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Abstract: We present a new construction of lifted biorthogonal wavelets on surfaces of ar-
bitrary two-manifold topology for compression and multiresolution representation. Our method
combines three approaches: subdivision surfaces of arbitrary topology, B-spline wavelets, and
the lifting scheme for biorthogonal wavelet construction. The simple building blocks of our
wavelet transform are local lifting operations performed on polygonal meshes with subdivision
hierarchy. Starting with a coarse, irregular polyhedral base mesh, our transform creates a
subdivision hierarchy of meshes converging to a smooth limit surface. At every subdivision
level, geometric detail can be expanded from wavelet coefficients and added to the surface. We
present wavelet constructions for bilinear, bicubic, and biquintic B-Spline subdivision. While
the bilinear and bicubic constructions perform well in numerical experiments, the biquintic con-
struction turns out to be unstable. For lossless compression, our transform can be computed in
integer arithmetic, mapping integer coordinates of control points to integer wavelet coefficients.
Our approach provides a highly efficient and progressive representation for complex geometries
of arbitrary topology.

1 Introduction

Efficiently representing two-manifold geometries, like isosurfaces of trivariate functions, high-

precision CAD models of arbitrary genus, and large-scale digital surfaces [27], is an important

task in geometric modeling and scientific visualization. Multiresolution surface representations

need to provide efficient access to local geometry satisfying user-defined bounds on error or

complexity for compression, progressive transmission, and real-time visualization applications.

Biorthogonal wavelet representations [12, 42] are among the most efficient multiresolution
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Figure 1: Decomposition steps of a DWT. The function a) is transformed by successive
decomposition steps b),...,e), using a linear B-spline wavelet.

methods. The (biorthogonal) discrete wavelet transform (DWT) is often used in compression

schemes for digital images, terrain models, and volume data, providing sparse data represen-

tations. Regularly-sampled data is transformed and reconstructed in linear computation time.

The lifting scheme [43] for biorthogonal wavelets provides a simple construction and a maximum

of efficiency of the transform, using highly localized digital filters. Many lifted construction ap-

proaches, including our method, allow the use of integer arithmetic for lossless compression.

Compression is obtained, for example, by arithmetic encoding [34] of integer coefficients that

are sparse or have small absolute values.

The DWT decomposes a function successively into certain frequency bands representing

details of a function at different levels of resolution, see figure 1. There exist a variety of band-

pass and low-pass filters with corresponding basis functions (wavelets and scaling functions)

defining a DWT. Desired properties of the underlying basis functions are compact support,

smoothness, symmetry, and orthogonality, which are, unfortunately, conflicting goals [12]. More

details about wavelets and their construction can be found in the literature [10, 12, 33, 42, 15].

In this work, we present a construction of wavelets based on bilinear, bicubic, and biquin-

tic subdivision surfaces providing linear computation time for wavelet decomposition and re-

construction. Numerical examples suggest stability of the bilinear and bicubic construction,

while the decomposition of the biquintic construction is numerically unstable. The subdivi-
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sion surfaces provided by our bicubic construction (using zero wavelet coefficients) coincide

with multi-linear cell averaging (MCLA) [1], a variant of Catmull-Clark subdivision [7, 32, 40].

We believe that quadrilateral meshes with subdivision connectivity are a good alternative to

triangle meshes, especially when representing surfaces that behave differently in two canonical

directions. Quadrilateral meshes are often used, for example, in character animation [13], where

the skin of an animated character is tied to a directed sceleton. Like Catmull-Clark surfaces,

our surfaces can be converted into non-uniform rational B-splines (NURBS) patches [36] at any

level of detail for use in CAD/CAM applications.

This paper is structured as follows: Secrion 2, contains a summary of related work. We

introduce the one-dimensional lifting operations for the construction of symmetric wavelets

with associated B-spline scaling functions in section 3. These lifting operations are generalized

to polyhedral meshes in section 4 such that the one-dimensional wavelet constructions define

tensor products on a regular, rectilinear grid. In our approach, these meshes may contain

extraordinary vertices, i.e., vertices with valence different from four, allowing the construction

of arbitrary shapes. In section 5, we present a lossless geometry-compression algorithm and

provide numerical results for our wavelet construction.

2 Related Work

Wavelets representing surfaces of arbitrary topology were originally explored by Lounsbery et

al. [29, 30]. Starting with a subdivision surface scheme, like Catmull-Clark [7] or Loop [31]

subdivision, wavelet transforms have been constructed using the recursively generated basis

functions as scaling functions. Lounsbery [29] showed that the function spaces generated by

subdivision rules are nested and that compactly-supported wavelets spanning complements

of these spaces (within the next finer-resolution spaces) can be constructed. These wavelet

constructions for smooth, non-interpolating subdivision surfaces, like Catmull-Clark and Loop
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Figure 2: Meshes with regular subdivision connectivity. Loop subdivision and most
subdivision-surface wavelet approaches use triangular mesh refinement (top). Our approach
uses the connectivity of Catmull-Clark subdivision (bottom).

subdivision, have the disadvantage that the transform is based on a global system of equations.

Only the inverse transform is generally computed in linear time based on local operations.

Other subdivision-surface wavelet constructions for functions defined on triangulated spher-

ical domains were introduced by Schröder and Sweldens [38], Nielson et al. [35], and Bonneau

[4, 5]. Their approaches can be extended to more general than spherical domains, but they are

used for constructing functions on given domains rather than representing the underlying do-

main geometries. In contrast, our approach is capable of representing two-manifold geometries

as well as functions defined on these.

Piecewise linear subdivision-surface wavelets defined on triangular meshes with regular re-

finement are often used for multiresolution representation and rendering of surfaces [16, 9, 18],

and for solving partial differential equations (PDE’s) [41]. An important problem is the genera-

tion of meshes with subdivision connectivity, i.e., meshes that can be constructed by regular re-

finement of coarse base meshes, as shown in figure 2. Algorithms computing re-parametrizations

of triangle meshes by mapping them into meshes with subdivision connectivity have recently

been described [24, 16, 17, 28]. An algorithm converting triangulated surface models into

meshes with subdivision connectivity is known as multiresolution adaptive parametrization of

surfaces (MAPS) [26]. We have presented a meshing algorithm for isosurfaces providing meshes
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with quadrilateral subdivision hierarchy that serve as input for our wavelet transform [2, 3].

More general multiresolution approaches for completely irregular mesh hierarchies with-

out subdivision connectivity often rely on the same principles as wavelet transforms [21, 25].

Subdivision-surface wavelets with regular refinement, however, do not need to store any param-

eter or connectivity information, except for a coarse-resolution base mesh. Thus, most effective

state-of-the-art compression algorithms rely on meshes with subdivision connectivity [22]. It

is possible to generate mesh hierarchies with normal displacement, such that coordinates for

every vertex can be reconstructed from a scalar-valued offset [20].

3 Symmetric Lifted Wavelets

Wavelet lifting was introduced by Sweldens [43], and it is often used for biorthogonal wavelet

construction [23]. The lifting scheme subdivides the computation for a single filtering step of the

DWT into a sequence of smaller filtering operations. Lifting increases the efficiency, simplifies

the construction, and makes the use of integer arithmetic feasible [6]. In this section, we

introduce a construction of lifted, one-dimensional wavelets that are generalized to polyhedral

mesh domains in section 4. We first review some basics about the DWT.

3.1 Discrete Wavelet Transform

The DWT is a basis transform between certain spaces spanned by dilated and translated ver-

sions of a wavelet ψ and a scaling function φ:

ψ
j
i (x) = ψ(2jx− i) and φ

j
i (x) = φ(2jx− i). (3.1)

A function f is initially represented in a basis of scaling functions at a high level of resolution,

denoted by the index jε > 0:

f(x) =
∑

i∈Z

s
jε

i φ
jε

i (x). (3.2)
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Figure 3: DWT viewed as a signal-processing algorithm. a) High- and low-frequency bands are
separated by discrete filtering with sequences h and l and down-sampling. b) Lifting scheme:
Convolutions with h and l are replaced by lifting operations.

A simple basis transform decomposes this representation into a high-frequency part, based on

wavelets, and a low-frequency part, based on coarser scaling functions: at level jε − 1,

f(x) =
∑

i∈Z

w
jε−1

i ψ
jε−1

i (x) +
∑

i∈Z

s
jε−1

i φ
jε−1

i (x). (3.3)

This transform is called decomposition or analysis. Decomposition steps are recursively applied

to the part represented by scaling functions until a base level j = 0 is reached. The function f

is finally represented as

f(x) =

jε−1
∑

j=0

∑

i∈Z

w
j
i ψ

j
i (x) +

∑

i∈Z

s0

i φ
0

i (x). (3.4)

figure 1. illustrates this basis transform.

A decomposition step is implemented by a discrete filtering with sequences h and l that

transform scaling-function coefficients sj
i at level j into scaling-function coefficients sj−1

i and

wavelet coefficients wj−1

i at level j − 1, see figure 3 a). The decomposition rules are defined as

s
j−1

i =
∑

k∈Z

lk−2i s
j

k and (3.5)

w
j−1

i =
∑

k∈Z

hk−2i s
j

k. (3.6)

For the inverse DWT, every individual decomposition step is inverted by a reconstruction

(or synthesis) step using filters h̃ and l̃,

s
j
i =

∑

k∈Z

(

l̃i−2k s
j−1

k + h̃i−2k w
j−1

k

)

. (3.7)

6



Applying reconstruction steps in reverse order of the corresponding decomposition steps repro-

duces the initial representation defined by scaling functions, equation (3.2).

The time complexity for a decomposition step with n non-zero scaling-function coefficients

is O(n), provided that the filters h and l have finite length. Since the number of scaling-function

coefficients is cut into half for every level of the transform, the total complexity for the DWT

is O
(

n+ n
2

+ n
4

+ . . .
)

= O(n).

3.2 Lifting Approach

Rather than computing the coefficients based on equations (3.5–3.7), we subdivide these sum-

mation steps into simple lifting operations, reducing the length of the discrete filters and thus

decreasing the number of floating-point operations, see figure 3 b). The theory of lifting is due

to Sweldens [43], related to an earlier approach by Dahmen [11].

In the following, we define our lifting operations using algorithmic notation. A decomposi-

tion step for the DWT is computed by re-labeling coefficients,

s
j−1

i ← s
j
2i and w

j−1

i ← s
j
2i+1, (3.8)

followed by a sequence of alternating s-lift and w-lift operations. These operations modify one

coefficient at a time, depending on its own and its two neighbors’ values. The s-lift and w-lift

operations are defined as

s-lift(a, b):

s
j−1

i ← aw
j−1

i−1 + bs
j−1

i + aw
j−1

i ∀i and (3.9)

w-lift(a, b):

w
j−1

i ← as
j−1

i + bw
j−1

i + as
j−1

i+1 ∀i. (3.10)

An example for this lifting scheme is depicted in figure 4. Both filters h and l are constructed
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Figure 4: Lifting scheme for linear B-spline wavelet. Decomposition (left) and reconstruction
(right) are composed of one s-lift and one w-lift operation. The lifting parameters satisfy the
relations ãi = −ai

bi

and b̃i = 1

bi

.

simultaneously by a sequence of lifting operations. By using only s-lift and w-lift operations,

we restrict the class of wavelets that can be constructed, but we also reduce the number of

operations required for the transform. As we show in section 4, corresponding lifting operations

can be constructed for subdivided polygon meshes. Another advantage of this construction is

the fact that every lifting step is inverted by the same type of lifting operation, replacing a by

ã = −a
b

and b by b̃ = 1

b
, where b must be non-zero. Hence, we obtain an efficient algorithm for

the inverse transform by applying the inverse of every single lifting operation in reverse order.

3.3 B-spline Wavelet Construction

We choose B-splines as scaling functions due to their wide use and applicability in CAGD

and approximation theory. Considering the dyadic refinement process for B-splines [8], the

reconstruction filter l̃ is defined by the two-scale relation

φ(x) =
∑

i∈Z

l̃i φ(2x− i). (3.11)

The non-zero values for l̃i can be obtained from Pascal’s triangle by dividing the entries in the

(n + 2)th row by 2n, where n is the polynomial degree, see table 2. Using w-lift and s-lift
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operations, we can construct symmetric filters with odd numbers of non-zero entries, like filters

l̃ for B-splines with odd polynomial degrees. Even degrees are not considered, since this would

require a dual mesh construction, according to Doo-Sabin subdivision [14].

Analogously to the two-scale relation for scaling functions, every wavelet can be represented

as a linear combination of finer-level scaling functions,

ψ(x) =
∑

i∈Z

h̃i φ(2x− i). (3.12)

To improve the approximation properties of our transform, we want to construct wavelets

that have at least two vanishing moments [42]. A wavelet has n vanishing moments when its

convolutions with n polynomials (1, x, x2, · · · , xn−1) are zero. The first moment of a wavelet

is zero if and only if the corresponding filter h̃ satisfies the condition

∑

i∈Z

h̃i = 0. (3.13)

For our lifting approach, the second moment vanishes, due to symmetry.

3.3.1 Linear B-spline Wavelets

We start with constructing the inverse DWT (reconstruction) defined by filters h̃ and l̃, since l̃

is already determined by the choice of scaling functions. One single w-lift operation is required

to compute a convolution with l̃. To satisfy equation (3.13), an additional and necessary

s− lift operation is computed first (otherwise it would modify l̃). These two lifting operations

define the reconstruction scheme, and the corresponding inverse lifting operations define the

decomposition scheme for our DWT, see figure 4.

Since convolutions with h̃ and l̃ are computed simultaneously by the same lifting operations,

the construction of h̃ and l̃ is constrained by the lifting parameters ã1, b̃1, ã2, and b̃2, as illustrated

in figure 5 a). The filter l̃ is constrained by

l̃0 = b̃2 and l̃1 = b̃2ã1. (3.14)
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Figure 5: Constraints for construction of filters h, l, h̃, and l̃ using a) linear and b) cubic B-
spline scaling functions. Every path of arrows corresponds to a summation term whose factors
are represented by the individual arrows.

Using for l̃ the values from table 2, we obtain

ã1 = 1

2
and b̃2 = 1. (3.15)

The constraints for h̃ are given by

h̃0 = 2ã2ã1 + b̃1 = ã2 + b̃1,

h̃1 = ã2, and

h̃2 = ã2ã1 = 1

2
ã2.

(3.16)

We note that l̃ and h̃ are symmetric and that the coefficients with negative indices do not

produce additional constraints. Hence, equation (3.13) becomes

h̃0 + 2h̃1 + 2h̃2 = 4ã2 + b̃1 = 0. (3.17)

This implies that ã2 and b̃1 are proportional. Since either ã2 or b̃1 appears on every right-hand

term of equations (3.16), the filter h̃ is already determined, except for a scaling factor. By

choosing b̃1 = 1, we obtain the lifting parameters shown in table 1. The remaining filters h and

l can be derived from these lifting parameters. They are summarized in table 2.
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Figure 6: Linear, cubic, and quintic B-spline wavelets.

degree a1 b1 a2 b2 a3 b3 a4 b4
linear w-lift(− 1

2
, 1) s-lift( 1

4
, 1)

cubic s-lift(− 1

4
, 1) w-lift(−1, 1) s-lift( 3

8
, 2)

quintic w-lift(− 1

6
, 1) s-lift(− 9

16
, 1) w-lift(− 4

3
, 1) s-lift( 5

8
, 4)

degree ã4 b̃4 ã3 b̃3 ã2 b̃2 ã1 b̃1
linear s-lift(− 1

4
, 1) w-lift( 1

2
, 1)

cubic s-lift(− 3

16
, 1

2
) w-lift( 1, 1) s-lift( 1

4
, 1)

quintic s-lift(− 5

32
, 1

4
) w-lift( 4

3
, 1) s-lift( 9

16
, 1) w-lift( 1

6
, 1)

Table 1: Lifting parameters for DWT and inverse DWT shown in order of computation.

3.3.2 Cubic and Quintic B-spline Wavelets

In analogy to linear B-spline wavelets, one can construct wavelets for cubic or quintic scaling

functions using one or two additional lifting steps, respectively. In the cubic case, the filter l̃

requires at least one w-lift and one s-lift operation, due to its width. The vanishing-moment

condition, equation (3.13), requires an additional s-lift computed first, see figure 5 b). The

filter l̃ is constrained by

l̃0 = b̃3(b̃1 + 2ã2ã1), l̃1 = b̃3ã2 and l̃2 = b̃3ã2ã1. (3.18)

The choice of filter l̃, shown in table 2, implies

ã1 = 1

4
, ã2 = b̃1, and b̃3b̃1 = 1

2
. (3.19)
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degree h0 h±1 h±2 h±3 l0 l±1 l±2 l±3 l±4

linear 1 −1

2

3

4

1

4
−1

8

cubic 3

2
−1 1

4

5

4

5

32
−3

8

3

32

quintic 5

2
−15

8

3

4
−1

8

231

96
− 7

32
−21

24

15

32
− 5

64

degree h̃0 h̃±1 h̃±2 h̃±3 h̃±4 l̃0 l̃±1 l̃±2 l̃±3

linear 3

4
−1

4
−1

8
1 1

2

cubic 5

8
− 5

64
− 3

16
− 3

64

3

4

1

2

1

8

quintic 77

128

7

128
− 7

32
− 15

128
− 5

256

5

8

15

32

3

16

1

32

Table 2: Filters for DWT and inverse DWT.

The equations for h̃, after eliminating ã1 and ã2, are given by

h̃0 = b̃2 + 2ã3b̃1,

h̃1 = 1

4
b̃2 + 7

4
ã3b̃1,

h̃2 = ã3b̃1, and

h̃3 = 1

4
ã3b̃1.

(3.20)

Using equation (3.13), we obtain

3b̃2 = −16ã3b̃1. (3.21)

Again, we observe that the remaining lifting parameters do not modify h̃, except for scaling,

since b̃2 and ã3b̃1 are proportional. Hence, we can choose b̃1 = b̃2 = 1 and uniquely determine

the remaining parameters.

A similar construction based on four lifting operations is feasible for quintic B-spline sub-

division. Again, all lifting parameters are uniquely determined from the vanishing-moment

condition, except for scaling. These lifting parameters are listed in tables 1 and 2 and the cor-

responding wavelets are depicted in figure 6. Wavelets of high polynomial degree can be used

to represent smooth surfaces at very high precision, but they are less efficient when processing

noisy data sets. As we demonstrate in section 5, the low-pass filter of our quintic wavelet con-

struction becomes unstable when successively applied to noisy data, due to the narrow support

of wavelets. Therefore, we prefer the use of linear and cubic wavelet transforms. More general

constructions are feasible, based on different scaling functions.
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Figure 7: Topology of Catmull-Clark subdivision. f (red), e (pink), and v (black). a) Irregular
mesh; b) regular mesh: Coefficients s and w3 correspond to v and f vertices, respectively.
Coefficients w1 and w2 correspond to e vertices of vertical and horizontal edges.

4 Generalization to Arbitrary Polyhedral Meshes

In this section, we construct s-lift and w-lift operations for polyhedral meshes, such that we

exactly reproduce tensor-products of the corresponding one-dimensional operations when using

a regular, rectilinear grid. Our one-dimensional wavelet constructions are thus generalized to

arbitrary polygon meshes with subdivision connectivity.

4.1 Index-free Notation for Subdivision Rules

Subdivision surfaces are limit surfaces resulting from recursive refinement of polyhedral base

meshes. A subdivision step refines a submesh to a supermesh by inserting vertices. The coor-

dinates of all vertices of a supermesh are computed as linear combinations of local vertices in

the submesh using the same masks for every level (linear, stationary schemes). Most subdi-

vision schemes converge rapidly to a continuous limit surface. The mesh obtained from a few

subdivisions is already a good approximation for surface rendering. Parametrization and exact

evaluation of limit-surface points is feasible [40].

In our approach, we use the hierarchical mesh connectivity defined by Catmull-Clark subdi-

vision [7], which is a generalization of uniform bicubic B-splines to arbitrary control meshes. A

mesh is refined by inserting a new vertex inside every face and on every edge and by connecting

these vertices to quadrilaterals, see figure 7 a). Vertices in a supermesh correspond to a face

13



v

v

f

vv

v v

v

vf ef e

ee

e

e

fe
fve

v

v

v
vv eve

e
e

fv

f

f

f

Figure 8: Examples for index-free notation. vf denotes the centroid of a face, ef the centroid
of its associated e vertices, etc.

(polygon), an edge, or a vertex in the submesh and are denoted by f , e, and v, respectively. We

use this subdivision topology to construct generalized bilinear, bicubic, and biquintic scaling

functions and wavelets. Subdivision schemes generating even-degree B-splines, like Doo-Sabin

subdivision [14], typically use a dual mesh structure, which is incompatible with our symmetric

lifting operations.

To describe subdivision rules determining new vertex positions, we introduce an index-free

notation. Therefore, we use the averaging operator kl, where k and l can represent either f ,

e, or v. This averaging operator returns the arithmetic average of all vertices of type k that

are adjacent to l or that correspond to adjacent/incident faces and edges. In particular, we

use the following notation that is illustrated in figure 8: vf : centroid of each face; ef : centroid

of e vertices of each face; ve: midpoint of each edge; fe: midpoint of both adjacent f vertices

of each edge; vv: centroid of all adjacent v vertices; ev: centroid of all e vertices of incident

edges; fv: centroid of all f vertices of incident faces.

Catmull-Clark subdivision in index-free notation is defined by the rules

f ′ ← vf ,

e′ ← 1

2

(

ve + f ′e
)

, and

v′ ← 1

nv

(

f ′v + vv + (nv − 2)v
)

,

(4.1)
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where nv is the valence (number of incident edges) of vertex v. The order of vertex modifications

is important, since the result of an operation may define the input for any of the subsequent

operations. In the third modification step, all v vertices need to be duplicated, since they

depend on each other. This kind of dependency is avoided in our lifting scheme, since it would

result in a global system of equations for the inverse operation.

4.2 Generalized Lifting Operations

In the case of a tensor-product wavelet transform, we apply a decomposition step of the one-

dimensional DWT to all rows and then columns of a data set. This results in sets of coefficients

s, w1, w2, w3 for four different types of basis functions, given by

φ(x, y) = φ(x)φ(y),

ψ1(x, y) = φ(x)ψ(y),

ψ2(x, y) = ψ(x)φ(y), and

ψ3(x, y) = ψ(x)ψ(y),

(4.2)

respectively.

A decomposition step can be considered as an operation applied to a rectilinear supermesh

that computes v vertex positions for an approximating submesh and replaces the remaining e

and f vertices by difference vectors representing details that are missing in the submesh. The

v vertices represent coefficients s for scaling functions, e vertices represent wavelet coefficients

w1 and w2 (depending on the orientation of edges), and f vertices represent wavelet coefficients

w3, see figure 7 b).

Rather than applying a one-dimensional decomposition step first to all rows and subse-

quently to all columns of a data set, we apply every individual lifting operation to the rows and

columns, consecutively. The overall order of operations remains unchanged when considering

only rows or only columns, and the resulting transform is the same. (A nice analogy is
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Figure 9: An s-lift operation applied to a rectilinear grid is composed of a vertical (left) and
a horizontal (right) one-dimensional s-lift operation.
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Figure 10: Same s-lift operation as shown in figure 9 with vertex modifications performed in
different order. First, v vertices are modified (left) and then e vertices are determined (right).

the evaluation of tensor-product surfaces, like B-spline surfaces, where the computation for

rows and columns can be performed in any order.) Figure 9 illustrates the computation of

a two-dimensional s-lift operation. For computing lifting operations applied to the rows of

a rectilinear mesh, we use the averaging operator k
x

l returning for every vertex of type l the

average of its neighbors of type k within the same row. Analogously, the operator k
y

l is used

for lifting the individual columns. Applying the one-dimensional lifting operations, defined

in equations (3.9) and (3.10), to the rows and then to the columns, results in the following

tensor-product operations.

tensor-product s-lift(a, b):

ṽ ← bv + 2aex
v

e′ ← be + 2afe

v′ ← bṽ + 2ae′
y

v

(4.3)
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Figure 11: Basis functions around an extraordinary vertex of valence three. Left: mesh
configuration (top face of prismatic base mesh with three vertices corresponding to basis func-
tions). Top row: linear construction; bottom row: cubic construction; from left to right: scaling
functions, wavelets corresponding to an edge, wavelets corresponding to a face.

tensor-product w-lift(a, b):

f̃ ← bf + 2aex
f

e′ ← be + 2ave

f ′ ← bf̃ + 2ae′
y

f

(4.4)

Changing the order of computation such that every vertex is updated only once, as shown

in figure 10, results in an equivalent definition of operations:

s-lift(a, b):

v′ ← b2v + 4a2fv + 4abev

e′ ← be + 2afe

(4.5)

w-lift(a, b):

f ′ ← b2f + 4a2vf + 4abef

e′ ← be + 2ave

(4.6)

These lifting operations are now defined in a notation suitable for arbitrary polyhedral

meshes defining two-manifold surfaces, since the averaging operators are well-defined for ex-

traordinary vertices. When applied to a rectilinear mesh, equations (4.5) and (4.6) reproduce

tensor products of the corresponding one-dimensional operations.
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Figure 12: Basis functions around an extraordinary vertex of valence five.

For every modification step, the overall weight of adjacent vertices that is added to the

modified vertex depends only on the lifting parameters a and b and is independent of the vertex

valence. Wavelet coefficients that are located closely to extraordinary vertices may therefore

behave similarly to wavelet coefficients located in rectilinear areas, considering their order of

magnitude.

The one-dimensional wavelets constructed in section 3 are completely defined in terms of s-

lift and w-lift operations. The corresponding wavelet transforms for polygon meshes are already

defined in table 1 using equations (4.5) and (4.6) rather than (3.9) and (3.10). For the inverse

transform, every single vertex-modification step is inverted using reverse order of operations.

Examples for the two-dimensional basis functions are shown in figures 11 and 12. These

examples are obtained from prisms as base meshes that are recursively subdivided. First, the

DWT (successive decomposition) is applied to a fine-resolution mesh. Then, a single vertex is

pulled away from the surface, and the inverse DWT (successive reconstruction) reproduces the

shape of the surface modified by the basis function corresponding to this vertex. Applying the

inverse DWT using zero wavelet coefficients corresponds to a stationary subdivision process,

since no geometric detail is added.

It can be observed that our generalized bicubic DWT reproduces the subdivision rules of

multi-linear cell averaging (MLCA) [1]. This subdivision scheme is very similar to Catmull-
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Clark subdivision, except that it behaves slightly different at extraordinary vertices. It was

shown by Peters and Reif [37] that the limit surfaces of this scheme are C1-continuous (including

a number of other Catmull-Clark style schemes). Subdivision schemes reproducing B-splines of

higher order were recently presented [39, 44].

To provide an example how the DWT is finally implemented, we insert the lifting operations

defined by equations (4.5) and (4.6) into the decomposition formula for the cubic wavelet

transform, see table 1. The resulting vertex-modification rules for the generalized bicubic

wavelet transform are defined by these rules

v ← v + 1

4
fv − ev

e ← e − 1

2
fe

f ← f + 4vf − 4ef

e ← e − 2ve

v ← 4v + 9

16
fv + 3ev

e ← 2e + 3

4
fe

(4.7)

The inverse DWT is implemented analogously by applying the inverse of every individual vertex

modification in reverse order.

4.3 Integer Arithmetic for Lossless Compression

Wavelets are often used for data compression, since they de-correlate local similarity of repre-

sented functions. Smooth functions are approximated using very few coefficients, and repre-

sentations of locally supported details require only a few additional wavelet coefficients in the

corresponding regions to be non-zero. Thus, wavelet coefficients have expectedly small absolute

values and are efficiently compressed, for example by arithmetic coding [34]. Coding schemes

exploit the uneven distribution of coefficient values to reduce storage space. For high compres-

sion rates, the range of coefficient values must be very small, which is achieved by quantizing
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coefficients (rounding to integers) introducing a quantization error.

In the case of biorthogonal wavelet bases, it is often difficult to control the effect of quan-

tization errors on the reconstructed functions. Instead of quantizing wavelet coefficients, we

can perform the computation of the wavelet transform in integer arithmetic, providing a tool

for lossless compression [6]. Therefore, we assume that the coordinates of control points at the

finest level of resolution have finite precision and are represented by integer numbers.

The lifting operations defined in equations (4.5) and (4.6) can be computed in integer

arithmetic, if the lifting parameter b 6= 0 is an integer. (By modifying consecutive operations, b

can always be scaled to an integer.) Using the rounding operator [·] returning an integer closest

to its argument, the integer lifting operations and their inverse are defined as follows:

integer s-lift(a, b):

v ← b2v + [4a2fv + 4abev]

e ← be + [2afe]

(4.8)

integer w-lift(a, b):

f ← b2f + [4a2vf + 4abef ]

e ← be + [2ave]

(4.9)

inverse integer s-lift(a, b):

e ← 1

b

(

e − [2afe]
)

v ← 1

b2

(

v − [4a2fv + 4abev]
)

(4.10)

inverse integer w-lift(a, b):

e ← 1

b
(e − [2ave])

f ← 1

b2

(

f − [4a2vf + 4abef ]
)

(4.11)

An integer-to-integer DWT is constructed from above lifting operations analogously to equa-

tion (4.7). To improve compression rates, we divide the lifting parameters a and b in the last

s-lift operation by two in the cubic construction, and by four in the quintic construction, such
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wavelet transform “two-blobs” “five-blobs”
linear 24.6 31.0
cubic 11.8 14.8
quintic 18.8 20.5
uncompressed 172.1 172.1

Table 3: Storage requirements in kilobytes for surfaces shown in figure 13. The uncompressed
representation uses four bytes to store a coordinate.

that b is always one. This modification reduces the precision for resulting scaling-function co-

efficients at the coarser levels (and also affects the normalization of basis functions on different

levels). This loss of precision does not introduce artifacts when all levels of detail are used

for reconstruction, since the inverse DWT exactly reproduces every coefficient. It may cause

artifacts, however, when displaying coarse levels of resolution.

5 Numerical Results

5.1 Lossless Compression and Level of Detail

Surfaces can be represented by fine-resolution control meshes with subdivision connectivity.

At the very finest level, a surface nearly interpolates its control points. When representing a

geometric shape, we sample the control points from this geometry rather than solving a global

interpolation problem. The coordinates of these control points can be represented by integer

numbers (at finite precision). Lossless compression of this surface representation is feasible by

applying our integer wavelet transform and, for example, arithmetic coding [34].

We have applied our compression scheme to the isosurfaces, “two-blobs” and “five-blobs”,

obtained from trivariate scalar fields, each defined as a sum of Gaussians, see figure 13. The

isosurfaces are approximated by alternating mesh subdivision and Newton iteration, projecting

the mesh vertices onto the isosurfaces. The finest level of detail is obtained after five subdivision

steps, resulting in a total of 14338 vertices for each surface. Every vertex is represented by

integer coordinates with a precision of 0.01 percent of the height of the surface model. Lossless
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Figure 13: Isosurfaces “two-blobs” (left) and “five-blobs” (right) with associated base meshes.

j = n = 11, j = n = 31, j = n = 51,

j = n = 12, j = n = 32, j = n = 52,

Figure 14: Isosurface “two-blobs” at two levels of resolution (j = 1, 2) obtained from a
floating-point implementation of the DWT with polynomial degree n.

compression rates obtained with arithmetic coding are listed in table 3. In addition, we need

to store the base-mesh connectivity and the histogram of coordinate values for the arithmetic

coder.

A different application for our wavelet transform is level-of-detail representation. Coarse

surface representations are obtained by replacing wavelet coefficients of finer levels by zero. In

this case, the inverse wavelet transform is equivalent to a subdivision-surface scheme. Coarse

representations for the “two-blobs” and “five-blobs” isosurfaces are shown in figures 14 and 15,

where we used floating-point arithmetic. In the quintic case, surfaces may be poorly represented

by coarse levels of resolution, since the support of the basis functions is so large that “self-

overlaps” occur when wrapped around small surface components.
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n = 3

1, j =

n = 5

1,

j =

n = 1

2, j =

n = 3

2, j =

n = 5

2,

Figure 15: Isosurface “five-blobs” at two levels of resolution (j = 1, 2).

Figure 16: Different surfaces are produced by the individual subdivision rules of our generalized
linear, cubic, and quintic wavelet transforms. The base mesh for this example is composed of
40 vertices and 40 faces.

5.2 Examining Stability

When displaying coarse levels of surface detail using the low-pass filter l of a wavelet transform,

it is important to understand the behavior of this filter when applied multiple times. In the

case of semi-orthogonal wavelets [42], a convolution with l is equivalent to least squares fitting

based on a set of coarser scaling functions. This is due to the orthogonality of the spaces Vj

and Wj, spanned by scaling functions and wavelets, respectively. In the case of biorthogonal

wavelets, however, this fitting process is a local operation that is not optimal, with respect to

its residual. In some cases, the distance to the original surface may grow rapidly when l is

applied multiple times, resulting in unstable behavior of the wavelet transform.

To examine the stability of our wavelet transforms, we perform a simple experiment: We

construct a subdivision surface from a coarse base mesh by applying the inverse DWT with zero

wavelet coefficients, see figure 16. After a fixed number of subdivisions, we add white noise to
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j=5

j=4

j=3

j=2

j=1

j=0

Figure 17: Examining stability by low-pass filtering noisy fine-resolution models (fifth sub-
division, 43008 points). The linear and cubic transforms remove most of the noise while the
quintic wavelet turns out to be unstable.

a) b) c)

Figure 18: Compressing the Stanford bunny (shrink-wrapped version) composed of 24576
control points, each using 12 bytes. a) Original mesh (sixth subdivision level of a cube), b)
100:1 compression using linear wavelet, c) 100:1 compression based on cubic wavelet.
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a) b) c)

Figure 19: Selecting wavelet coefficients by magnitude using linear B-spline wavelets. Recon-
struction from a) 0.1 percent, b) one percent, c) 10 percent of coefficients.

j=0 j=1 j=2

j=3 j=4 j=5

Figure 20: Progressive transmission of Stanford bunny using linear wavelet. Shown are six
levels of resolution (j = 0, 1, · · · , 5).

j=0 j=1 j=2

j=3 j=4 j=5

Figure 21: Progressive transmission of Stanford bunny using cubic wavelet.
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every control point and display the individual levels of resolution obtained by low-pass filtering

the noisy surface with l, which corresponds to removing wavelet coefficients on the finest levels.

The results of the noise-removal experiment are shown in figure 17. The linear wavelet

transform provides the best fitting operation, quickly reducing the noise to an invisible amount

after just a few steps. The cubic wavelet transform leaves the amplitude of the noise nearly

constant over a number of fitting steps. This wavelet construction is still stable enough for

practical applications. The quintic wavelet, however, exhibits instable behavior. The noise

amplitude grows rapidly and deforms the coarse-resolution surfaces such that the object soon

becomes unrecognizable. This transform can only be used for lossless compression based on

integer arithmetic where the coefficients are divided by four and thus are diminished in every

decomposition step.

5.3 Compression and Progressive Transmission

Surfaces of known topology can be constructed from sampled three-dimensional points by

shrink-wrapping a given base mesh towards these points [24]. After subdividing a base mesh,

its vertices are projected along normal vectors towards closest sample points. The mesh is then

relaxed perpendicularly to its normals. Multiple attraction and relaxation steps are necessary

after every subdivision step.

We have shrink-wrapped a surface to 35947 samples of the Stanford bunny, courtesy of

the Stanford University Computer Graphics Laboratory. As a base mesh, we used the bound-

ing box of the samples, which produced 24578 vertices after six levels of subdivision. The

shrink-wrapped mesh and a 100:1 compression based on arithmetic coding of quantized wavelet

coefficients are shown in figure 18. Table 4 lists our compression results. Higher compression

rates can be obtained by by offsetting surface detail rather than adding arbitrary vectors to

every control point, providing scalar-valued coefficients [20].
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wavelet transform compression rate code length [kB] L2-error
linear 10 29.5 0.0070

100 2.9 0.13
cubic 10 29.5 0.0024

100 2.9 0.30
uncompressed 1 294.9 0

Table 4: Compression results for shrink-wrapped Stanford bunny. The uncompressed mesh is
composed of 24578 vertices using four bytes for every coordinate. The errors were computed
with respect to the finest mesh, in percent of the diagonal of the bounding box.

level number of L2-error for L2-error for
j vertices linear wavelet cubic wavelet
0 8 5.33 13.4
1 26 2.46 6.70
2 98 0.955 3.13
3 386 0.388 0.746
4 1538 0.135 0.167
5 6146 0.0504 0.0216
6 24578 0 0

Table 5: Approximation errors for different levels of resolution with respect to the highest-
resolution mesh (level 6).

For progressive transmission, the coefficients are sorted by magnitude before they are en-

coded, see figure 19. Unfortunately, the order of coefficients must be transmitted, as well. A

simpler method processes the coefficients of the coarse levels first and then adds finer levels

progressively, as shown in figures 20, 21, and table 5.

6 Conclusions

We have constructed biorthogonal wavelets for linear, cubic, and quintic B-spline subdivision

surfaces, suitable for multiresolution representation, compression, and progressive transmis-

sion of geometric models of arbitrary genus. Our wavelet transforms require surfaces to be

represented as meshes with subdivision connectivity, which can be obtained by re-meshing

[26, 24, 3, 28, 17]. To make wavelet techniques even more attractive for level-of-detail represen-

tation, future work will be directed at topological changes between different levels of resolution,

according to hybrid meshes [19].
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