
A Geoscientist’s Perspective on Immersive 3D Data Visualization

Author Names Withheld

Affiliations Withheld

Figure 1: The Visualizer application in four different VR environments: desktop, responsive workbench, tiled display wall, and CAVE.

ABSTRACT

A growing need at the forefront of Earth science, and other do-
mains, is the analysis of complex 3D volume data produced by ob-
servations or numerical models. Visualization, and especially inter-
active visualization in immersive VR environments, is a powerful
method of exploring unknown data, and of identifying and quanti-
fying unknown features in those data. We describe a visualization
software, Visualizer, that was developed specifically for visual ex-
ploration in VR. Visualizer contains carefully optimized algorithms
and data structures to support the high frame rates required for im-
mersion, and the real-time feedback required for interactivity. As
an application developed for VR from the ground up, Visualizer re-
alizes benefits that usually can not be achieved by software initially
developed for the desktop and later ported to VR. However, can
also be used on desktop systems with a similar level of real-time
interactivity, bridging the “software gap” between desktop and VR
that has been an obstacle for the adoption of VR methods by the
sciences.

To evaluate the effectiveness of Visualizer in both its native VR
environment and on the desktop, we performed a user study com-
paring it to a widely used desktop visualization application. Our
study’s results show that scientists can receive substantial benefits
from using VR methods for their research, and that carefully de-
signed VR applications can be as effective on desktop systems as
native desktop applications.

CR Categories: I.3.7 [Three-Dimensional Graphics and Realism]:
Virtual Reality; J.2 [Physical Sciences and Engineering]: Earth and
atmospheric sciences

Keywords: virtual reality, 3D data visualization, immersive visu-
alization, interactive exploration

1 INTRODUCTION

Geoscientists work with diverse data sets ranging in spatial scales
from nanometers to thousands of kilometers and varying on time
scales from femtoseconds to billions of years. Typically, these ob-
servations or numerical models are 3D volume data sets: seismic
tomography images of the Earth’s interior, finite element models of

plate tectonics and mantle convection, and neutron imaging of mi-
crobial communities preserved in ancient rocks. Analyzing and in-
terpreting these large volumetric data sets with information at mul-
tiple scales poses a significant challenge in geoscience research –
one that can be addressed by the scientific visualization commu-
nity, particularly through innovative use of interactive and immer-
sive virtual reality (VR) environments [13, 16, 12].

A substantial component of research in the geosciences involves
identifying the most important processes in natural systems and
developing computational models of key interactions. One effi-
cient way to identify unknown processes is to look for correlations
within and among data sets. Quantitative evaluation of correlations
requires the scientist to have a detailed conceptual model of the
underlying relationships; however, the fundamental processes are
poorly constrained for many of the problems at the forefront of re-
search. Thus, correlations can be extremely difficult to predict and
extract mathematically. In these cases, relationships among data are
best identified by examining data visually in a flexible, interactive
environment. Such visual examination of data can lead to the con-
ceptual framework necessary to develop quantitative methods for
further analysis.

As a specific example of how visualization can aid geoscience
research, which will be referred to again later, consider a fluid dy-
namics simulation for the deformation of a tectonic plate subduct-
ing into the Earth’s mantle. Iterative solutions to finite element
models of a subducting tectonic plate are strongly dependent on
the smoothness of the viscosity and temperature field defining the
plate and plate boundaries. The shapes of these structures are con-
strained by geological and geophysical observations and constitute
complex 3D volumes. One of the challenges of developing new
computational models of this kind is understanding why the numer-
ical model fails to converge to a solution. Graphical representations
of model results, in space and time, can quickly lead to identifica-
tion of aliasing and other discontinuities in model data, which may
violate both smoothness requirements and model fidelity to the ge-
ological structure.

Although we evaluate the usefulness of immersive visualization
from a geoscientist’s point of view, and our user study used a geo-
science data set, we believe that our approaches and observations
apply as well to other scientific domains where complex 3D data
sets are analyzed on a regular basis.

Visualizer: 3D Volume Visualization Software. It has
long been known that graphical representations of complicated data
sets on 2D displays provide efficient and insightful ways of inter-

preting quantitative data [18], but similar analysis of 3D data sets
has lagged behind. One reason may be that the design of 3D volume
visualization software has traditionally focused on providing an en-
vironment for users to create a final image of a data set that is effec-
tive at communicating ideas and results [2, 3, 1]. This type of vi-
sualization software usually facilitates enhancing the appearance of
structure of interests, or synthesizing various data types, e. g., iso-
surface of temperature, color-mapped slices of viscosity or stream-
tubes of fluid flow in a numerical fluid dynamics model. However,
this design objective is focused on visualizing known structures,
i. e., the value of the best iso-surface to display is already known,
but does not support exploring a data set in which the features of
interest are yet to be discovered. Exploring a data set visually in
order to identify features or processes of scientific interest requires
an interactive environment and real-time visualizations that can be
modified on-the-fly.

The 3D volume visualization software presented here, called Vi-
sualizer, has been specifically designed for highly interactive 3D
VR environments and therefore follows different design principles
than software that was originally developed for use in a 2D desktop
environment [4]. For example: 1) navigating (picking up, rotating
and translating a slice or isosurface) in a VR environment is sim-
ply done by moving a tracked input device, such as a wand, while
pushing a button, and 2) all menus and dialog boxes are dynamic,
i. e., they appear when and where the user presses a button on an in-
put device, and 3) creating isosurfaces or slices occurs in real time
as an input device is moved through a virtual data set. We present
the underlying development philosophy and volume visualization
implementation for Visualizer, which was developed through a col-
laboration of computer scientists and geoscientists, and present a
user study aimed at assessing how well Visualizer aids scientists
in analyzing 3D volume data. Although our study did not yield
conclusive quantitative data, the subjective evaluations by the study
participants indicate that the design principles built into Visualizer
create an environment in which interacting with data is intuitive and
data exploration is both effective and efficient.

2 RELATED WORK

To put Visualizer into context, and compare it to other 3D visual-
ization software for desktop and immersive environments, we first
discuss several desktop applications, and then several applications
developed for VR.

Tecplot [2] is a commercial visualization software for 3D volume
data in a desktop environment, and is widely used in the Earth sci-
ences. Its main goal is the production of publication-quality graphs
and figures, but it also contains several features that make it ap-
plicable to visual data analysis. Its main volume visualization el-
ements are color-mapped slices and isosurfaces, and the program
allows one to change the set of elements interactively. However,
interaction is limited to entering desired isovalues into dialog boxes
or dragging axis-aligned slices through a data set using sliders in a
dialog box. The program’s response to changes is not in real time:
especially changing an isovalue causes delays of tens of seconds
before the display is updated. We found that directly observing the
changing shape of an isosurface under varying isovalues is a very
powerful analysis tool; the fact that Tecplot does not support this
style of exploration is a major limitation. Additionally, Tecplot’s
navigation methods are limited when a user wants to explore a small
feature in a larger data set in detail. Although Tecplot provides the
usual virtual trackball interface, it can only rotate the data around its
centroid, not around arbitrary 3D points. This, and the fact that Tec-
plot reduces the resolution of surfaces during navigation, severely
limit detail analysis. Tecplot does contain a measurement tool to
query the spatial position of and data values at arbitrary locations,
but it is not intuitively clear how Tecplot translates a 2D mouse

position into 3D space for measurement.
Vis5D [3] is an open-source visualization software aimed at

time-varying, multivariate 3D volume data. It is often used in the
Earth sciences, especially in atmospheric science. Its main goal
is the production of figures and animations. Vis5D’s main visu-
alization elements are color-mapped slices and isosurfaces, but it
also supports direct volume rendering. The level of interactivity
of Vis5D is similar to Tecplot’s, with the same limitations for vi-
sual data analysis, but Vis5D contains some improvements: slices
can be dragged by direct manipulation with the mouse, and the vir-
tual trackball for navigation always rotates around the screen cen-
ter, improving the user’s ability to examine small features in de-
tail. Vis5D’s volume rendering feature uses a simple slice-based
algorithm, and is due to its long rendering times not applicable to
interactive exploration.

CAVE5D [1] is a direct port of Vis5D to immersive environ-
ments based on the CAVE library [9]. It runs in VR environments
compatible with CAVELib, and uses a CAVE wand to control the
visualization. Even though CAVE5D was introduced in late 1995,
it is still used for Earth science visualization in immersive environ-
ments, especially CAVEs. One reason might be that it allows sci-
entists to visualize data on the desktop first using Vis5D, and then
to import the visualizations into a CAVE.

The development of CAVE5D from Vis5D is a good example
of the challenges posed by porting desktop software to immersive
environments. The main benefits of VR, intuitive navigation and di-
rect manipulation of 3D objects, are not realized because the origi-
nal desktop program does not contain functionality to support them.
For example, Vis5D allows a user to drag a slice by manipulating
it with the mouse, and CAVE5D uses the same mechanism, but
based on a 6-DOF input device. Instead of just moving the device
to a position of interest and pressing a button to create a slice at
that position (or drag an existing slice), the user has to aim the de-
vice at an “interaction box” at the corner of the slice to drag the
slice along its axis. This makes it quite difficult to change a slice
while zoomed-in to examine a feature, and is not the most appropri-
ate way of using a 6-DOF input device to manipulate a 3D object.
Interestingly, isosurfaces are still changed by numerically entering
a desired isovalue; however, since VR environments have no key-
boards, users have to use the wand to enter numbers via a virtual
3D keypad. This style of interaction is actually less effective in a
VR environment than on a desktop. Navigation also does not take
full advantage of interaction using a 6-DOF input device: rotating
the wand causes the data set to rotate, but not around the current
position of the wand. Instead, the model rotates either around its
centroid or the user’s head position, depending on the navigation
mode. Both navigation modes are hard to get used to, and even ex-
perienced users sometimes have problems to move a model in the
desired way. As a result, CAVE5D is mostly used to present previ-
ously created visualizations in a more impressive environment, and
not to create or analyze visualizations by interactive exploration.

The NASA virtual wind tunnel [6, 15, 5] is an even older appli-
cation than CAVE5D, but it was directly developed for immersive
environments and takes into account the particular benefits and con-
straints of VR. Its main purpose, as the name implies, is the analysis
of computational fluid dynamics data, but it could be used for other
3D volume data as well. Its main visualization elements are stream-
lines/streaklines, particle traces, color-mapped slices, and isosur-
faces. As opposed to CAVE5D, all visualization algorithms are
optimized for direct 3D manipulation and real-time feedback. For
example, streamlines are created by directly selecting their start-
ing point in 3D space, and isosurfaces are created by growing them
from a selected seed point in space, instead of specifying their iso-
value. Isosurfaces are based on time-outs, i. e., the result of creating
a surface will be visible in the display in less than 0.1 s, enabling
direct observation of an isosurface’s change as the seed point is

dragged. Navigation is also intuitive: users can “grab space” using
a 6-DOF input device, and then reposition the data set by mov-
ing/rotating the input device. Overall, the virtual wind tunnel is an
effective visual analysis application. Its main limitations are that it
only supports a single grid format and that it is only portable to a
very limited range of VR environments.

3 INTERACTIVE EXPLORATION OF 3D VOLUME DATA

In the development of the Visualizer software, we followed many
of the design principles first exhibited by the NASA virtual wind
tunnel [6] and later described in more detail in [17]. The two main
constraints of VR are the high frame rates upwards of 30 Hz re-
quired for head-tracked stereo viewing, and real-time response to
any user interaction within 1/10 s [5, 11]. These constraints in-
fluence the implementation of all visualization algorithms, whose
“standard implementations” typically do not observe them. A stan-
dard Marching Cubes [14] implementation, for example, might re-
quire several seconds or minutes to generate millions of triangles
for larger data sets. An interactive and immersive implementation
of this algorithm must ensure that the display does not “freeze” dur-
ing that time, that at least intermediate results are presented to the
user after at most 1/10 s, and that the generated triangle set can be
rendered in less than 1/30 s. These goals require multithreaded pro-
gramming, special algorithms such as seeded isosurfaces [15, 11],
advanced rendering using compressed geometry or multiresolution
methods [10], and careful optimization of the extraction and ren-
dering algorithms.

The main benefits of VR are the direct 3D perception enabled by
head-tracked stereoscopic displays and the ease with which users
can select positions in 3D space using 6-DOF input devices. To
fully exploit these benefits, visualization software has to follow a
direct manipulation approach across the entire range of functional-
ity, from navigation over creation of visualization elements to quan-
titative analysis. If users see a feature of interest in a data set, they
must be able to quickly create appropriate visualization elements
to explore the feature in more detail; it is not appropriate to first
have to measure the position of or the data value at the feature, and
then enter those numbers into text fields to create slices or isosur-
faces. Instead, VR software should allow users to create elements
by “point-and-click.”

An additional important design goal was the ability to run the
visualization application effectively on a wide range of VR envi-
ronments with different sets of input devices, including desktop en-
vironments with only a mouse and keyboard. Our experience has
shown that scientists are reluctant to use VR software because it
forces them to use a (shared) VR environment for all their analytical
work. Being able to use the same VR software on the desktop first
for preview generation and initial quality assessment, and then only
perform important and detailed explorations in VR, should allevi-
ate these concerns and lead to a wider acceptance of VR methods in
scientific domains. To achieve maximum portability, we developed
Visualizer on top of the Vrui VR development toolkit [8]. Vrui sup-
ports highly interactive and high-performance VR applications that
are completely independent of the underlying VR environment, in-
cluding the type and number of available input devices. Our user
study, discussed in Section 5, shows that Visualizer is very effec-
tive in a CAVE, and slightly more effective than a native desktop
application in a desktop environment.

Finally, we designed Visualizer such that it can be applied
to a wide range of data formats. The differences between data
formats such as regular (Cartesian) grids, hexahedral (curvilin-
ear) grids, simplical (tetrahedral) grids, and heterogeneous finite-
element meshes are so fundamental that each normally requires its
own implementation of all visualization algorithms. As VR soft-
ware must be carefully optimized to satisfy VR’s real-time con-

straints, a software architecture should allow easy experimentation
with different algorithms and data structures. For example, devel-
opers might have to change the representation of isosurfaces from
individual triangles to indexed triangles or triangle strips to evaluate
which performs best on a given system. If there are separate imple-
mentations of the underlying algorithms for different data formats,
applying such changes while keeping all versions working together
is a major software engineering challenge. As a result, most visu-
alization programs, especially VR visualization programs, support
only a single data format. Visualizer is based on a separation be-
tween data formats and algorithms that allows one to develop visu-
alization algorithms only once, and apply them to all supported data
formats. In fact, Visualizer only contains a single piece of code im-
plementing its isosurface extraction algorithm, and this code is ap-
plied to regular, hexahedral, and tetrahedral grids. This data format
and algorithm abstraction uses the C++ template mechanism to cre-
ate highly efficient code that performs on par with, and sometimes
out-performs, other code developed directly for a specific data for-
mat.

4 SYSTEM ARCHITECTURE

Visualization Module

G
rid

 S
tr

uc
tu

re
/D

at
a

V
al

ue
s

Cell Type

Cell

Edge

Locator

Vertex

Geometry
Slice

Extractor

Isosurface
Extractor

Streamline
Extractor

Volume
Extractor

Slice

Volume

Isosurface

Streamline

Data Representation Vis. Algorithms Vis. Elements

Data File
Reader

Figure 2: Visualizer’s system architecture. Modules are plug-ins en-
capsulating the data structures and algorithms to visualize a partic-
ular data format, and are created by linking concrete instantiations
of the underlying generic components.

The Visualizer software was designed with maximum modular-
ity in mind, as as toolbox of generic interacting components, each
encapsulating a particular functionality. The lower-level compo-
nents of this architecture have been described previously [7], but
have since been completely redesigned for higher performance,
and the higher-level components and the module system have been
added. The overall architecture of the new component toolbox is
shown in Figure 2. Components fall into three basic categories:
Data representation, visualization algorithms, and visualization el-
ements. Visualizer uses the C++ template mechanism to combine
concrete instantiations of all components required to visualize a
particular data format, and a data file reader required to load in-
dividual data sets, into a visualization module. These visualiza-
tion modules are packaged as external plug-ins, and loaded into
the overall Visualizer application at run-time when a user requests
loading a data file. A module advertises to the overall application
the scalar and vector variables contained in the current data set, and
the visualization algorithms that can be performed on it. Visual-
izer then creates a graphical user interface to allow users to select

variables and algorithms and assign them to input device buttons.
The result of executing a visualization algorithm on a data set is a
visualization element, e. g., a color-mapped slice or an isosurface.
Elements are stored in a scene graph inside the Visualizer applica-
tion and can be toggled on/off and deleted individually.

The C++ template mechanism is very powerful for creating com-
ponent architectures. As opposed to run-time polymorphism, where
descendants of the same base class can only differ in the implemen-
tation of virtual functions, templates allow one to additionally use
different data types, supporting more powerful abstractions. Fur-
thermore, templates are instantiated and linked at compile-time, al-
lowing the compiler to perform full optimization on the generated
code. As a result, generic code often performs as well as special-
ized code, and sometimes better than specialized C code due to the
compiler’s ability to optimize across function calls. To combine
the benefits of high performance and run-time polymorphism, our
module architecture links sets of closely interacting components at
compile-time into larger polymorphic modules that only loosely in-
teract with the overall application.

4.1 Data Representation

The core component of all visualization modules is the representa-
tion of the visualized data set. Visualizer currently supports regular
(Cartesian), curvilinear (hexahedral) and unstructured (tetrahedral)
grid structures. The interface between data representations and vi-
sualization algorithms is implemented as a set of utility classes giv-
ing access to the underlying geometry of a data set, i. e., the dimen-
sion and scalar type of its domain space, the type of its cells, cur-
rently simplices or n-dimensional cuboids, and the vertices, edges,
and cells defining the data values and grid structure. A final ac-
cessor class, Locator, is a spatial iterator that makes it possible to
query data values and local grid structure at arbitrary positions in-
side the data set’s domain. Depending on the grid structure, data
representation components contain acceleration structures to query
the neighborhood relationships between cells, and to support the
locator interface.

4.2 Visualization Algorithms

Visualization algorithms create visualization elements such as
slices and isosurfaces based on the grid structure and data values of
a data set, and the position/orientation of a Locator. Although Visu-
alizer contains “global” algorithms such as isosurfaces specified by
isovalue and slices specified by position and orientation, its user in-
terface focuses on direct manipulation, i. e., the creation of elements
based only on a point/orientation of interest. Visualizer currently
supports color-mapped slices, isosurfaces, streamlines, and volume
rendering. In accordance with the direct manipulation approach,
and to provide more meaningful immediate feedback to users, most
algorithms are seeded implementations. As illustrated in Figure 3, a
seeded algorithm does not create visualization elements by process-
ing an entire data set cell-by-cell, but instead starts element creation
from the cell containing the point of interest, and traverses all other
cells containing the same element radially outwards. This means
that any intermediate results created by seeded algorithms provide
local information in an area around the point of interest, and allow a
user to explore a region of a data set by moving the point of interest
while observing the change of the element’s shape as it is dragged
along. Once the user stops dragging, the partial element is created
to its full extent, or to the maximum number of graphics primitives
the display system can render in its alloted frame time.

The main benefit of a generic component architecture is that al-
gorithms can be expressed independently of grid format. For ex-
ample, Visualizer contains only a single implementation of isosur-
faces, which is applied to all grid formats. By using the interfaces

Figure 3: Creation of a seeded isosurface. Extraction starts with the
cell containing the Locator. After each cell is processed, the algo-
rithm determines into which neighboring cells the isosurface extends,
and adds those to the queue of pending cells. Processing the queue
in order causes the isosurface to grow outwards from the cell con-
taining the Locator. The black and white dots denote grid vertices
whose value is above and below the isovalue (the interpolated data
value at the Locator’s position), respectively.

described in the previous section, the isosurface algorithm only con-
tains the logic of how to create isosurface fragments inside a single
cell based on vertex values, how to traverse all cells containing the
isosurface, and how to use timers to satisfy real-time constraints.
Any additional required information, such as triangulation case ta-
bles, cell neighborhood information, and the formulas used to inter-
polate vertex positions/data values along cell edges, are provided by
the data representation interface classes.

Another benefit is the ability to provide specialized implementa-
tions of components. For example, there are many different ways to
volume-render 3D data, and some of the highest-performance ones
only work on particular data types. In these cases it is possible to
provide special-case components, and the C++ compiler will use
them when possible. Visualizer’s generic volume rendering algo-
rithm is based on blending color-mapped slices; the specialization
for regular (Cartesian) grids uses hardware-assisted volume render-
ing based on 3D textures to achieve frame rates high enough for
immersive visualization.

4.3 Visualization Elements

Visualization elements are produced by visualization algorithms,
and stored in a scene graph managed by the overall Visualizer ap-
plication. Element components share lower-level implementations,
such as triangulated surfaces optimized for high-performance ren-
dering, and provide an interface for algorithms to create those in
a streaming fashion. This additional separation of algorithms and
their resulting data allows developers to optimize them separately.
For example, changing the initial implementation of isosurfaces
from unordered triangle sets to indexed triangle sets increased ren-
dering performance substantially, and only required changing a sin-
gle type definition inside the Isosurface component, and no changes
in the Isosurface Extractor component. Once the superior perfor-
mance of indexed triangle sets was established, we changed the Iso-
surface Extractor to generate indexed triangles internally, increas-
ing extraction speed by a large factor. We expect that implementing
even higher-performance surface representations will be not much
more difficult.

4.4 Visualization Modules

A visualization module ties together all components required to vi-
sualize a particular data format, and a file reader to load concrete
data sets from external storage. The actual code of a visualization
module is usually very short. It only contains “glue code,” i. e., type
definitions to describe the internal structure of the data and the re-
quired components, and the code to read grid structures and data
values from an input file and store them in the data representation.

The module concept is the incorporation of an approach to data
handling that differs from many other visualization applications.
Many applications, including Tecplot and Vis5D, define a “native”

data format, and users have to convert their data to this data format
in a pre-processing step. Although these conversions are generally
simple, having to keep several versions of the same data in several
formats wastes storage space, and conversions can lose precision,
especially since most interchange formats are plain ASCII tables.
More importantly, conversion means that it becomes impossible or
inefficient to directly stream intermediate results from a running
simulation code into a visualization application to monitor the pro-
cess of an ongoing simulation, and potentially even manipulate sim-
ulation state on-the-fly. Our ultimate goal for Visualizer is to have it
used in such a context, hence we decided not to enforce native data
formats for each basic grid structure, but to give programmers the
ability to make the simulation’s data format native to Visualizer by
coding a visualization module. From a user’s point of view, Visual-
izer does not have one native data format, but as many as there are
visualization modules. Our approach is also different from provid-
ing file reader plug-ins that convert data file formats into an internal
format: all data representation, visualization algorithm, and visual-
ization element components related to a particular data format are
compiled specifically for the data format, giving the compiler the
option to optimize across component boundaries. We believe that
our approach yields higher extraction and rendering performance.

4.5 Overall System Architecture

The Visualizer application itself is responsible for managing all
loaded visualization module plug-ins, all loaded data sets, the
graphical user interface that lets users select variables and algo-
rithms, and the scene graph of created visualization elements. An-
other important component is the DataLocator module responsible
for translating input device interactions to extracting visualization
elements, and for displaying intermediate extraction results for real-
time feedback. Additionally, Visualizer contains modules to add in-
teractive clipping planes to a visualization, to measure the position
of and data value at arbitrary locations, and to edit the color maps
applied to all data variables individually.

4.6 Tying It All Together

Judging by the descriptions provided in this section, it might seem
that Visualizer is more of a programming toolkit for visualization
software than an actual application aimed at end users. And this
impression is partially true; our experience shows that VR visual-
ization requires fine-tuned algorithms and data structures that some-
times depend on the particular data set to be visualized, and some-
times a particular scientific question requires custom analysis tools
that need to be implemented at a low level to perform in real time.
Visualizer’s component toolkit enables programmers to quickly add
such custom algorithms, and experiment until their optimal imple-
mentation is found. Finally, reading a particular data set requires
writing a data file reader, and the “glue” code that binds all required
components into a visualization module.

However, from a user’s point of view, Visualizer is a complete
application for visual exploration. If users happen to use a data for-
mat that is already supported by a visualization module, they can
read it directly without the need for any scripting or programming;
if there is no module, they can initially convert their data to a sup-
ported format in the same way they previously did for other visu-
alization software, or find a programmer to write a custom module
for their data.

5 EVALUATION

5.1 Visualizer Performance

As Visualizer is designed for immersive VR environments, it is
important to ask whether its implementation satisfies the VR real-

time constraints. To evaluate this, we measured its performance on
the data set shown in Figure 4, on a desktop PC with a 2.4 GHz
AMD Athlon 64 X2 CPU, 1 GB of RAM, and an Nvidia Geforce
7800GS graphics card. The test data set is defined on a curvilin-
ear hexahedral grid of 271× 81× 201 vertices, with two variables
(temperature and viscosity) given for each vertex. The data set is
stored in the native ASCII format written by the used simulation
code, and occupies 353.5 MB of disk space.

On loading the data set, Visualizer needed 12.4 s to parse the
input file, convert all vertex positions from spherical to Cartesian
coordinates, calculate the decadic logarithm of the viscosity values
(viscosities are best visualized logarithmically), and create a kd-
tree containing all cell centers that is later used to quickly find the
cell containing a given position. Most of this time is spent pars-
ing the ASCII input file (creating the kd-tree of 4.4 million ver-
tices takes about 3 s); storing input data as binary files reduces load
times substantially. Afterwards, we measured how long it takes to
extract the isosurface shown in Figure 4, b), using smooth shading
with vertex normal vectors computed as data value gradients. Cre-
ating a seeded isosurface from the center point of the feature shown
in Figure 4, c), took 304 ms and generated 339,722 triangles. For
comparison, creating a global isosurface of the same isovalue took
744 ms and generated 339,854 triangles (the isosurface has a small
disconnected component not extracted by the seeded algorithm).
After extraction, Visualizer was able to render either isosurface at
a frame rate of 146.8 frames/second, or 49.9 million triangles per
second. During dragging, the extraction algorithm was able to cre-
ate about 100,000 triangles before it had to stop and display the
intermediate result due to the 0.1 s time-out; in other words, it was
able to visualize a large region of the isosurface around the point of
interest in real time.

Performance is similar in immersive environments. Startup in
our CAVE takes a few seconds longer since Visualizer itself and
the input data set have to be replicated to all six cluster nodes, but
isosurface extraction times are about the same. The rendering per-
formance in the CAVE is about a factor of two lower, since all sur-
faces have to be rendered twice in each frame (once for the left eye
and once for the right eye).

5.2 Effectiveness of Interactive Visual Exploration

Throughout the development of Visualizer the goal has been to cre-
ate a flexible, easy-to-use and intuitive environment for interactive,
scientific analysis of 3D volume data sets. However, the verifica-
tion of whether the software achieves this goal must come from
the scientists using the software. To this end, we have conducted a
user study aimed at assessing how well Visualizer aids researchers
in evaluating unknown data sets, by comparing it to Tecplot [2],
described in Section 2, a software package commonly used by geo-
scientists. The study was driven by two main questions:

1. Does enabling a high-level of interactivity in a volume visual-
ization system aid scientists in efficiently and effectively ana-
lyzing data?

2. Does the enhanced interactivity and immersion provided by a
3D environment play an important role in scientific data ex-
ploration?

In the first part of the study both visualization systems were com-
pared in their native environments (Visualizer in a CAVE and Tec-
plot on a desktop computer). In the second part of the study, Vi-
sualizer was also used on a desktop computer and the results were
compared to the those from the CAVE; Tecplot does not run in VR
environments.

a) b)

c) d)

Figure 4: Snapshots from target data set exploration. a) Color-mapped slices used to locate initial problem features. b) Isosurface providing
a 3D view of subducting tectonic plate structure. c) Close-up view of “problem feature” protruding from slab surface. d) Close-up view of a
second problem feature: holes in the isosurface.

User Study Format. In each software/environment setting,
the study participants were asked to explore a data set and to iden-
tify features that did not meet specified criteria: 1) features must
be smooth and continuous, without steps or faceted surfaces, and
2) features must be continuous, without holes or protruding struc-
tures. The data used in all parts of the study, shown in Figure 4,
was an actual finite element (FE) model input structure of a sub-
ducting tectonic plate, that had been used in a deformation calcu-
lation, but suffered from grid-aliasing problems and mis-aligned
fields that caused holes in and protrusion from the tectonic plate
surface. These problems were only discovered after the calculation
had failed to converge to a solution. The tasks performed by the
study participants were based on the same steps used by geoscien-
tists in analyzing the appropriateness of a model input data set for
a FE model calculation.

Before beginning the prescribed tasks, the study participants
were taught how to use the software in each environment using an
idealized input data structure. Afterwards, the participants were
then given 30 minutes to explore the target data set and instructed
to write down the coordinates and data value for features they found
that did not meet the specified criteria. After completing the analy-
sis, the participants were asked about the tools within the software
that they found most and least useful for navigating through the data
set and identifying features. They were also asked to note any tasks
that they found to be particularly easy or difficult to complete. Fi-
nally, after completing the tasks in all three software/environment
settings, the participants rated the software on a scale of easy to
difficult for the tasks of navigating, identifying features, locating
features, learning the software, and overall use.

The study included 19 participants – eleven graduate students,
five under-graduate students, and three faculty – engaged in geo-

science study and/or research. Of the 19 participants, two had min-
imal previous experience using a CAVE and one had previously
used Tecplot.

User Study Results. The results of the user study, shown in
Figure 5, demonstrate that the high level of interactivity provided
by Visualizer in the CAVE makes analysis of 3D volume data both
easy and effective. Participant responses indicate that not only is
data exploration (navigating, identifying and locating features) eas-
ier to do in the CAVE than using Tecplot, Visualizer is also easier
to learn how to use and easier to use overall. In addition, on aver-
age more features were located using Visualizer in the CAVE than
using Tecplot or Visualizer on the desktop, although this part of
the results is not conclusive and demands further investigation. The
participants also found that data exploration is easier on the desktop
using Visualizer than using Tecplot, but they also found it more dif-
ficult to learn how to use, which probably affected both their overall
impression of the software and ability to locate features.

Participant feed-back on the individual software provided addi-
tional information on why Visualizer is easy to learn and use in the
CAVE and more difficult to learn on the desktop. First, nine par-
ticipants stated that they did not find any of the tasks to be difficult
in the CAVE and found it particularly easy to identify and locate
features. As one user reported, “the Visualizer-CAVE was by far
the easiest to work with. All the features stood out very clearly
and it was incredibly easy to navigate.” In contrast, 13 participants
stated that identifying and locating features in Tecplot was the most
difficult task.

Second, 13 users stated that assigning tools in Visualizer on the
desktop was the most difficult task. In any environment, tool as-
signment in Visualizer requires first choosing what one would like
the program to do (e. g., create isosurfaces) from the main menu and

then assigning this action to a button by selecting a locator tool from
the tool selection menu using the desired button. On the desktop,
however, two things make this process more cumbersome. First,
buttons on the mouse are used to navigate (e. g., left button for ro-
tating and right button for translating the data) and they are also
used to create color-mapped slices or isosurfaces by using a modi-
fier key on the keyboard (this caused confusion for new users who
had to remember the button-key assignments). Second, the tool se-
lection process on the desktop includes an extra step of creating a
“virtual input device” to map 2D mouse positions into 3D model co-
ordinates. User responses indicate that remembering the button-key
combinations made tool assignment and use more difficult; how-
ever, they also stated that, once this was overcome, Visualizer was
better for identifying and locating features. As one user stated, “the
greatest difficulty is probably the initial complexity of click and key
combination, but even in 30 minutes I became pretty efficient with
what I learned and I can see getting used to it very quickly.” Based
on the responses and suggestions of the study participants, we plan
to add an optional, fixed “tool bar” for tool assignment that can be
used to introduce new users to Visualizer, but can be turned off once
button-key combinations, which are faster to use, are learned.

The user study ratings and responses show that the interactivity
provided by using Visualizer in a CAVE is intuitive and allows users
to focus their attention on exploring the data set. In addition, they
indicate that while interacting with a 3D data set in a 2D environ-
ment can be made effective in an interactive visualization system,
it requires practice, while an immersive 3D VR environment pro-
vides immediate benefits by allowing the user to interact with data
in a natural and intuitive manner.

Not Just a Pretty Picture. Although our user study demon-
strates that Visualizer can aid scientists in exploring and analyzing
3D volume data, the question may still remain: will Visualizer ac-
tually aid geoscientists in doing real research? As stated earlier, the
data set used in the user study is a real model input for an FE model
of deformation of a subducting tectonic plate. Before the model
calculation was run this data set had been checked in a standard
way, by using color-mapped slices in a 2D desktop visualization
system, and deemed satisfactory to use as input. Problems in the
data set were only discovered after the calculation had failed to con-
verge to a solution. The data set was then viewed in a CAVE using
Visualizer, which revealed a range of grid-aliasing problems and
unintended holes in and protrusions from the tectonic plate. There-
fore, unlike many non-interactive visualization systems, which are
viewed as providing merely a “pretty picture,” but little in terms
of scientific understanding, Visualizer has already demonstrated its
utility in facilitating scientific analysis and discovery.

6 CONCLUSIONS AND FUTURE WORK

To address a common problem in Earth science, the analysis of 3D
volume data, we have developed a 3D visualization software, Vi-
sualizer, in a collaboration of computer and Earth scientists. In
contrast to many other visualization tools, whose primary goal is
to create polished images to communicate already known results,
Visualizer is a highly interactive immersive application aimed at
the intuitive exploration of unknown data and the identification and
quantification of newly discovered features in the data. Interactive
exploration is a natural application of immersive visualization tech-
nology, and adds to the value of visualization: observing changes
in a 3D display in response to user actions yields more insight into
the underlying data than simply observing the 3D display alone.

We compare Visualizer to other existing desktop and VR visual-
ization software. Many scientists are sceptical of VR, in part due
to a perceived lack of benefits of using VR stemming from the ex-
posure to non-native software. Programs initially developed for the

Study Results (Mean ± 1σ)

Vis-CAVE Vis-Desk TecPlot TecPlot Vis-Desk Vis-CAVE

0 5 10

Number of
Features
Located

5 ± 4 5 ± 3 8 ± 3

Identifying
Features

Difficult Easy

53 ± 18 72 ± 17 92 ± 7

Locating
Features 51 ± 21 70 ± 15 9 1 ± 8

Navigating

D
at

a
E

xp
lo

ra
ti

o
n

61 ± 24 6 6 ± 22 8 4 ± 24

Learning
Software 81 ± 13 54 ± 25 91 ± 8

0 20 40 60 80 100

Rating

Overall
Use

G
en

er
al

68 ± 24 5 8 ± 27 91 ± 7

Figure 5: User study results. Rating of data exploration (navigating,
identifying and locating features) and general use (learning software
and overall usability) displayed as the mean and standard deviation.
Results show that Visualizer used in the CAVE made data exploration
very easy and the software was easy to learn and use overall. Visu-
alizer used on a desktop was also better for data exploration than
Tecplot, but was more difficult to learn since the tool assignment
process is somewhat cumbersome on the desktop.

desktop and then ported to VR cannot fully utilize that richer envi-
ronment, because desktop systems lack the interactivity of VR envi-
ronments, and hence desktop programs do not contain the function-
ality needed to exploit it. Because Visualizer was directly designed
for use in immersive environments, it exploits the full capabilities
of VR.

As an application aimed at immersive VR environments, Visu-
alizer has to satisfy two real-time contraints: it has to maintain
a high frame rate upwards of 30 Hz to support immersion, and it
has to provide real-time feedback to any user interaction within
about 1/10 s to enable interactivity. We described how these con-
straints influenced the software architecture of Visualizer and the
implementation of the offered visualization algorithms. Since we
started applying Visualizer to more problems from Earth science
and other domains, we have learned that its design as a “program-
mer’s toolkit” allows us to implement additional problem-specific
analysis methods that would have been very hard to realize using
other, more user-centric, software.

To evaluate the effectiveness of Visualizer compared to the
widely used Tecplot software, and to evaluate the effectiveness of
immersive VR environments compared to regular desktop systems,
we performed a user study involving geoscience students and fac-
ulty. The study shows that immersive environments, when com-
bined with highly interactive applications, offer substantial benefits
over desktop systems, and that software originally developed for
immersive VR can be as effective on the desktop as “native” desk-
top software. We briefly described how the Vrui VR development
toolkit [8] supports creating such portable applications, and thus ad-
dresses a second common complaint about using VR for scientific
purposes: the separation between desktop and VR software forces
scientists to either perform all their analysis tasks in expensive or
shared VR environments, or to use two different programs on the
desktop and in VR. This separation, and the perceived lack of ben-
efits of using VR, leads most scientists to forego the use of VR
methods for their research.

Our user study also provided valuable feedback on how further to
improve Visualizer. We learned that effective exploration requires

“transparent” user interfaces, such as intuitive navigation and “point
and click” creation of visualization elements, and we will continue
developing Visualizer, and the Vrui toolkit itself, to provide a more
efficient, and easier to learn, user interface especially on the desk-
top. We are continuously improving Visualizer by developing more
visualization algorithms, and by optimizing the existing algorithms
and elements for faster creation and rendering. Another, separate,
goal is to create communications modules to couple Visualizer with
remote on-going simulation processes, to be able to visualize the
progress of a simulation in real-time, and potentially make changes
to the simulation’s current state to steer it in a desired direction.

REFERENCES

[1] CAVE5D. http://www-unix.mcs.anl.gov/˜mickelso/CAVE2.0.html.
[2] Tecplot. http://www.tecplot.com.
[3] Vis5D. http://www.ssec.wisc.edu/˜billh/vis5d.html.
[4] Doug A. Bowman, Ernst Kruijff, Joseph J. LaViola, and Ivan

Poupyrev. 3D User Interfaces: Theory and Practice. Addison Wesley
Longman Publishing Co., Inc., Redwood City, CA, 2004.

[5] S. Bryson. Virtual reality in scientific visualization. Communications
of the ACM, 39(5):62–71, May 1996.

[6] S. Bryson and C. Levit. The Virtual Windtunnel: An environment for
the exploration of three-dimensional unsteady flows. In Proc. of Visu-
alization ’91, pages 17–24, Los Alamitos, CA, 1991. IEEE Computer
Society Press.

[7] Co-author. Previous paper about low-level component architecture,
2001.

[8] Co-author. Environment-independent VR development. Parallel sub-
mission to IEEE VR 2007, 2007.

[9] C. Cruz-Neira, D.J. Sandin, and T.A. DeFanti. Surround-screen
projection-based virtual reality: the design and implementation of the
CAVE. In Proc. of SIGGRAPH ’93, pages 135–142, Anaheim, CA,
1993. ACM Press.

[10] Klaus Engel, Rüdiger Westermann, and Thomas Ertl. Isosurface ex-
traction techniques for web-based volume visualization. In VIS ’99:
Proceedings of the conference on Visualization ’99, pages 139–146,
Los Alamitos, CA, USA, 1999. IEEE Computer Society Press.

[11] O. Kreylos, E. W. Bethel, T. J. Ligocki, and B. Hamann. Virtual-reality
based interactive exploration of multiresolution data. In G. Farin,
H. Hagen, and B. Hamann, editors, Hierarchical Approximation and
Geometrical Methods for Scientific Visualization, pages 205–224.
Springer-Verlag, Heidelberg, Germany, 2001.

[12] Oliver Kreylos, Tony Bernardin, Magali I. Billen, Eric S. Cowgill,
Ryan D. Gold, Bernd Hamann, Margarete Jadamec, Louise Kellogg,
Oliver G. Staadt, and Dawn Y. Sumner. Enabling scientic worksflows
in virtual reality. In Procȯf the ACM SIGGRAPH Internaional Con-
ference on Virtual Reality Continuum and Its Applications (VRCIA)
2006. ACM SIGGRAPH, ACM SIGGRAPH, 2006.

[13] Ching-Rong Lin and R. Bowen Loftin. Application of virtual reality
in the interpretation of geoscience data. In VRST ’98: Proceedings of
the ACM symposium on Virtual reality software and technology, pages
187–194, New York, NY, 1998. ACM Press.

[14] W. E. Lorensen and H. E. Cline. Marching Cubes: A high resolution
3D surface construction algorithm. In Proc. of SIGGRAPH ’87, pages
163–169. ACM, 1987.

[15] T. Meyer and A. Globus. Direct manipulation of isosurfaces and
cutting planes in virtual environments. Technical Report CS–93–54,
Brown University, Providence, RI, 1993.

[16] Theresa Marie Rhyne and Alan MacEachren. Visualizing geospatial
data. In SIGGRAPH ’04: Proceedings of the conference on SIG-
GRAPH 2004 course notes, page 31, New York, NY, 2004. ACM
Press.

[17] William R. Sherman and Alan B. Craig. Understanding Virtual Real-
ity: Interface, Application, and Design. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2002.

[18] Edward Tufte. The Visual Display of Quantitative Information. Graph-
ics Press, 1983.

