily derives the formulae

xu = (1, 0, fu)T , xv = (0, 1, fv)T ,

xuu = (0, 0, fuu)T , xuv = (0, 0, fuv)T , xvv = (0, 0, fvv)T , and

n (u) =
xu × xv
||xu × xv||

=
(−fu,−fv, 1)T√

1 + fu
2 + fv

2
. (4.13.)

The first and second fundamental coefficients are therefore given by

E = 1 + fu
2, F = fufv G = 1 + fv

2,

L =
fuu√

1 + fu
2 + fv

2
, M =

fuv√
1 + fu

2 + fv
2
, and N =

fvv√
1 + fu

2 + fv
2
.

(4.14.)

The Gauss-Weingarten map for this particular surface is given by

−A = −
(
a1,1 a1,2

a2,1 a2,2

)
=

1
l

(
fuu fuv
fuv fvv

) (
1 + fu

2 fufv
fufv 1 + fv

2

)−1

, (4.15.)

where l =
√

1 + fu
2 + fv

2.
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Theorem 4.1. Each regular parametric two-dimensional surface x(u) of class m,

m ≥ 2, can locally be represented in the explicit form z = z(x, y) which is at least

C2. Choosing a surface point x0 as origin of a local coordinate system and the z-

axis in the same direction as the surface normal n0 at x0 (thus choosing the tangent

plane at x0 as the xy-plane), the Taylor series for z considering only the terms up

to degree 2 is given by

z (x, y) =
1
2
(
c2,0x

2 + 2c1,1xy + c0,2y
2
)
, (4.16.)

choosing any 2 unit vectors in the xy-plane determining a right-handed orthonormal

coordinate system. Rotating these 2 unit vectors appropriately yields the equation

of the so-called osculating paraboloid at x0,

z (x, y) =
1
2
(
c∗2,0x

2 + c∗0,2y
2
)

such that the two principal curvatures at x0 coincide with the coefficients of this

paraboloid, κ1 = c∗2,0 and κ2 = c∗0,2.

Proof. See [Strubecker ’58,’59] or [Struik ’61].

The principal curvature approximation method to be introduced is based on

bivariate polynomials. It is essential to prove a certain property of such functions be-

fore describing the approximation technique. Given an origin in the plane, the graph

of a bivariate polynomial f consisting of all the points in the set
{(

x, y, f (x, y)
)T

| x, y ∈ IR
}

is independent of the choice of the orientation of the two unit vectors

determining an orthonormal coordinate system for the plane. This fact implies that



64

the principal curvatures of the graph, a two-dimensional surface, are independent

of the two unit vectors as well.

Lemma 4.1. The equation

i∑
k=0

(−1)k
(
i

k

)
(x cos2α+ y sinα cosα)

i−k
(−x sin2α+ y sinα cosα)

k
= xi (4.17.)

holds for all x, y, α ∈ IR and i ≥ 0.

Proof. It is easy to show that equation (4.17.) is valid for i = 0:

1 = x0.

The induction hypothesis is made that equation (4.17.) is true for i − 1. Thereby

one proves that

i∑
k=0

(−1)k
(
i

k

)
(x cos2α+ y sinα cosα)

i−k
(−x sin2α+ y sinα cosα)

k

=
(
(x cos2α+ y sinα cosα)− (−x sin2α+ y sinα cosα)

)
i−1∑
k=0

(−1)k
(
i− 1
k

)
(x cos2α+ y sinα cosα)

i−1−k
(−x sin2α+ y sinα cosα)

k

= x (cos2α+ sin2α) xi−1 = x xi−1 = xi.

q.e.d.

Lemma 4.2. The equation

j∑
l=0

(
j

l

)
(x sinα cosα+ y sin2α)

j−l
(−x sinα cosα+ y cos2α)

l
= yj (4.18.)

holds for all x, y, α ∈ IR and j ≥ 0.
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Proof. Equation (4.18.) holds for j = 0:

1 = y0.

Using the induction hypothesis that equation (4.18.) is true for j − 1, one proves

that
j∑
l=0

(
j

l

)
(x sinα cosα+ y sin2α)

j−l
(−x sinα cosα+ y cos2α)

l

=
(
(x sinα cosα+ y sin2α) + (−x sinα cosα+ y cos2α)

)
j−1∑
l=0

(
j − 1
l

)
(x sinα cosα+ y sin2α)

j−1−l
(−x sinα cosα+ y cos2α)

l

= y (sin2α+ cos2α) yj−1 = y yj−1 = yj .

q.e.d.

Lemma 4.1. and Lemma 4.2. are needed to prove the following theorem.

Theorem 4.2. Let f be the bivariate polynomial

f (x, y) =
∑
i+j≤n
i,j≥0

ci,j x
i yj , (4.19.)

where a point in the plane has coordinates x and y with respect to a coordinate system

given by an origin o and two orthonormal basis vectors d1 and d2; rotating d1 and

d2 around the origin o changes the representation of the bivariate polynomial, but

not its graph.

Proof. Let d1 and d2 be two unit vectors determining a first orthonormal coordi-

nate system together with the origin o, and let d1 and d2 be a second pair of unit

vectors obtained by rotating d1 and d2 by an angle α around o. A point in the
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plane may have coordinates (x, y)T with respect to the first coordinate system and

coordinates (
x
y

)
=
(

cosα sinα
− sinα cosα

)(
x
y

)
(4.20.)

with respect to the second coordinate system. Assuming (4.19.) is the represen-

tation of the polynomial f with respect to the first coordinate system, f can be

rewritten using the inverse map of (4.20.):

f (x = x cosα− y sinα, y = x sinα+ y cosα)

=
∑
i+j≤n
i,j≥0

ci,j (x cosα− y sinα)i (x sinα+ y cosα)j . (4.21.)

Evaluating f at the point (x, y)T = (x cosα+y sinα, −x sinα+y cosα)T , consider-

ing the binomial theorem, Lemma 4.1., and Lemma 4.2., one derives the equations

f (x = x cosα+ y sinα, y = −x sinα+ y cosα)

=
∑
i+j≤n
i,j≥0

ci,j
(
cosα (x cosα+ y sinα)− sinα (−x sinα+ y cosα)

)i
(
sinα (x cosα+ y sinα) + cosα (−x sinα+ y cosα)

)j
=
∑
i+j≤n
i,j≥0

ci,j

( i∑
k=0

(−1)k
(
i

k

)(
cosα(x cosα+ y sinα)

)i−k(sinα(−x sinα+ y cosα)
)k

j∑
l=0

(
j

l

) (
sinα (x cosα+ y sinα)

)j−l (cosα (−x sinα+ y cosα)
)l )
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=
∑
i+j≤n
i,j≥0

ci,j

( i∑
k=0

(−1)k
(
i

k

)
(x cos2α+ y sinα cosα)

i−k
(−x sin2α+ y sinα cosα)

k

j∑
l=0

(
j

l

)
(x sinα cosα+ y sin2α)

j−l
(−x sinα cosα+ y cos2α)

l
)

=
∑
i+j≤n
i,j≥0

ci,j x
i yj = f (x, y)

proving the theorem.

q.e.d.

The curvature approximation method is based on a localization of a two-

dimensional triangulation. The local neighborhood around a point xi is its platelet.

Definition 4.9. Given a two-dimensional triangulation in two- or three-dimensional

space, the platelet Pi associated with a point xi in the triangulation is the set of

all triangles (determined by the index-triples (j1, j2, j3) specifying their vertices)

sharing xi as a common vertex,

Pi =
⋃ {

(j1, j2, j3) | i = j1 ∨ i = j2 ∨ i = j3
}
. (4.22.)

The vertices constituting Pi are referred to as platelet points.

In order to approximate the principal curvatures at a point xi in a two-

dimensional triangulation a bivariate polynomial is constructed for a certain neigh-

borhood around this point. Considering the facts that a two-dimensional surface can

locally be represented explicitly (Theorem 4.1.) and that the graph of a bivariate

polynomial is independent of the orientation of the two unit vectors determining an
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orthonormal coordinate system for the plane (Theorem 4.2.), the following sequence

of computations is proposed.

(i) Determine the platelet points associated with xi.

(ii) Compute the plane P passing through xi and

having ni (the normal at xi) as its normal.

(iii) Define an orthonormal coordinate system in P with

xi as its origin and two arbitrary unit vectors in P.

(iv) Compute the distances of all platelet points from the plane P.

(v) Project all platelet points onto the plane, P and represent their

projections with respect to the local coordinate system in P.

(vi) Interpret the projections in P as abscissae values and the distan-

ces of the original platelet points from P as ordinate values.

(vii) Construct a bivariate polynomial f approximating these

ordinate values.

(viii) Compute the principal curvatures of f ’s graph at xi.

All steps needing further explaining are discussed in greater detail. Let
{
yj =

(xj , yj , zj)T | j = 0...ni
}

be the set of all platelet points associated with the point

xi such that y0 = xi, and let n = (nx, ny, nz)T be the outward unit normal vector

at y0. The implicit equation for the plane P is then given by

n · (x− y0) = nx(x− x0) + ny(y − y0) + nz(z − z0)

= nxx+ nyy + nzz − (nxx0 + nyy0 + nzz0)
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= Ax+By + Cz +D = 0. (4.23.)

Depending on the outward unit normal vector n one chooses a vector a per-

pendicular to n (a · n = 0) among the possibilities

a =


1
nx

(
−(ny + nz), nx, nx

)T
, nx 6= 0,

1
ny

(
ny,−(nx + nz), ny

)T
, ny 6= 0,

1
nz

(
nz, nz,−(nx + ny)

)T
, nz 6= 0,

in order to obtain the first unit basis vector b1,

b1 =
a
||a||

, ||a|| =
√

(a · a).

The second unit basis vector b2 is defined as the cross product of n and b1,

b2 = n× b1.

The perpendicular signed distances dj , j = 0...ni, of all platelet points yj from

the plane P are

dj = dist (yj , P ) =
Axj +Byj + Czj +D√

A2 +B2 + C2
= Axj +Byj + Czj +D. (4.24.)

Projecting all platelet points yj onto P yields the points yPj ,

yPj = yj − dj n. (4.25.)

Considering y0 as the origin and b1 and b2 as the two unit basis vectors of a

local two-dimensional orthonormal coordinate system for the plane P, each point yPj

in P can be expressed in terms of that coordinate system. Therefore, one computes

the difference vectors

dj = yPj − y0, j = 0...ni,
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and expresses them as linear combinations of the two unit basis vectors b1 and b2

in P. Each difference vector dj can be represented in the form

dj = (dj · b1) b1 + (dj · b2) b2, (4.26.)

defining the local coordinates uj and vj of the point yPj in terms of the local coor-

dinate system: (
uj , vj

)T =
(
dj · b1,dj · b2

)T
. (4.27.)

Interpreting the local coordinates uj and vj as abscissae values and the signed

distances dj as ordinate values (in direction of the normal n), a polynomial f(u, v) of

degree two (see Theorem 4.1.) is constructed approximating these ordinate values.

Forcing the polynomial f to satisfy f(0, 0) = fu(0, 0) = fv(0, 0) = 0, the constraints

f (uj , vj) =
1
2

(
c2,0uj

2 + 2c1,1ujvj + c0,2vj
2
)

= dj , j = 1...ni,

remain. Written in matrix representation these constraints are u1
2 2u1v1 v1

2

...
...

...
uni

2 2univni vni
2

 c2,0
c1,1
c0,2

 = U c = d =

 d1
...
dni

 . (4.28.)

This overdetermined system of linear equations is solved using a least squares ap-

proach (see [Davis ’75]). The resulting normal equations are

UT U c = UT d. (4.29.)

Provided the determinant of UTU does not vanish this 3 · 3−system of linear equa-

tions can immediately be solved using Cramer’s rule.
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Theorem 4.3. The principal curvatures κ1 and κ2 of the graph
(
u, v, f(u, v)

)T ⊂
IR3, u, v ∈ IR, of the bivariate polynomial

f (u, v) =
1
2

(
c2,0u

2 + 2c1,1uv + c0,2v
2
)

(4.30.)

at the point
(

0, 0, f(0, 0)
)T are given by the two real roots of the quadratic equation

κ2 − (c2,0 + c0,2) κ+ c2,0c0,2 − c1,12 = 0. (4.31.)

Proof. According to Definition 4.7. and equation (4.15.), the principal curvatures

of f ’s graph are the eigenvalues of the matrix

−A =
1
l

(
fuu fuv
fuv fvv

) (
1 + fu

2 fufv
fufv 1 + fv

2

)−1

,

where l =
√

1 + fu
2 + fv

2. Evaluating −A for u = v = 0, one obtains the matrix

−A =
(
c2,0 c1,1
c1,1 c0,2

)
,

having the characteristic polynomial in (4.31.).

q.e.d.

Solving the normal equations (4.29.) and determining the roots of the charac-

teristic polynomial in (4.31.), one finally obtains the desired approximations for the

principal curvatures at the point xi.

The above construction is illustrated in Figure 4.2. Shown are the platelet

points around the point xi, the tangent plane P, its local orthonormal coordinate
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system (origin xi and basis vectors b1 and b2), and the projections of the platelet

points (yPj ) onto P.

Fig. 4.2. Construction of a bivariate polynomial for
platelet points in a two-dimensional triangulation.

The presented technique for principal curvature approximation is tested for

graphs of several bivariate functions. The exact principal curvatures κ1
ex and κ2

ex

are compared with the approximated principal curvatures κ1
app and κ2

app; the

exact mean curvature Hex = 1
2 (κ1

ex + κ2
ex) is compared with the average of

the approximated principal curvatures Happ = 1
2 (κ1

app + κ2
app) and the exact

Gaussian curvature Kex = κ1
exκ2

ex with the product of the approximated principal

curvatures Kapp = κ1
appκ2

app.
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All bivariate test functions f(x, y) are defined over [−1, 1]× [−1, 1] and evalu-

ated on a 51 · 51−grid with equidistant spacing,

(xi, yj)T =
(
−1 +

i

25
,−1 +

j

25

)T
, i, j = 0...50,

determining a finite set of three-dimensional points on their graphs,

{(
xi, yj , f(xi, yj)

)T | i, j = 0...50
}
.

The triangulation of a function’s graph is obtained by splitting each quadrilateral

specified by its index quadruple

(
(i, j), (i+ 1, j), (i+ 1, j + 1), (i, j + 1)

)
into the two triangles T 1

i,j and T 2
i,j identified by their index triples,

T 1
i,j =

(
(i, j), (i+1, j), (i+1, j+1)

)
and T 2

i,j =
(

(i, j), (i+1, j+1), (i, j+1)
)
.

The root-mean-square error (RMS error) is a common error measure and is

computed for each test example and curvature type. The RMS error is defined as√√√√ 1
n

n−1∑
i=0

(fiex − fiapp)2 (4.32.)

where n is the total number of exact (or approximated) values fiex (fiapp). Here, n

equals 51 ·51, depending on the curvature type approximated fiex can represent the

exact values for κ1
ex, κ2

ex, Hex or Kex, and fiapp can represent the approximated

values for κ1
app, κ2

app, Happ or Kapp, respectively. Table 4.1. summarizes the

test results for the approximation of the principal curvatures, the mean and the

Gaussian curvature.
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Tab. 4.1. RMS errors of curvature approximation for graphs of bivariate functions.

Function κ1 κ2 H K

1. Plane:
.2 (x+ y). 0 0 0 0

2. Cylinder:√
2− x2. .000291 .000035 .000132 .000025

3. Sphere:√
4− (x2 + y2). .000159 .000046 .000080 .000080

4. Paraboloid:
.4 (x2 + y2). .003073 .001342 .001358 .001684

5. Hyperboloid:
.4 (x2 − y2). .002058 .002058 .001057 .001767

6. Monkey saddle:
.2 (x3 − 3xy2). .004483 .004483 .001591 .007247

7. Cubic polynomial:
.15 (x3 + 2x2y − xy + 2y2). .002258 .003598 .001665 .002242

8. Exponential function:
e−

1
2 (x2+y2). .001757 .005546 .002722 .002602

9. Trigonometric function:
.1
(
cos(πx) + cos(πy)

)
. .002998 .002821 .001013 .003541

In the following figures, the four particular curvatures used in Table 4.1. are

mapped as textures onto the hyperboloid (function 5), the graph of the cubic poly-

nomial (function 7) and the graph of the trigonometric function (function 9). Pairs

of consecutive figures show the exact (upper figure) and the approximated curva-

tures (lower figure). The principal curvature κ1 is visualized in the upper-left, κ2 in

the upper-right, the mean curvature H in the lower-left and the Gaussian curvature

K in the lower-right corner of each figure. Figures 4.3. and 4.4. show the exact and

approximated curvature values for function 5, Figures 4.5. and 4.6. for function 7,

and Figures 4.7. and 4.8. for function 9.
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Fig. 4.3. Exact curvatures κ1
ex, κ2

ex, Hex, and Kex

on the graph of f(x, y) = .4 (x2 − y2), x, y ∈ [−1, 1].

Fig. 4.4. Approximated curvatures κ1
app, κ2

app, Happ, and Kapp

on the graph of f(x, y) = .4 (x2 − y2), x, y ∈ [−1, 1].
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Fig. 4.5. Exact curvatures κ1
ex, κ2

ex, Hex, and Kex

on the graph of f(x, y) = .15 (x3 + 2x2y − xy + 2y2), x, y ∈ [−1, 1].

Fig. 4.6. Approximated curvatures κ1
app, κ2

app, Happ, and Kapp

on the graph of f(x, y) = .15 (x3 + 2x2y − xy + 2y2), x, y ∈ [−1, 1].
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Fig. 4.7. Exact curvatures κ1
ex, κ2

ex, Hex, and Kex

on the graph of f(x, y) = .1
(
cos(πx) + cos(πy)

)
, x, y ∈ [−1, 1].

Fig. 4.8. Approximated curvatures κ1
app, κ2

app, Happ, and Kapp

on the graph of f(x, y) = .1
(
cos(πx) + cos(πy)

)
, x, y ∈ [−1, 1].
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4.3. Curvature approximation for triangulated three-dimensional

graphs of trivariate functions

The graph of a trivariate function f(x, y, z), f in class Cm, m ≥ 2, mapping an open

set U ⊂ IR3 into IR can be interpreted as a regular parametric three-dimensional

surface in four-dimensional space (see Definition 4.1.) using the parametrization

x(u, v, w) = u, y(u, v, w) = v, z(u, v, w) = w, and W (u, v, w) = f(u, v, w),

x (u) =
(
u, v, w, f(u, v, w)

)T
, (u, v, w) ∈ D ⊂ IR3. (4.33.)

For this particular hypersurface, one easily derives the formulae

xu = (1, 0, 0, fu)T , xv = (0, 1, 0, fv)T , xw = (0, 0, 1, fw)T ,

xuu = (0, 0, 0, fuu)T , xuv = (0, 0, 0, fuv)T , xuw = (0, 0, 0, fuw)T ,

xvv = (0, 0, 0, fvv)T , xvw = (0, 0, 0, fvw)T , xww = (0, 0, 0, fww)T , and

n (u) =
cross product (xu,xv,xw)
|| cross product (xu,xv,xw) ||

=
(−fu,−fv,−fw, 1)T√
1 + fu

2 + fv
2 + fw

2
(4.34.)

(for the n-dimensional cross product see [Weld ’90]).

Definition 4.10. The three-dimensional tangent space at a point x0 = x(u0) on

a regular parametric three-dimensional surface in four-dimensional space is defined

as the set of all points y in IR4 satisfying the equation

y = x0 + axu(u0) + bxv(u0) + cxw(u0), a, b, c ∈ IR. (4.35.)
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The Gauss-Weingarten map for this special graph interpreted as a three-dimensional

hypersurface in four-dimensional space is given by

−A = −

 a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3


=

1
l

 fuu fuv fuw
fuv fvv fvw
fuw fvw fww

  1 + fu
2 fufv fufw

fufv 1 + fv
2 fvfw

fufw fvfw 1 + fw
2

−1

, (4.36.)

where l =
√

1 + fu
2 + fv

2 + fw
2.

Definition 4.11. The three (real) eigenvalues κ1, κ2, and κ3 of the matrix −A

from equation (4.36.) are called the principal curvatures of the three-dimensional

graph of the trivariate function f(x, y, z). Therefore, the principal curvatures are

the (real) roots of the characteristic polynomial of −A, the cubic polynomial

κ3+(a1,1+a2,2+a3,3) κ2+(a1,1a2,2+a1,1a3,3+a2,2a3,3−a1,2a2,1−a1,3a3,1−a2,3a3,2) κ

+(a1,1a2,2a3,3 +a1,2a2,3a3,1 +a1,3a2,1a3,2−a1,1a2,3a3,2−a1,2a2,1a3,3−a1,3a2,2a3,1).

(4.37.)

The average H of the principal curvatures is called the mean curvature, the

product K is called the Gaussian curvature,

H =
1
3

(κ1 + κ2 + κ3), K = κ1κ2κ3. (4.38.)

Figure 4.9. shows the mean (left) and the Gaussian curvature (right) in three

planes intersecting the three-dimensional domain of a trivariate function using the

visualization technique described in chapter 2.3. (slicing). Curvature changes in f ’s

graph can clearly be recognized, giving rise to the use of these particular curvature

measures as indicators for the smoothness of trivariate functions.
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Fig. 4.9. Mean and Gaussian curvature of the graph of
f(x, y, z) = .4

(
x2 + y2 + z2

)
, x, y, z ∈ [−1, 1].

The properties of three-dimensional surfaces stated in the following theorems

are needed for the curvature approximation method to be deduced subsequently.

Theorem 4.4. Each regular parametric three-dimensional surface x(u) of class m,

m ≥ 2, can locally be represented in the explicit form W = W (x, y, z), where W is

an at least C2 function. Choosing a surface point x0 as origin of a local coordinate

system and the W -axis in the same direction as the surface normal n0 at x0, the

Taylor series for W considering only the terms up to degree 2 is given by

W (x, y, z) =
1
2
(
c2,0,0x

2 + 2c1,1,0xy + 2c1,0,1xz + c0,2,0y
2 + 2c0,1,1yz + c0,0,2z

2
)
,

(4.39.)
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choosing any 3 unit vectors in the xyz-tangent space determining a right-handed

orthonormal coordinate system. Changing the orientation of these 3 unit vectors

appropriately yields the equation of the so-called osculating paraboloid at x0,

W (x, y, z) =
1
2
(
c∗2,0,0x

2 + c∗0,2,0y
2 + c∗0,0,2z

2
)

such that the three principal curvatures at x0 coincide with the coefficients of this

paraboloid, κ1 = c∗2,0,0, κ2 = c∗0,2,0, and κ3 = c∗0,0,2.

Proof. See [Strubecker ’58,’59] or [Spivak ’70].

Theorem 4.5. Let f be the trivariate polynomial

f (x, y, z) =
∑

i+j+k≤n
i,j,k≥0

ci,j,k x
i yj zk, (4.40.)

where a point in space has coordinates x, y, and z with respect to a coordinate system

given by an origin o and three orthonormal basis vectors d1, d2, and d3; changing

the orientation of the orthonormal basis vectors changes the representation of the

trivariate polynomial, but not its graph.

Proof. Analogous to the proof of Theorem 4.2.

As for the two-dimensional case, the principal curvature approximation tech-

nique requires a localization of a three-dimensional triangulation.

Definition 4.12. Given a three-dimensional triangulation (also referred to as a

tetrahedrization) in three- or four-dimensional space, the platelet Pi associated

with a point xi in the triangulation is the set of all tetrahedra (determined by the

index-quadruples (j1, j2, j3, j4) specifying their vertices) sharing xi as a common
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vertex,

Pi =
⋃
{(j1, j2, j3, j4) | i = j1 ∨ i = j2 ∨ i = j3 ∨ i = j4}. (4.41.)

The vertices constituting Pi are referred to as platelet points.

The sequence of computations for principal curvature approximation in the

two-dimensional case, described in chapter 4.2., can easily be extended to the three-

dimensional case. The following steps must be executed.

(i) Determine the platelet points associated with xi.

(ii) Compute the tangent space P passing through xi

and having ni (the normal at xi) as its normal.

(iii) Define an orthonormal coordinate system in P with

xi as its origin and three arbitrary unit vectors in P.

(iv) Compute the distances of all platelet points from the tangent

space P.

(v) Project all platelet points onto the tangent space P, and represent

their projections with respect to the local coordinate system in P.

(vi) Interpret the projections in P as abscissae values and the distan-

ces of the original platelet points from P as ordinate values.

(vii) Construct a trivariate polynomial f approximating these

ordinate values.

(viii) Compute the principal curvatures of f ’s graph at xi.
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Some steps are now explained in more detail. Let
{

yj = ( xj , yj , zj ,Wj )T

| j = 0...ni
}

be the set of all platelet points associated with the point xi such that

y0 = xi, and let n = (nx, ny, nz, nW )T be the outward unit normal vector at y0.

The implicit equation for the tangent space P is given by

n · (x− y0) = nx(x− x0) + ny(y − y0) + nz(z − z0) + nW (W −W0)

= nxx+ nyy + nzz + nWW − (nxx0 + nyy0 + nzz0 + nWW0)

= Ax+By + Cz +DW + E = 0. (4.42.)

Clearly, the four vectors

n =
(−fu,−fv,−fw, 1)T√
1 + fu

2 + fv
2 + fw

2
,

a1 = (1, 0, 0, 0)T , a2 = (0, 1, 0, 0)T , and a3 = (0, 0, 1, 0)T

are linearly independent and therefore form a basis for IR4. Obviously, a1, a2, and

a3 are not necessarily perpendicular to the normal n. Using Gram-Schmidt orthog-

onalization yields an orthonormal basis for IR4 consisting of the basis vectors n, b1,

b2, and b3, where b1, b2, and b3 are computed as

b1 = (a1 · n) n, b1 = a1 − b1, b1 =
b1

||b1||
,

b2 = (a2 · n) n + (a2 · b1) b1, b2 = a2 − b2, b2 =
b2

||b2||
, and

b3 = (a3 · n) n + (a3 · b1) b1 + (a3 · b2) b2, b3 = a3 − b3, b3 =
b3

||b3||
,

||bi|| =
√

(bi · bi), i = 1, 2, 3.
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The perpendicular signed distances dj , j = 0...ni, of all platelet points yj from

the tangent space P are

dj = dist (yj , P ) =
Axj +Byj + Czj +DWj + E√

A2 +B2 + C2 +D2
= Axj+Byj+Czj+DWj+E.

(4.43.)

Projecting all platelet points yj onto P yields the points yPj , where

yPj = yj − dj n. (4.44.)

Again, y0 is seen as the origin, and b1, b2, and b3 are regarded as the three

unit basis vectors of a local three-dimensional orthonormal coordinate system for

the tangent space P. Each point yPj in P is expressed in terms of that coordinate

system. Computing the difference vectors dj as

dj = yPj − y0, j = 0...ni,

and expressing them as linear combinations of the basis vectors b1, b2, and b3 in

P, one obtains a new representation for dj ,

dj = (dj · b1) b1 + (dj · b2) b2 + (dj · b3) b3, (4.45.)

defining the local coordinates uj , vj , and wj of the point yPj in terms of the local

coordinate system:

(
uj , vj , wj

)T =
(
dj · b1,dj · b2,dj · b3

)T
. (4.46.)

The local coordinates uj , vj , and wj define the abscissae values and the signed

distances dj the ordinate values (in direction of the normal n) for a polynomial
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f(u, v, w) of degree two (see Theorem 4.4.) which is constructed by approximating

these ordinate values. Forcing f to satisfy the conditions f(0, 0, 0) = fu(0, 0, 0) =

fv(0, 0, 0) = fw(0, 0, 0) = 0 the constraints

f (uj , vj , wj) =

1
2

(
c2,0,0uj

2 + 2c1,1,0ujvj + 2c1,0,1ujwj + c0,2,0vj
2 + 2c0,1,1vjwj + c0,0,2wj

2
)

= dj ,

j = 1...ni, remain. In matrix representation, these constraints are

 u1
2 2u1v1 2u1w1 v1

2 2v1w1 w1
2

...
...

...
...

...
...

uni
2 2univni 2uniwni vni

2 2vniwni wni
2



c2,0,0
c1,1,0
c1,0,1
c0,2,0
c0,1,1
c0,0,2



= U c = d =

 d1
...
dni

 . (4.47.)

Using the least squares approach, the resulting normal equations are

UT U c = UT d. (4.48.)

This 6·6−system of linear equations can easily be solved using Gaussian elimination

provided the determinant of UTU does not vanish.

A theorem in multi-dimensional differential geometry ensures that the three

principal curvatures at a point on the graph of a trivariate function are always real.

Theorem 4.6. The principal curvatures κ1, κ2, and κ3 at any point on the graph(
u, v, w, f(u, v, w)

)T ⊂ IR4, u, v, w ∈ IR, of a trivariate function f of class m,
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m ≥ 2, are real and are the eigenvalues of the Gauss-Weingarten map associated

with its graph at a particular point.

Proof. See [Spivak ’70] or [Weld ’90].

Theorem 4.7. The three principal curvatures κ1, κ2, and κ3 of the graph
(
u, v, w,

f(u, v, w)
)T ⊂ IR4, u, v, w ∈ IR, of the trivariate polynomial

f (u, v, w) =
1
2

(
c2,0,0u

2 + 2c1,1,0uv + 2c1,0,1uw + c0,2,0v
2 + 2c0,1,1vw + c0,0,2w

2
)

(4.49.)

at the point
(

0, 0, 0, f(0, 0, 0)
)T are given by the three real roots of the cubic equation

− κ3 + (c2,0,0 + c0,2,0 + c0,0,2) κ2

− (c2,0,0c0,2,0 + c2,0,0c0,0,2 + c0,2,0c0,0,2 − c1,1,02 − c1,0,12 − c0,1,12) κ

+ (c2,0,0c0,2,0c0,0,2 +2c1,1,0c1,0,1c0,1,1−c2,0,0c0,1,12−c0,2,0c1,0,12−c0,0,2c1,1,02) = 0.

(4.50.)

Proof. According to Definition 4.11. and equation (4.36.) the principal curvatures

of f ’s graph are the eigenvalues of the matrix

−A =
1
l

 fuu fuv fuw
fuv fvv fvw
fuw fvw fww

  1 + fu
2 fufv fufw

fufv 1 + fv
2 fvfw

fufw fvfw 1 + fw
2

−1

,

where l =
√

1 + fu
2 + fv

2 + fw
2. Evaluating −A for u = v = w = 0 one obtains

the symmetric matrix

−A =

 c2,0,0 c1,1,0 c1,0,1
c1,1,0 c0,2,0 c0,1,1
c1,0,1 c0,1,1 c0,0,2

 ,
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having the characteristic polynomial in (4.50.).

q.e.d.

The roots of the characteristic polynomial in (4.50.) finally determine the

approximations for the principal curvatures at the point xi.

Remark 4.3. It is well known in linear algebra that the eigenvalues of a symmetric

matrix are all real (see [Lang ’66]). Considering this fact, it is obvious that the three

roots of the cubic characteristic polynomial appearing in Theorem 4.7. must also

be real since the matrix −A is symmetric.

Remark 4.4. The first root of the cubic polynomial in equation (4.50.) is computed

using Newton’s method. The other two roots are calculated after factorization of

the cubic polynomial.

The principal curvature approximation technique is examined for graphs of

six trivariate functions. The exact mean curvature Hex = 1
3 (κ1

ex + κ2
ex + κ3

ex)

is compared with the average of the approximated principal curvatures Happ =

1
3 (κ1

app + κ2
app + κ3

app) and the exact Gaussian curvature Kex = κ1
exκ2

exκ3
ex

with the product of the approximated principal curvatures Kapp = κ1
appκ2

appκ3
app.

All trivariate test functions f(x, y, z) are defined over [−1, 1]× [−1, 1]× [−1, 1]

and are evaluated on a 26 · 26 · 26−grid with equidistant spacing,

(xi, yj , zk)T =
(
−1 +

i

12.5
,−1 +

j

12.5
,−1 +

k

12.5

)T
, i, j, k = 0...25,

determining the set of four-dimensional points on their graphs,

{(
xi, yj , zk, f(xi, yj , zk)

)T | i, j, k = 0...25
}
.
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The triangulation (tetrahedrization) for a function’s graph is determined by splitting

each domain cell Ci (see Definition 3.12.) specified by its eight indices in the tuple

(
(i, j, k), (i+ 1, j, k), (i+ 1, j + 1, k), (i, j + 1, k),

(i, j, k + 1), (i+ 1, j, k + 1), (i+ 1, j + 1, k + 1), (i, j + 1, k + 1)
)

into the six tetrahedra T li , l = 1...6, mentioned in chapter 3.2. (splitting a cuboid

into six tetrahedra).

Table 4.2. summarizes the test results for the approximation of the mean and

the Gaussian curvature.

Tab. 4.2. RMS errors of curvature approximation for graphs of trivariate functions.

Function H K

1. Linear polynomial:
.2 (x+ y + z). 0 0

2. Quadratic polynomial q1:
.4 (x2 + y2 + z2). .002950 .002597

3. Quadratic polynomial q2:
.4 (x2 − y2 − z2). .001115 .002216

4. Cubic polynomial:
.15 (x3 + 2x2y − xz2 + 2y2). .002545 .001207

5. Exponential function:
e−

1
2 (x2+y2+z2). .006349 .002802

6. Trigonometric function:
.1
(
cos(πx) + cos(πy) + cos(πz)

)
. .003269 .009065
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Curvature of a trivariate function’s graph is rendered by slicing the function’s

domain with planes and representing the magnitude of the curvature by different

colors (see slicing methods, chapter 2.3.). Exact and approximated curvatures are

shown for the functions 3, 4, and 6. In each figure, the exact mean and Gaussian

curvatures are shown at the top, the corresponding approximated curvatures at the

bottom. Figure 4.10. shows the exact and the approximated mean and Gaussian

curvatures for the graph of function 3, Figure 4.11. for the graph of function 4, and

Figure 4.12. for function 6.

Fig. 4.10. Exact and approximated mean and Gaussian curvatures
of the graph of f(x, y, z) = .4 (x2 − y2 − z2), x, y, z ∈ [−1, 1].
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Fig. 4.11. Exact and approximated mean and Gaussian curvatures
of the graph of f(x, y, z) = .15 (x3 + 2x2y − xz2 + 2y2), x, y, z ∈ [−1, 1].

Fig. 4.12. Exact and approximated mean and Gaussian curvatures
of the graph of f(x, y, z) = .1

(
cos(πx) + cos(πy) + cos(πz)

)
, x, y, z ∈ [−1, 1].
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Chapter 5

Data reduction for triangulated surfaces

5.1. Existing schemes and necessary definitions

Data reduction schemes are essential for efficient data storage. Storing and process-

ing more data than necessary is both a waste of space and time. In the context of

digitizing curves and surfaces an efficient scheme does not generate more data points

than necessary to represent a particular geometric object within a prescribed tol-

erance. E.g., when using piecewise linear approximation storing lots of data points

in “flat” regions is rather unsophisticated.

Based on this observation a data reduction algorithm is developed. Given a

two-dimensional triangulation in three-dimensional space each triangle is weighted

according to the principal curvatures at its vertices. A triangle indicates a surface

region with low curvature, when the sum of the absolute curvatures at its vertices

is low. This measure is used as a weight to determine a triangle’s significance in

the triangulation.

The lower a triangle’s weight is the earlier it is removed. This paradigm is ap-

plied to derive an iterative algorithm removing the triangle with the lowest weight

(the lowest absolute curvatures) in each step. Thus, the triangulation is adaptively

modified, and the local density of triangles reflects the original surface’s curvature

behavior. At the end, surface regions with low curvature are represented by rela-

tively larger triangles than highly curved regions.

The term “data-dependent triangulation” is commonly used when function
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values at data points in the plane are considered for constructing a “good” triangu-

lation of the implied piecewise linear function. This concept is discussed in [Dyn et

al. ’90a] and [Dyn et al. ’90b]. Knot removal strategies for spline curves and tensor

product surfaces (in the function setting) are described in [Arge et al. ’90], [Lyche

& Mørken ’87], and [Lyche & Mørken ’88]. Given scattered points in the plane and

associated function values an iterative knot removal algorithm is discussed in [Le

Méhauté & Lafranche ’89] based on the resulting spline.

The data reduction technique introduced here is similar to the method in [Le

Méhauté & Lafranche ’89] in the sense that an iterative reduction scheme is used.

However, the method deduced subsequently removes triangles instead of single data

points. Furthermore, it is not restricted to a two-dimensional triangulation ob-

tained as the graph of a bivariate function, but can be applied to more general

two-dimensional triangulations in three-dimensional space, e.g., triangulations of

parametric surfaces and of contours of trivariate functions.

The triangle removal algorithm allows the user to specify a percentage of the

original number of triangles determining the number of triangles to be removed.

Alternatively, it is possible to have the reduction process terminate automatically

when a certain error tolerance is exceeded. This, however, can only be done for

a triangulation obtained from a bivariate function’s graph. Such a triangulation

allows to compute the error introduced during each reduction step, since both the

initial triangulation and the triangulation at a certain iteration step are piecewise

linear functions, and their difference can easily be measured in ordinate-direction.
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In principle, the method can be extended to the reduction of three-dimensional

surface triangulations obtained as triangulations of three-dimensional graphs of

trivariate functions in four-dimensional space. A principal curvature approxima-

tion scheme for such hypersurfaces has already been introduced in chapter 4.3.

However, this extension is not investigated.

Before describing the iterative triangle removal algorithm, some necessary def-

initions are introduced.

Definition 5.1. Given a two-dimensional triangulation in two- or three-dimensional

space, the triangle platelet T Pi associated with a triangle Ti (identified with the

index triple (vi1, v
i
2, v

i
3) specifying its vertices) in the triangulation is the set of all

triangles Tj (identified with their index triples (vj1, v
j
2, v

j
3)) sharing at least one of

Ti’s vertices as a common vertex,

T Pi =
⋃ {

Tj = (vj1, v
j
2, v

j
3) | vik = vj1 ∨ vik = vj2 ∨ vik = vj3, k = 1, 2, 3

}
. (5.1.)

The triangle platelet T Pi is the set of triangles in a two-dimensional triangu-

lation affected by the removal of the triangle Ti.
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Definition 5.2. The set of triangles

CPi = T Pi \
{
Ti
}

(5.2.)

is called the corona of the triangle platelet T Pi.

Definition 5.3. The corona CPi is continuous if for each pair of triangles Tl1 ,

Tlm ∈ CPi triangles Tl2 , ..., Tlm−1 ∈ CPi exist such that

m−1∧
i=1

(
Tli and Tli+1 are neighbors

)
; (5.3.)

otherwise, the corona is discontinuous.

Definition 5.4. The corona CPi is cyclic if it contains triangles Tl0 , Tl1 , and Tl2

such that
2∧
i=0

(
Tli and Tl((i+1) mod 3) are neighbors

)
; (5.4.)

otherwise, the corona is acyclic.

Figure 5.1. illustrates a triangle platelet T Pi with a continuous and an discon-

tinuous corona and a cyclic corona.

Fig. 5.1. Triangle platelet with continuous and
discontinuous corona and cyclic corona.
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Definition 5.5. The corona CPi is closed if each triangle in CPi has exactly two

neighbors also elements of CPi; otherwise, the corona is called open.

Theorem 5.1. Denoting the elements of a continuous, acyclic corona CPi by

Tl0 , ..., Tlmi−1 , an order can be imposed on this set of triangles. If the corona CPi

is closed any triangle Tlj ∈ CPi among Ti’s neighbors can be chosen as the first

triangle T 0 of the ordered set CPordi . If CPi is open a triangle Tlj ∈ CPi not having

more than one neighbor in CPi is selected as the first triangle T 0 of CPordi . The set

CPordi is generated by computing the sequence of sets

S0 = {T 0},

Sk = Sk−1 ∪ {T k} = {T 0, ..., T k−1 | T j precedes T j+1, j = 0...k− 2 } ∪ {T k},

k = 1...mi − 1, (5.5.)

where T k ∈ CPi, T k /∈ Sk−1, and T k is a neighbor of T k−1. The final ordered set

CPordi equals Smi−1.

Proof. Trivial.

Remark 5.1. If the set of triangles to be ordered is a closed corona then the last

triangle Tmi−1 precedes the first triangle T 0 as well.

Definition 5.6. Denoting the set of vertices in T Pi by {xl0 , ...,xlNi} such that

a0 = xl0 , a1 = xl1 , and a2 = xl2 are Ti’s vertices (in counterclockwise order), the

set

Bi = { xlj | j = 3...Ni } (5.6.)
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is called the boundary vertex set of the triangle platelet T Pi.

Theorem 5.2. Given the ordered set of triangles CPordi of a continuous, acyclic

corona an order for the boundary vertex set Bi is implied. If the first triangle

T 0 ∈ CPordi is a neighbor of Ti the vertex of T 0 not being a vertex of Ti is chosen as

the first boundary vertex y0 of the ordered set Bordi . If the first triangle T 0 ∈ CPordi

is not a neighbor of Ti the vertex of T 0 neither being a vertex of Ti nor of T 1 is

chosen as the first boundary vertex y0. The set Bordi is generated by computing the

sequence of sets

S0 = {y0},

Sk = Sk−1 ∪ {yj}, k = 1...mi − 1, (5.7.)

where yj is a vertex of T k, yj is not a vertex of Ti, and yj /∈ Sk−1. The final ordered

set Bordi = {y0, ...,yni} equals Smi−1.

Proof. Trivial.

Definition 5.7. The polygon formed by the directed line segments

yjy(j+1) mod (ni+1), j = 0...N, (5.8.)

where N equals ni − 1 (open corona) or ni (closed corona), is called the platelet

boundary polygon of the triangle platelet T Pi.

In order to ensure that the orientation of the platelet boundary polygon has

the same orientation as the triangle Ti given by the line segments aja(j+1) mod 3,

j = 0, 1, 2, the next definition is needed.
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Definition 5.8. The (ordered) boundary vertex set Bordi is ordered counter-

clockwise if the platelet boundary polygon satisfies the following condition: If yj

and y(j+1) mod (ni+1), j = 0...N, are the end points of a line segment of the platelet

boundary polygon and there are edges in T Pi connecting yj with the vertex ak,

k ∈ {0, 1, 2}, and y(j+1) mod (ni+1) with a different vertex al, l ∈ {0, 1, 2}, then it is

k = 0 and l = 1, or k = 1 and l = 2, or k = 2 and l = 0.

If the condition stated in Definition 5.8. is violated by the order imposed on a

boundary vertex set Bordi the order is simply reversed. The first boundary vertex

becomes the last, and the last boundary vertex becomes the first. In the following, it

is assumed that both Ti’s vertices and the vertices of the platelet boundary polygon

are oriented counterclockwise.

Figure 5.2. illustrates different triangle platelets with platelet boundary poly-

gons in counterclockwise order. Arrows on edges indicate the orientation.
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Fig. 5.2. Triangle platelet with continuous, acyclic
corona and boundary vertex set.

Based on a half-plane test a criterion is introduced to decide, whether a triangle

Ti in a triangulation can be removed or not. This test requires the following steps.

(i) Determine the plane equation of the plane P given by Ti.

(ii) Define an orthonormal coordinate system in P with Ti’s

centroid as origin and two arbitrary unit vectors in P.

(iii) Compute the distances of all points in the ordered boundary

vertex set Bordi from P.

(iv) Project all points in Bordi onto P, and express the projected

points with respect to the local coordinate system in P.
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(v) Compute all line equations Lj in P determined by the projected

directed line segments of the platelet boundary polygon.

(vi) Test, whether the centroid of Ti lies in the region obtained as

the intersection of all half-planes Lj > 0.

Some steps are now discussed in detail. The outward unit normal vector of the

plane P is given by

n = (nx, ny, nz)T =
d1 × d2

||d1 × d2||
, (5.9.)

where d1 = a1 − a0 and d2 = a2 − a0 are defined by Ti’s vertices.

The plane equation for P is

n · (x− c) = Ax+By + Cz +D = 0, (5.10.)

where c = (x0, y0, z0)T = 1
3

∑2
i=0 ai is Ti’s centroid.

The unit basis vectors for the plane P can be chosen as

b1 =
d1

||d1||
and b2 = n× b1. (5.11.)

As in chapter 4.2., the signed distances dj , j = 0...ni, of the platelet boundary

points yj = (xj , yj , zj)T are

dj = Axj +Byj + Czj +D. (5.12.)

Projecting the platelet boundary points onto P yields the points yPj , where

yPj = yj − dj n. (5.13.)
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Expressing the points yPj in P with respect to the two-dimensional coordinate

system given by its origin c and the two basis vectors b1 and b2, one obtains

dj = (dj · b1) b1 + (dj · b2) b2, (5.14.)

where dj = yPj − c, j = 0...ni. Therefore, the local coordinates (uj , vj)T of a point

yPj with respect to the planar coordinate system are given by

(
uj , vj

)T =
(
dj · b1,dj · b2

)T
. (5.15.)

Projected onto P, the points yPj form an oriented polygon as well. The line

equations of the single segments are expressed using the local planar coordinate

system. The implicit line equation for the line Lj(u, v) is given by

Lj (u, v) = − 4 vj (u− uj) + 4uj (v − vj) = 0, (5.16.)

where 4uj = u(j+1) mod (ni+1) − uj and 4vj = v(j+1) mod (ni+1) − vj , j = 0...N.

Now, the criterion is given to decide, whether the triangle Ti can be removed.

If the centroid c (with local coordinates (0, 0)T ) is on the “left,” “positive” side of

all lines Lj the triangle can be removed.

Definition 5.9. The solution set of the N + 1 linear inequalities

Lj (u, v) = − 4 vj (u− uj) + 4uj (v − vj) > 0, (5.17.)

j = 0...N, is called the feasible region of the triangle platelet T Pi in the plane P.

Theorem 5.3. The centroid c of a triangle Ti is in the feasible region defined by

the inequalities in (5.17.) if the inequalities

uj 4vj − vj 4uj > 0, (5.18.)
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j = 0...N, hold for all j.

Proof. Assuming that the intersection of all half-planes defined by (5.17.) is not

empty and inserting the local coordinates (0, 0)T of the centroid c into (5.17.) proves

the theorem.

q.e.d.

Remark 5.2. A triangle Ti can only be removed if it is surrounded by a continuous,

acyclic corona, and its centroid passes the planar half-plane test.

In Figure 5.3., the half-plane test applied to the centroid of a triangle Ti passing

the test is shown.

Fig. 5.3. Boundary vertex set and its projection onto
plane P ; triangle Ti passing the half-plane test.
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5.2. Triangle reduction for triangulated two-dimensional surfaces

In order to determine the significance (weight) of a triangle in a two-dimensional

triangulation, the principal curvatures at its vertices and its interior angles are

considered. In this context, neither mean nor Gaussian curvature serve well as

measures for a triangle’s significance. The mean curvature at the point (0, 0, 0)T on

the hyperboloid
(
x, y, x2 − y2

)T
, x, y ∈ IR, is zero, and the Gaussian curvature at

points in a plane and on a cylinder are both zero. Therefore, absolute curvature is

used as an appropriate curvature measure.

Definition 5.10. The sum A of the absolute values of the principal curvatures κ1

and κ2 at a point x0 on the regular parametric surface x(u) is called the absolute

curvature,

A = |κ1| + |κ2|. (5.19.)

Since the overall goal is to establish an order in increasing significance on

the finite set of triangles constituting a two-dimensional triangulation in three-

dimensional space, each triangle is weighted by the three absolute curvatures at its

vertices. The triangle with minimal absolute curvature is least significant, while the

triangle with maximal absolute curvature is most significant. Later, the triangles

are iteratively removed from the triangulation according to this order.

Lemma 5.1. Denoting the interior angles of a triangle by α1, α2, and α3, the range
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of the function

f (α1, α2, α3) =
3∑
j=1

cosαj (5.20.)

is the interval [1, 3
2 ].

Proof. Since
∑3
j=1 αj = π, it is sufficient to analyze the bivariate function

g (α1, α2) = cosα1 + cosα2 + cos
(
π − (α1 + α2)

)
on the domain D =

{
(α1, α2) | α1, α2 ≥ 0, α1 + α2 ≤ π

}
.

One easily proves that g equals one on D’s boundary:

g (0, α2) = 1 + cosα2 + cos (π − α2) = 1,

g (α1, 0) = cosα1 + 1 + cos (π − α1) = 1, and

g (α1, π − α1) = cosα1 + cos (π − α1) + 1 = 1.

A critical point must satisfy the equations

∂g

∂α1
(α1, α2) = − sinα1 + sin

(
π − (α1 + α2)

)
= 0 and

∂g

∂α2
(α1, α2) = − sinα2 + sin

(
π − (α1 + α2)

)
= 0.

Therefore, sinα1 = sinα2 is a necessary condition which holds for α1 = α2 and

α2 = π − α1.

The first case, α1 = α2, defines the univariate function

h (α1) = 2 cosα1 + cos (π − 2α1)
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having critical points at α1 = 0 and α1 = π
3 , since h′(0) = h′(π3 ) = 0. Considering

only α1 = π
3 results in the function value f(π3 ,

π
3 ,

π
3 ) = 3

2 .

The second case, α2 = π − α1, defines part of D’s boundary, where f equals

one.

q.e.d.

Definition 5.11. The angle weight σi of a triangle Ti is given by

σi = σ (Ti) = 2
( ( 3∑

j=1

cosαj
)
− 1

)
∈ [0, 1], (5.21.)

where αj , j = 1, 2, 3, are Ti’s interior angles.

Remark 5.3. The weight function in equation (5.21.) assigns maximum weight to

an equilateral triangle and small weights to “long,” “skinny” triangles.

Definition 5.12. The curvature weight ρi of a triangle Ti is given by the sum

of the absolute curvatures at its vertices,

ρi = ρ (Ti) =
3∑
j=1

Aj , (5.22.)

where Aj , j = 1, 2, 3, are the absolute curvatures at Ti’s vertices.

Definition 5.13. The weight ωi of a triangle Ti is given by

ωi = ω (Ti) = σi ρi. (5.23.)

The different steps concerning the removal of a single triangle Ti are discussed

next. Assuming that the triangle platelet T Pi satisfies all the conditions stated

in chapter 5.1., the triangle Ti is removed from the triangulation by replacing its
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vertices by one new point p whose construction must be described. This new point

is connected to each point in T Pi’s boundary vertex set, thus determining the new

edges in the triangulation.

It is worth mentioning that this method of replacing a triangle does not affect

the genus of the triangulation (precisely, the genus of the triangulated surface).

Definition 5.14. Given a two-dimensional triangulation T , where each triangle

has exactly three neighbors, the value

χ = t− e+ v, (5.24.)

where t is the number of triangles, e the number of edges, and v the number of ver-

tices in T , is called the Euler-Poincaré characteristic of the implied C0, piecewise

linear surface. The topological genus is the value

1− χ

2
. (5.25.)

Remark 5.4. Considering a triangulation including triangles not having exactly

three neighbors, equation (5.24.) must be modified. In this case, χ is defined as

t− e+ v + 1 (“open triangulation”).

Theorem 5.4. Replacing a triangle Ti whose corona CPi is continuous and acyclic

by a point p, and constructing new edges by connecting the new point with each

point in the boundary vertex set Bordi , preserves the Euler-Poincaré characteristic.

Proof. Replacing Ti by a point obviously reduces the number of vertices by two.

Let k denote the number of edges (locally) being removed from the triangulation.
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Then, the number of triangles is reduced by (k−2). Considering these numbers and

inserting them into equation (5.24.) yields

χ =
(
t− (k − 2)

)
−
(
e− k

)
+
(
v − 2

)
= t− e+ v,

proving that the Euler-Poincaré characteristic remains the same.

q.e.d.

In principle, there are two possibilities for the construction of the new point p

replacing the triangle Ti. One possibility is to construct a bivariate function f(u, v)

using an appropriate coordinate system for the points determining Ti’s triangle

platelet and to evaluate f at (0, 0)T . The other possibility is to compute an implicit

function f(x, y, z) = 0, considering the same set of data points and to generate the

new point by intersecting a line with the implicitly defined surface.

The first possibility is described next. The construction follows the same prin-

ciple as the half-plane test (see chapter 5.1.), and the nomenclature from there is

used. Depending on the corona CPordi , different choices for the origin c in the plane

P are made.

• If the corona CPordi is closed then the centroid of Ti is chosen.

• If Ti has three neighbors, but its corona is open, then the common

vertex of Ti and the first and last triangle in CPordi is chosen.

• If Ti has two neighbors, and the first and last triangle in CPordi

are both (are both not) neighbors of Ti then the mid-point of

Ti’s edge not shared by another triangle is chosen.
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• If Ti has two neighbors, and the first (the last) triangle in CPordi

is a neighbor of Ti, and the last (the first) triangle in CPordi is

not a neighbor of Ti, then the vertex only shared by Ti and the

first (the last) triangle in CPordi is chosen.

• If Ti has a vertex not shared by another triangle then that

vertex is chosen.

The different choices for the origin c are shown in Figure 5.4.

Fig. 5.4. Different choices for origin depending on triangle platelet.

Denoting the set of vertices in Ti’s triangle platelet by {x1, ...,xni}, their asso-

ciated two-dimensional coordinates in the plane P by (uj , vj)T , and their distances

from P by dj , j = 1...ni, again, a polynomial of degree two is constructed consider-
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ing the constraints

f (uj , vj) =
∑
i+k≤2
i,k≥0

ci,k uj
i vj

k = dj , j = 1...ni. (5.26.)

In matrix representation these constraints are

 u1
2 u1v1 u1 v1

2 v1 1
...

...
...

...
...

...
uni

2 univni uni vni
2 vni 1



c2,0
c1,1
c1,0
c0,2
c0,1
c0,0

 = U c = d =

 d1
...
dni

 . (5.27.)

Solving the normal equations

UT U c = UT d (5.28.)

finally determines a local approximation in a function setting, provided that the

determinant of UTU does not vanish.

The new point p by which the triangle Ti is replaced is the point

p = c + f(0, 0) n, (5.29.)

where n is Ti’s outward unit normal vector (ordinate direction of f).

The second possibility to determine the new point p is the construction of a

quadric f(x, y, z) = 0 obtained by considering the constraints

f (xj , yj , zj) =
∑

i+k+l≤2
i,k,l≥0

ci,k,l xj
i yj

k zj
l = 0, j = 1...ni,

and the additional linear constraint

f (1, 1, 1) =
∑

i+k+l≤2
i,k,l≥0

ci,k,l = 1, (5.30.)
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where (xj , yj , zj)T ∈ {x1, ...,xni} and (1, 1, 1)T /∈ {x1, ...,xni}, and {x1, ...,xni} is

the set of vertices in the triangle platelet T Pi.

These conditions can be rewritten as
x1

2 x1y1 . . . z1 1
x2

2 x2y2 . . . z2 1
...

...
...

...
xni

2 xniyni . . . zni 1
1 1 . . . 1 1



c2,0,0
c1,1,0

...
c0,0,1
c0,0,0

 = X c = y =


0
0
...
0
1

 . (5.31.)

Solving the normal equations

XT X c = XT y (5.32.)

finally determines a quadric surface locally approximating the vertices in the triangle

platelet T Pi.

Remark 5.5. The additional constraint f(1, 1, 1) = 1 is added, since the equation

f(x, y, z) = 0 can be multiplied by any scalar still describing the same surface.

Also, the condition f(1, 1, 1) = 1 defines an orientation of the quadric surface, its

“outside” and “inside.” However, this does not affect the absolute curvature at any

point on the quadric.

Remark 5.6. If a triangle platelet does not provide enough vertices to uniquely

determine the coefficients for a quadric (at least nine vertices) an appropriate subset

of implicit surfaces is chosen, e.g.,

f (x, y, z) =
∑

i+k+l≤2
0≤i,k,l≤1

ci,k,l xi yk zl,

requiring less vertices.
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The new point p is computed by intersecting the quadric surface with the line

x(t) = c + tn, t ∈ IR, where c is constructed as in the bivariate function setting,

and n is Ti’s outward unit normal vector. Inserting the linear expressions for the

single components x(t), y(t), and z(t) into the equation

f
(
x(t), y(t), z(t)

)
=

∑
i+k+l≤2
i,k,l≥0

ci,k,l
(
x(t)

)i (
y(t)

)k (
z(t)

)l = 0

yields the quadratic equation

t2
(
c2,0,0 (nx)2 + c1,1,0 n

xny + c1,0,1 n
xnz + c0,2,0 (ny)2 + c0,1,1 n

ynz + c0,0,2 (nz)2
)

+ t
(

2 ( c2,0,0 cxnx + c0,2,0 c
yny + c0,0,2 c

znz )

+ c1,1,0 (cxny + cynx) + c1,0,1 (cxnz + cznx) + c0,1,1 (cynz + czny)

+ c1,0,0 n
x + c0,1,0 n

y + c0,0,1 n
z
)

+
(
c2,0,0 (cx)2 + c1,1,0 c

xcy + c1,0,1 c
xcz + c1,0,0 c

x + c0,2,0 (cy)2

+ c0,1,1 c
ycz + c0,1,0 c

y + c0,0,2 (cz)2 + c0,0,1 c
z + c0,0,0

)
= 0, (5.33.)

where c = (cx, cy, cz)T and n = (nx, ny, nz)T .

Denoting the two (real) solutions of this equation by t1 and t2, the point in

{ c + tin | i = 1, 2 } having minimal distance to the plane P spanned by Ti is

selected as the new point p. Should the discriminant of the quadratic equation

become negative, c is chosen as the point p.

Having computed p by either the bivariate setting or by the implicit, trivariate

approach, a first local re-triangulation of the boundary vertex set and p is obtained

by connecting each vertex in Bordi with p.
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Figure 5.5. illustrates the removal of a triangle Ti with different triangle

platelets and the re-triangulation of the remaining platelet boundary vertex set

and the new point p.

Fig. 5.5. Removal of triangle Ti and re-triangulation of
boundary vertex set and new point.

Regardless of the method used for determining the new vertex p, the absolute

curvature must be computed for it, since the newly constructed triangles need to

be weighted and appropriately inserted into the overall order of all triangles.

Assuming the new point p has been constructed by the bivariate function

approach, the following theorem holds.

Theorem 5.5. The principal curvatures κ1 and κ2 of the graph
(
u, v, f(u, v)

)T ⊂
IR3, u, v ∈ IR, of the bivariate polynomial

f (u, v) =
∑
i+k≤2
i,k≥0

ci,k uj
i vj

k (5.34.)
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at the point
(

0, 0, f(0, 0)
)T are given by the two real roots of the quadratic equation

det
(

2 c2,0 (1 + c0,1
2)− c1,1c1,0c0,1 − κ −2 c2,0c1,0c0,1 + c1,1 (1 + c1,0

2)
c1,1 (1 + c0,1

2)− 2 c0,2c1,0c0,1 −c1,1c1,0c0,1 + 2 c0,2 (1 + c1,0
2)− κ

)

= 0. (5.35.)

Proof. According to Definition 4.7. and equation (4.15.) the principal curvatures

of f ’s graph are the eigenvalues of the matrix

−A =
1
l1

(
fuu fuv
fuv fvv

) (
1 + fu

2 fufv
fufv 1 + fv

2

)−1

,

where l1 =
√

1 + fu
2 + fv

2. Evaluating −A for u = v = 0, one obtains the matrix

1
l1

(
2 c2,0 c1,1
c1,1 2 c0,2

) (
1 + c1,0

2 c1,0c0,1
c1,0c0,1 1 + c0,1

2

)−1

,

where l1 =
√

1 + c1,02 + c0,12, having the characteristic equation (5.35.).

q.e.d.

The two roots of equation (5.35.), κ1 and κ2, determine the absolute curvature

at the point p and therefore the curvature weights for all triangles sharing p as a

common vertex.

Choosing the other possibility for computing p, intersecting a quadric with a

line, a formula is needed for calculating the principal curvatures for an arbitrary

point on a quadric. It is well known in differential geometry how to compute the

principal curvatures on an implicitly defined surface f(x, y, z) = 0.

Theorem 5.6. Given the implicitly defined surface

S =
{

x ∈ IR3 | f(x) = 0
}
,
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where f is some polynomial with a non-vanishing gradient5f for all points in S, and

defining the surface outward normal vector at the surface point x0 = (x0, y0, z0)T ∈

S as

n =
1
2
(
5f (x0, y0, z0)

)T
the tangent space at x0 is spanned by the two vectors b1 and b2, where b1 is any

unit vector perpendicular to n and b2 is the normalized cross product of n and b1,

b1 · n = 0,
√

b1 · b1 = 1, and b2 = n× b1 ||n× b1||
. (5.36.)

Introducing the vector valued differential operator Dd as

Dd f

∣∣∣∣∣
x0

=
1
2

 fxxd
x + fxyd

y + fxzd
z

fxyd
x + fyyd

y + fyzd
z

fxzd
x + fyzd

y + fzzd
z

 ∣∣∣∣∣
x0

, (5.37.)

where d = (dx, dy, dz)T is a directional vector and fxx, ..., fzz denote the second

order partial derivatives of f, the mean and Gaussian curvature at x0 are

H = −
n ·

(
Db1f × b2 + b1 ×Db2f

)
2 || n || 3

∣∣∣∣∣
x0

and

K =
n ·

(
Db1f ×Db2f

)
|| n || 4

∣∣∣∣∣
x0

, (5.38.)

where ||n|| =
√

n · n. The principal curvatures, κ1 and κ2, are related to the mean

and Gaussian curvature by

κ1/2 = H ±
√
H2 −K. (5.39.)

Proof. See [O’Neill ’69], chapter 5.
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These formulae can easily be applied to a quadric, thus determining the abso-

lute curvature at the new point p.

As already mentioned above, a natural way to triangulate the platelet boundary

vertex set Bordi and the additional, new point p is to construct edges from p to each

vertex in Bordi , thus defining the (local) re-triangulation Ni,

Ni =
⋃ {

Tj = (l0, lk, l(k+1)mod(Ni+1)) | k = 3...m
}
, (5.40.)

where m equals either Ni−1 (open corona) or Ni (closed corona), and {xl0 , ...,xlNi}

is the set of vertices in T Pi (see Definition 5.6.). This means that the new point p

“inherits” the index of the first vertex, l0, of the removed triangle, Ti, and vertices

with indices l1 and l2 no longer exist.

In order to obtain a (local) re-triangulation consisting of triangles with high

angle weights, an iterative, Lawson-like algorithm is applied to the set of newly

constructed triangles in the set Ni, therefore iteratively modifying the triangulation

Ni (see [Lawson ’77]). The idea is to swap diagonals of quadrilaterals, edges shared

by two neighbors in Ni. Nevertheless, diagonals are swapped only if the region

obtained by projecting a quadrilateral onto the plane P determined by the removed

triangle Ti is convex.

Definition 5.15. The quadrilateral formed by the line segments ab, bc, cd,

da, a, b, c, d ∈ IR3, has a convex projection with respect to a plane P

if the quadrilateral in P, formed by the line segments aPbP , bP cP , cPdP , dPaP ,

where aP , bP , cP , and dP are the orthogonal projections of a, b, c, and d onto P,
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describes the polygonal boundary of a convex region in P.

Quadrilaterals formed by neighbor triangles in Ni satisfying this condition are

swapped as long as this results in an increase of the minimum of the angle weights

in the set of new triangles. This strategy finally terminates, since there is only a

limited number of possible triangulations and one of them maximizes the minimum

angle weight in Ni.

Figure 5.6. shows the effect of swapping diagonals in a local re-triangulation,

demonstrating the improvement of angle weights.

Fig. 5.6. Increasing angle weights of triangles in local re-triangulation
(original and improved re-triangulation).

Having computed the weights of all triangles in the set Ni they are inserted

into the overall order of all triangles. Simplified, the triangle reduction algorithm

can be summarized as follows.
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Algorithm 5.1. Triangle reduction by iterative triangle removal

Input: table T of N0 triangles (including neighborhood information),
table V of vertices (including principal curvatures), and a
percentage p ∈ [0, 100].

Output: reduced table T̂ of triangles and reduced table V̂ of vertices.

compute weights for each triangle in T ;
while number of triangles is greater than p

100 N0

(
among all triangles having a continuous, acyclic corona and passing the

half-plane test determine the triangle Ti with minimal weight ωmin;
remove triangle Ti from triangulation (using either a bivariate or a

trivariate, implicit least squares approximation);
compute a first (local) re-triangulation;
compute the curvature weights for all new triangles;
improve the (local) re-triangulation by

maximizing the minimum angle weight;
compute weights for new triangles;

)

Remark 5.7. If two triangles Ti and Tj exist both having minimum weight ωmin

any of the two can be removed first. Removing either one of them first does not

affect the final result as long as the triangle platelets T Pi and T Pj have an empty

intersection.

Remark 5.8. Considering triangles not surrounded by a closed corona as boundary

triangles of a triangulation, it is possible to force the algorithm not to remove such

triangles. This, however, leads to reduced triangulations keeping a high density of

vertices on the boundary. This problem, of course, does not arise in the case of

reducing triangulations of closed surfaces.

Remark 5.9. In each iteration step triangles obtained by the local re-triangulation

procedure are marked as “new” triangles which can not be removed at once in the
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next iteration step. Only if no triangle among the “old” ones can be removed, all

new triangles can be considered for removal.

Remark 5.10. The termination criterion in the above algorithm (using a certain

percentage of the original number of triangles) can be modified in the case of a

triangulation obtained from the graph of a bivariate function. Then, the RMS

error can be computed interpreting original and an intermediate triangulation as

piecewise linear functions. As soon as the RMS error exceeds a certain tolerance ε,

the algorithm stops.

Remark 5.11. It is possible that the reduction algorithm can not find any triangle

having a continuous, acyclic corona and passing the half-plane test.

In the following examples, a triangle is always replaced by a point using the

bivariate function approach for computing a new point p. Each of the next three

figures shows an original (upper-left) and three reduced triangulations for a reduc-

tion in the number of triangles by 50% (upper-right), 80% (lower-left), and 90%

(lower-right). The initial triangulations for Figures 5.7., 5.8., and 5.9. are obtained

by evaluating particular bivariate functions on [−1, 1]× [−1, 1] using a domain grid

with equidistant spacing determining points on their graphs.
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Fig. 5.7. Triangle reduction of 50%, 80%, and 90%
for the graph of f(x, y) = .4 (x2 + y2), x, y ∈ [−1, 1].

Fig. 5.8. Triangle reduction of 50%, 80%, and 90%
for the graph of f(x, y) = .15 (x3 + 2x2y − xy + 2y2), x, y ∈ [−1, 1].
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Fig. 5.9. Triangle reduction of 50%, 80%, and 90%
for the graph of f(x, y) = .1

(
cos(πx) + cos(πy)

)
, x, y ∈ [−1, 1].

Figure 5.10. shows the reduction algorithm applied to a torus and Figure 5.11.

shows the original triangular approximation to a human skull (left, about 60,000

triangles obtained by computing a triangular approximation of a particular contour

level of a CAT scan data set) and the result after a reduction by 90% (right). All

triangles are flat-shaded.
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Fig. 5.10. Triangle reduction of 50%, 80%, and 90% for the torus(
(2 + cosu) cos v, (2 + cosu) sin v, sinu

)T
, u, v ∈ [0, 2π].

Fig. 5.11. Triangle reduction of 90% for a piecewise
triangular approximation of a human skull.
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The triangle reduction strategy is tested for graphs of the same bivariate func-

tions as used in chapter 4.2., Table 4.1. Again, all test functions f(x, y) are defined

over [−1, 1]× [−1, 1] and evaluated on a 51 · 51−grid with equidistant spacing,

(xi, yj)T =
(
−1 +

i

25
,−1 +

j

25

)T
, i, j = 0...50,

determining points on their graphs,

{(
xi, yj , f(xi, yj)

)T | i, j = 0...50
}
.

A graph’s original triangulation is obtained by splitting each quadrilateral specified

by its index quadruple

(
(i, j), (i+ 1, j), (i+ 1, j + 1), (i, j + 1)

)
into the two triangles T 1

i,j and T 2
i,j identified by their index triples,

T 1
i,j =

(
(i, j), (i+1, j), (i+1, j+1)

)
and T 2

i,j =
(

(i, j), (i+1, j+1), (i, j+1)
)
.

The initial triangulation is now reduced using the new technique. Determining

a piecewise linear function, original and reduced triangulation are compared at the

given knots, (xi, yj), i, j = 0...50. Therefore, the root-mean-square error is√√√√ 1
51

1
51

50∑
j=0

50∑
i=0

(
f(xi, yj)− f̂(xi, yj)

)2
, (5.41.)

where f̂ denotes the piecewise linear function implied by the reduced triangulation.

In the next table, original and reduced triangulation are compared for differ-

ent reduction rates, i.e., the original number of triangles is reduced by 50%, 80%,
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and 90%. Newly constructed triangles can not be removed from an intermediate

triangulation in the next iteration step, unless there is no other choice. During the

reduction process it is ensured that the final reduced triangulation still covers the

whole domain [−1, 1]× [−1, 1].

Tab. 5.1. RMS errors of triangle reduction for graphs of bivariate functions.

Function 50% 80% 90%

1. Plane:
.2 (x+ y). 0 0 0

2. Cylinder:√
2− x2. .000485 .000999 .002105

3. Sphere:√
4− (x2 + y2). .000445 .001234 .002288

4. Paraboloid:
.4 (x2 + y2). .000610 .001591 .003619

5. Hyperboloid:
.4 (x2 − y2). .000248 .000794 .002009

6. Monkey saddle:
.2 (x3 − 3xy2). .000355 .000843 .001853

7. Cubic polynomial:
.15 (x3 + 2x2y − xy + 2y2). .000381 .001029 .002160

8. Exponential function:
e−

1
2 (x2+y2). .000336 .000916 .002075

9. Trigonometric function:
.1
(
cos(πx) + cos(πy)

)
. .000359 .001088 .002054
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Chapter 6

A triangular tangent-plane-continuous surface

6.1. Introduction

In CAD applications one is often concerned with the problem of generating smooth

surfaces being unions of triangular patches, e.g., car bodies. For most purposes, at

least tangent-plane continuity is required between adjacent patches. Commonly, the

given data are points and associated outward normal vectors (or pairs of tangent

vectors) to be interpolated in three-dimensional space. A triangulation of the data

points must be known as well.

Triangular methods for the function setting, where points in the plane and

associated function and derivative values are given, are discussed in [Barnhill et

al.’73], [Barnhill & Farin ’81], and [Farin ’86]. The more general problem of inter-

polating arbitrary points in three-dimensional space with prescribed tangent planes

has been considered later, e.g., in [Farin ’83]. In [Nielson ’87] and [Hamann et al.’90]

a tangent-plane-continuous surfaces are constructed based on a so-called side-vertex

method, originally introduced for bivariate functions (see [Nielson ’79]).

Other methods are described in [Herron ’85] and [Piper ’87]. In [Hagen ’89]

tangent planes as well as principal curvatures at the data points are interpolated

yielding a G2 surface. A completely different approach is chosen in [Sederberg

’85] and [Dahmen ’89], where surface patches are implicitly defined by trivariate

functions.

The surface scheme developed here is based on the side-vertex technique and
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on degree elevated conics as the underlying curve scheme, since the given data may

imply curves with and without inflection points. The conic scheme is modified in

order to allow more general curves. Ball’s generalized conics can be used as an

alternative (see [Ball ’74,’75,’77] and [Boehm ’82]).

In principle, the problem is to interpolate points xi ∈ IR3 with given outward

(unit) normal vectors ni. A two-dimensional triangulation T defining the vertices in

{v1,v2,v3} forming triangles must be known for the data points. Patch boundary

curves are first constructed along the edges of each triangle, then, a radial projector

is used to blend from a vertex vi to the opposite boundary curve along edge ei,

i = 1, 2, 3. The curves used for this blending process are degree elevated conics,

being modified such that both convex and rational cubic curves with an inflection

point can be generated.

Boundary curves are generated first. Then, three patch building blocks are

obtained by calculating degree elevated conics, emanating from a triangle vertex

and ending at a point on the opposite boundary curve. Finally, the patch building

blocks are blended together in a convex combination defining the complete patch.

The (intrinsic) domain for each patch is the set of triples (u1, u2, u3) of barycen-

tric coordinates for which
∑3
i=1 ui = 1, ui ≥ 0, i = 1, 2, 3. Each point on a patch is

the image of a triple (u1, u2, u3).

Definition 6.1. The convex combination

s (u) =
3∑
i=1

wi(u) si(u) (6.1.)
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interpolating the triangle vertices v1, v2, and v3 and associated outward (unit)

normal vectors n1, n2, and n3, where u = (u1, u2, u3) represents the barycentric

coordinates of a point in the triangle and
∑3
i=1 ωi(u) = 1, ωi(u) ≥ 0, is called a six

parameter patch.

Each building block si(u) of the patch interpolates the positional data along

all three triangle edges and the normal data along the opposite edge ei. The final

patch s(u) interpolates the positional and normal data prescribed along all three

edges. A particular set of weight functions ωi is needed to solve the interpolation

problem.

Theorem 6.1. The weight functions

wi (u) =
B2

(1,1,1)−ei(u)

B2
(0,1,1)(u) +B2

(1,0,1)(u) +B2
(1,1,0)(u)

, i = 1, 2, 3, (6.2.)

where e1 = (1, 0, 0), e2 = (0, 1, 0), and e3 = (0, 0, 1), and B2
(i,j,k), i+ j + k = 2, are

the Bernstein polynomials of degree two defined as

B2
(i,j,k) (u) =

2
i! j! k!

ui1 u
j
2 u

k
3 , (6.3.)

have the properties

(i)
3∑
i=1

wi(u) = 1,

(ii) wi (ek) = δi,k, i, k ∈ {1, 2, 3}, and

(iii) Dd

(
wi(ei)

)
= 0, i ∈ {1, 2, 3},

where edge e1 is characterized by barycentric coordinates (0, u2, u3), edge e2 by

(u1, 0, u3), and edge e3 by (u1, u2, 0), δi,k is the Kronecker delta, and Dd is a direc-
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tional derivative in any direction d, where d is expressed in barycentric coordinates

(d1, d2, d3),
∑3
i=1 di = 0.

Proof. See [Nielson ’79].

Definition 6.2. The single patch building blocks si(u), i = 1, 2, 3, are called

compatible if each interpolates all three boundary curves of the triangular patch

s(u) and the normals edge ei, formalized

(iv) si[c] (ej) = c (ej), i = 1, 2, 3, j ∈ {1, 2, 3} and

(v) n
[
si[c]

]
(ei) = n[c] (ei), i = 1, 2, 3.

A boundary curve c, the patch building blocks si, and the normal n are viewed

as operators. The notation “[ ]” means “restricted to.” Using the properties (i),

(ii), and (iii) from Theorem 6.1. and (iv) and (v) from Definition 6.2., the following

interpolation theorem holds.

Theorem 6.2. The convex combination

s (u) =
3∑
i=1

wi(u) si(u) (6.4.)

interpolates all three boundary curves and the patch normals on the boundary.

Proof. a) Positional interpolation:

It is si[c] (ej) = c (ej), i = 1, 2, 3, j ∈ {1, 2, 3}, and
3∑
i=1

wi(ej) = 1. Therefore,

s[c] (ej) = c (ej) holds.

b) Normal interpolation:

To show interpolation of the boundary normals one calculates two non-parallel
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tangent vectors for a point on a boundary curve, calculates the cross product and

shows that it coincides with the prescribed patch normal at that point. Let the

directions in which tangent vectors are computed be d1 = (−1, 1, 0), d2 = (0,−1, 1),

and d3 = (1, 0,−1). Ddi is the vector valued derivative operator determining

tangent vectors in direction di. Using the product rule and taking the properties

(ii) and (iv) into account (Theorem 6.1., Definition 6.2.), one obtains

Ddis[c] (ei)

= w1(ei) Ddis1[c] (ei) +Ddiw1(ei) s1[c] (ei)

+w2(ei) Ddis2[c] (ei) +Ddiw2(ei) s2[c] (ei)

+w3(ei) Ddis3[c] (ei) +Ddiw3(ei) s3[c] (ei)

= Ddisi[c] (ei) + c (ei)
(
Ddi

(
w1(ei) + w2(ei) + w3(ei)

))
= Ddisi[c] (ei).

Considering the result from a), the tangent vector along a boundary curve is given

by

Dd1+(i mod 3)si[c] (ei) = Dd1+(i mod 3)s[c] (ei),

i = 1, 2, 3. Choosing two arbitrary directions di and d1+(i mod 3), i = 1, 2, 3, the

patch normal along a boundary is determined by the cross product

n[c] (ei) = n
[
si[c]

]
(ei)

= Ddisi[c] (ei)×Dd1+(i mod 3)si[c] (ei) = Ddis[c] (ei)×Dd1+(i mod 3)s[c] (ei)
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= n
[
s[c]
]

(ei),

proving normal interpolation along the boundaries.

q.e.d.

The concept of barycentric coordinates for a triangle is shown in Figure 6.1.

Fig. 6.1. Concept of barycentric coordinates for a triangle.

6.2. The conic curve scheme

A planar curve scheme is needed for the interpolation of two points b0 ∈ IR3 and

b3 ∈ IR3 and two associated outward unit normal vectors, n0 ∈ IR3 and n3 ∈ IR3.

A plane containing unit tangent vectors for the end points of the curve must be

defined.
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Fig. 6.2. Conic in Bézier representation.

Referring to Figures 6.2. and 6.3., the construction proceeds as follows:

(i) Define a plane P through b0 and b3 containing the desired curve. This plane

is specified by the requirement that the vector 1
2 (n0 +n3) lies in it (special care

necessary for the case n0 = −n3).

(ii) Construct the intersection of the conic plane P and the tangent plane P0 at b0

and of P and the tangent plane P3 at b3. Each of the straight lines obtained

defines the tangent of the desired curve at b0 and b3, respectively. The cross

product between the normal of P and the two given normal vectors at the end

points of the curve define unit tangent vectors for the end points, denoted by

t0 and t3.
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(iii) The resulting conic is written as a degree elevated rational Bézier curve of

degree three,

c (t) =

3∑
i=0

ωi bi B3
i (t)

3∑
i=0

ωi B3
i (t)

, (6.5.)

where t ∈ [0, 1], ω0 = ω3 = 1, ω1 = ω2 = ω, and

B3
i (t) =

(
3
i

)
(1− t)3−i ti, i = 0...3. (6.6.)

Referring to Figure 6.3., the interior Bézier points, b1 and b2, lie on a line

parallel to the line through b0 and b3. Using the law of sines one obtains

l0,1 =
sinβ
sin γ

L0,3. (6.7.)

Degree elevation requires the following ratio to hold (see [Farin ’90]):

L0,1

l0,1 − L0,1
= 2 ω. (6.8.)

Therefore,

L0,1 =
2 ω

1 + 2 ω
sinβ
sin γ

L0,3. (6.9.)

Thus, one gets

b1 = b0 + L0,1t0. (6.10.)

The same construction is carried out for b2.

Theorem 6.3. Choosing the weight ω = ω1 = ω2 as

ω = sin
γ

2
= cosα (6.11.)
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determines a finite value L0,1 for γ approaching zero (parallel tangents at end points)

and defines a circular arc for the case α = β.

Proof. Obviously, the scheme yields circular arcs for an isosceles triangle as Bézier

polygon (see [Boehm et al.’84]).

The choice for ω also guarantees a finite value for L0,1, since

lim
γ→0

L0,1 = lim
γ→0

2 sin γ
2

1 + 2 sin γ
2

sinβ
sin γ

L0,3

= lim
γ→0

2 γ
2

1 + 2 γ
2

sinβ
γ

L0,3 = L0,3 sinβ. (6.12.)

q.e.d.

In order to avoid consistency problems between patches and to reduce input

information all weights associated with interior Bézier points should be chosen au-

tomatically as proposed in Theorem 6.3. Of course, they can also be specified by

the user, considering the consistency constraints. Figure 6.3. illustrates the degree

elevation process for conics.

Fig. 6.3. Degree elevation for a conic in Bézier representation.
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6.3. Computing the patch building blocks

The computation of a point si(u), i = 1, 2, 3, for given parameter values u1, u2, and

u3 is based on generating two separate curves. The first curve is associated with

the edge ei of the domain triangle interpolating the vertices associated with this

edge and the computed tangent vectors at those vertices.

This curve is evaluated to obtain a point on the boundary along edge ei. The

second curve constructed is the result of blending from the vertex vi to the point

on the curve along ei, thus interpolating the vertex vi, the point on the curve along

ei, and the two tangent vectors prescribed for these two points. This curve finally

determines a point on this building block.

The planar conic scheme is used for the computation of points on a building

block si(u) in the following way:

(i) Curve scheme for the boundary curves

Using the planar curve scheme based on degree elevated conics it is easy to

generate the three boundary curves c1(t), c2(t), and c3(t). For the computation

of patch building block s1(u) at u = (u1, u2, u3) one evaluates the curve c1(t)

for t = u3/(1− u1) ∈ [0, 1] along edge e1. The input for the conic scheme are

the vertices v2 and v3, the normals n2 and n3, and the parameter t. This

results in a particular point on the patch boundary.

(ii) Surface scheme for a point on si(u)

Having computed a point ci(t), i = 1, 2, 3, on a boundary curve, the next step

is the estimation of the surface normal of the final patch at a particular point
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on ci(t). The surface normal nSi (t) along ci(t) must be perpendicular to this

curve itself,

nSi (t) · ċi(t) = 0, (6.13.)

i = 1, 2, 3, where ċi(t) denotes the tangent vector of the conic. Requiring

nSi (t) · nCi (t) = γ (t), (6.14.)

where nCi (t) denotes the unit normal vector to the conic in its plane, nSi (t) is

determined. The value γ (t) is chosen according to the following interpretation:

At t = 0,

nSi (0) · nCi (0) = γ (0) (6.15.)

denotes the cosine of the angle formed by the surface normal nSi (0) and the

conic normal nCi (0). At t = 1, γ (1) has the analogous interpretation. If one

sets

γ (t) = (1− t) γ(0) + t γ(1), (6.16.)

the cosine of the angle formed by nSi (t) and nCi (t) varies linearly along the

edge.

This process guarantees that the surface normals are the same as the given

ones at the vertices and, moreover, that the surface normals along an edge are the

same for this triangular surface patch as well as for a neighbor patch sharing the

edge. Thus, tangent-plane continuity between adjacent patches is assured.
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Remark 6.1. The choice of the boundary surface normal considers the boundary

curve itself, a simple linear interpolation of the given normal vectors at the two

vertices is avoided.

The process of determining the surface normal along the boundary conic c1(t)

is illustrated in Figure 6.4.

Fig. 6.4. Generating patch normal along edge e1.

Using the idea of radial projectors, the blending from a vertex to the opposite

boundary curve is done next. This is described for the vertex v1 and its associated

boundary curve c1(t). The generation of a point on a curve, emanating from v1 and

ending at a point on c1(t), follows the same principle as the generation of a point

on the boundary conic c1(t), t = u3/(1− u1) ∈ [0, 1].
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To obtain a point on the patch building block s1(u) at u = (u1, u2, u3) one has

to construct a curve c(t), t = (1−u1) ∈ [0, 1]. The input data for the curve scheme

are the vertices v1 and c1(t), the normals n1 and the constructed surface normal

nS1 (t) along edge e1. The computation of a point on s1(u) is shown in Figure 6.5.

Fig. 6.5. Evaluating first patch building block.

Repeating this process for the other two building blocks s2(u) and s3(u) finally

yields the point s(u) on the surface. The weights for the interior Bézier points of all

conics can be interpreted as tension parameters, allowing the generation of patches

approaching the triangle {v1,v2,v3} for small weights (ω � 1).

So far, only convex data configurations have been considered, making it possible

to use conics. Generalized conics were introduced in [Ball ’74,’75,’77] as rational

curves of degree three, including conics as a subset. The concept of generalized
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conics allows to model input data implying curves with and without an inflection

point. A criterion must be given that allows to decide, whether the presented conic

scheme can be used for a planar data configuration.

Definition 6.3. The line through the vertices v1 and v2 divides the plane into

two half-planes. The tangent vectors t1 and t2 associated with v1 and v2 define a

convex configuration if the tangent vectors are directed into opposite half-planes

and a non-convex configuration, otherwise.

If given data are convex the planar scheme for degree elevated conics can be

used as described above. In the case of a non-convex configuration, the two interior

Bézier points for the curve scheme must be constructed in a way that a rational

curve of degree three with an inflection point is obtained.

Assuming the tangent vectors t1 and t2 are directed into the same half-plane,

the prescribed tangents through v1 and v2 are reflected with respect to the axis

given by the line through v1 and v2. Therefore, two pairs of tangents are obtained,

one pair per vertex. The degree elevation procedure is then carried out in both half-

planes. The interior Bézier points must be chosen in a way such that (b1 − b0) =

α1t1, α1 > 0, and (b3 − b2) = α2t2, α2 > 0.

The four different data configurations possible are illustrated in Figure 6.6.

Two curves with and two without inflection points can be obtained.



137

Fig. 6.6. Convex and non-convex data configurations defined
by end points and end tangents in a plane.

Thus, the concept of degree elevated conics allows us to handle both convex and

non-convex data. The continuity inside a single patch building block is guaranteed,

since the construction of the interior Bézier points is continuous with respect to the

involved angles.

Remark 6.2. If all data points xj , j 6= i, are lying in the same half-space deter-

mined by the plane through xi with normal ni, and this is true for all i, a convex

surface is implied and “usual” conics can be used everywhere as curve scheme.

Remark 6.3. Choosing the weights automatically, as described in Theorem 6.3.,

yields circular arcs when the data configuration implies this. Choosing points and

normals from a unit sphere as input data produces a surface rather well approximat-

ing a sphere. However, the presented scheme does not have spherical precision. This
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is the result of the convex combination. Each single building block has spherical

precision, but each one generates a different point on the sphere.

Remark 6.4. Using degree elevated conics instead of parametric cubic curves

guarantees that one does not obtain inflection points or loops unless the prescribed

normals at the two end points of a curve imply an inflection point.

In Figure 6.7., three different surfaces are shown using increasing weights. The

four vertices of an equilateral tetrahedron inscribed in a unit sphere with the asso-

ciated normals of the sphere at these points are given as input. For the first surface

the weight ω is chosen automatically (Theorem 6.3.). In this case, the maximal

distance of the resulting surface from the unit sphere is about 0.01. The other two

surfaces both have lower weights.

Fig. 6.7. Triangular surfaces obtained from spherical data
using increasing weights (from left to right).
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In Figure 6.8., the surface scheme has been applied to the reduced triangulation

approximating a human skull (about 6,000 triangles, see Figure 5.11.). All weights

ω are chosen automatically (Theorem 6.3.).

Fig. 6.8. Triangular surface for reduced skull triangulation,
weights chosen automatically.
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Chapter 7

Conclusions

The dissertation has presented several ideas for the visualization of trivariate data.

More research in this area is necessary, since computing power becomes more and

more accessible, while visualization techniques, particularly for dynamical systems,

are in a rather primitive state.

A new approach has been introduced for visualizing and modeling trivariate

data (scalar fields). Following this approach, a contour of some trivariate function or

a finite, discrete trivariate data set is approximated first and then used for modeling.

This process itself can be seen as data reduction, since the contour approximation

leads to a two-dimensional triangulation. This strategy might not be applicable for

all real-world problems, but in the case of discontinuous scalar fields, e.g., CAT scan

data, it is definitely an alternative to the standard way of constructing a trivariate

interpolant for all data.

An existing technique for computing a triangular approximation to a contour

of a trivariate function, the so-called marching-cubes method, has been corrected

and improved. The contour approximation produces a continuous triangulation

for which additional topological information (neighbors of triangles) is generated.

Continuity of a triangulation is necessary for further modeling.
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A way for approximating the two principal curvatures at the vertices in a

two-dimensional triangulation in three-dimensional space has been developed and

extended to the approximation of the three principal curvatures at the vertices on

the three-dimensional graph of a trivariate function in four-dimensional space. This

leads to a method for analyzing the smoothness of two-dimensional surfaces and of

hypergraphs of trivariate functions, e.g., trivariate interpolants and approximants.

Approximation schemes requiring curvature input can make use of the principal

curvature approximation as well.

Most data reduction techniques can only be applied to function data, e.g.,

to sets of points in the plane (or space) with function values. The new triangle

removal algorithm can be used for general two-dimensional triangulations in three-

dimensional space. A triangulation is adaptively reduced such that at each reduction

step the implied piecewise triangular approximant of the surface changes as little

as possible. The same strategy could also be applied to the removal of tetrahedra

in a tetrahedrization of points in three-dimensional space (with function values),

taking the absolute curvature at points on the implied piecewise linear hypergraph

in four-dimensional space into account.

An elegant planar curve scheme based on degree elevated conics has been de-

veloped. It is utilized as a blending technique, needed for a particular triangular

surface scheme, the side-vertex method. Combining the side-vertex method with

the new curve scheme results in smooth surfaces. The triangular, tangent-plane
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continuous surface can be viewed as an alternative to existing triangular interpolants

for general two-dimensional triangulations in three-dimensional space.
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