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1 Introduction

Many problems in scientific visualization deal with the
representation of surfaces such as shock waves, material
boundaries, isosurfaces (surfaces of equal value in 3D
scalar fields), and terrain models. In many cases, these
surfaces are represented by a set of sampled points that
can be projected locally on a plane. For visualization
applications, however, a triangulated surface represen-
tation is required. The number of triangles has a major
impact on the efficiency of the visualization process.

We present an efficient algorithm to obtain tri-
angulated graph surfaces for sets of scattered points
(z; )T, i = 1...n, with associated function values fi at
multiple levels of detail. The approximation error mea-
sured in z-direction satisfies a prescribed error bound
for each level of detail.

Figure 1: Left: scattered points, sampled from a smooth
graph surface; middle: clusters with locally optimal tri-
angulations; right: final triangulation.

Our algorithm consists of three major steps: (i) sub-
dividing the given discrete data set into clusters such
that each cluster can be approximated by a quadratic
polynomial within a prescribed tolerance; (ii) opti-
mally triangulating each quadratic polynomial; and (iii)
“stitching” the triangulations of all graph surfaces to-
gether. Figure 1 illustrates the overall construction ap-
proach. For step (ii) we use the optimal triangulation
approach in [5]. Our algorithm was published in [1]. For
related methods concerning more general triangulated
surfaces with non-planar topology we refer to (3, 4].
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2 Adaptive Clustering

To approximate the scattered data locally by quadratic
polynomials of the form

flz,y) = CzoaCZ + cnizy + Cozy2 + c10Z + co1y + coo,

we use least squares fitting, see [2]. A binary space par-
tition tree (BSP tree) is constructed in the zy-plane by
recursive subdivision of cluster regions. Subdivision ter-
minates when for all cluster regions a quadratic poly-
nomial is found that approximates the data within a
prescribed error bound.

3 Triangulating Quadratic Poly-
nomials

For each cluste region the corresponding quadratic poly-
nomial is approximated by a triangulated surface follow-
ing the approach in [5]. The number of triangles is min-
imized subject to a prescribed approximation tolerance
with respect to the polynomial.

Figure 2: Optimal triangulations for elliptic and hyper-
bolic cases.

From the principal azes transformation, see [2], we
obtain the principal curvatures, i.e., the minimal and
maximal second derivatives of the polynomial and the
corresponding directions in the zy-plane. After chang-
ing the basis to these directions and neglecting all linear
terms, the polynomial is transformed to

flz,y) =
f(z,y) = 2 — o (hyperbolic case).

z2 + y® (elliptic case) or

In both cases a regular, optimal triangulation exists,
shown in Figure 2, that is transformed back into the
canonic basis. All triangles that lie entirely in the cluster
region are drawn. In cases of nearly flat or parabolic
surfaces a special treatment is required.
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4 Merging Triangulations

Finally, the individual triangulations are stitched to-
gether by triangulating the gaps along the cluster
boundaries. This i1s done in the reverse order of clus-
ter subdivision that is stored in the BSP tree. Only
two triangulations are stitched together at a time, see
Figure 3.

Figure 3: Triangulations are stitched together along a
straight line.

5 Numerical Examples

We have applied our algorithm to approximate the ter-
rain model ”Crater Lake” that consists of 159,272 sam-
pled points. Numerical results for different error bounds
are shown in Table 1 and Figure 4.

Error No. No. Comp. Time [sec] '
[7%] | Clusters | Triangles | Clustering | Triangles
10.0 114 948 6.6 0.168
5.0 400 3541 18.0 0.371
3.0 790 7256 32.5 0.680
Table 1: Numerical results for ”Crater Lake” terrain

model.

6 Conclusions and Future Work

We have introduced a progressive method for the con-
struction of data-dependent triangulations for scattered
bivariate data. The computational cost for generating
the BSP tree dominates the cost for obtaining a trian-
gulation. However, the BSP tree needs to be established
only once for all levels of detail.

We plan to generalize our approach to approximate
scalar fields defined by scattered points in 3D space with
associated function values. The goal is to obtain pro-
gressive tetrahedral meshes that approximate a scalar
field within user-defined error bounds.

1The computation times are based on our implementation on
a SGI 02 workstation with a 180 MHz R5000SC processor.
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Figure 4: Triangulations for dataset “Crater Lake”.
Left: optimal cluster triangulations in zy-plane at three
different resolutions, right: corresponding final triangu-
lations in zyz-space.
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