
A data-dependent gradient quantization scheme for the

acceleration of volume rendering

Peer-Timo Bremera, Oliver Kreylosa and Bernd Hamanna

aCenter for Image Processing and
Integrated Computing (CIPIC)
Department of Computer Science

University of California
Davis, CA 95616-8562, U.S.A.

ABSTRACT

Volume rendering requires the use of gradient information used as surface normal information, for application of
lighting models. However, for interactive applications on-the-y calculation of gradients is too slow. The common
solution to this problem is to quantize gradients of trivariate scalar �elds and pre-compute a look-up table prior to
the application of a volume rendering method. A number of techniques have been proposed for the quantization of
normal vectors, but few have been applied to or adapted for the purpose of volume rendering.

We describe an new data-dependent method to quantize gradients using an even number of vectors in a table. The
quantization scheme we use is based on a tessellation of the unit sphere. This tessellation represents an \optimally"
distributed set of unit normal vectors. Staring with a random tessellation, we optimize the size and distribution of
the tiles (on the unit sphere) with a simulated annealing approach.

Keywords: Gradient quantization, volume rendering, lighting models, tessellation, triangulation

1. INTRODUCTION

In the �eld of volume visualization, the quantization of normal vectors { de�ned by the gradients of some underlying
trivariate scalar-valued function { has become more and more important. Each cell in a typically rectilinear volumetric
grid usually implies its own normal vector, resulting in a large number of di�erent vectors. In general, there can be
as many di�erent normal vectors (gradients) as there are vertices in a discrete volumetric data set. Especially for
real-time viewing and virtual reality (VR), on-the-y calculation of the normals is too slow for very large data sets.
Considering the sizes of 3D data sets created by modern imaging devices, for example, storing all normals is not
possible.

The pre-computation and quantization of normal vectors is therefore a necessary means to achieve frame rates
high enough for interactive volume rendering applications. The most intuitive way to represent a quantization de�ned
by a �nite set of unit normal vectors is through the use of a tessellation of the unit sphere. Each normal corresponds
to one point on the unit sphere, and the vertices (or faces) of the tessellation represent the look-up vectors and the
distribution of the normal vectors.

One can use the vertices of the tessellation as look-up vectors. Assigning each of the original normal vectors
to the nearest vertex is equivalent to computing the Voronoi diagram of the vertices, see Renka.1 This diagram
partitions the sphere and one assigns each original normal according to its Voronoi region, see Figure 1 (a). One can
also use the faces of the tessellation to de�ne a distribution on the unit sphere. The look-up vectors are then the
normal vectors of the faces, see Figure 1 (b).

Further author information: (Send correspondence to)
fbremerp,kreylos,hamanng@cs.ucdavis.edu

original gradients

origin

quantized gradients

(a) (b)

Figure 1. Representation of a normal �eld quantization as a tessellation (left:quantized gradients associated with
the vertices, right: quantized gradients associated with normal vectors of triangles).

Figure 2. Regular tessellation of unit sphere - re�nement levels one and two.

2. RELATED WORK

Several quantization techniques are known in the clustering literature, see, for example, Jain et al..2 For volume
rendering, we need a clustering algorithm that uses a distance metric as cluster criterion. Additionally, we want
to quantize considering a user-de�ned number of clusters, and power-of-two numbers are advantageous. Using a
power-of-two number of clusters eliminates memory overhead from using not all possible entries in a look-up table.
The last important property is data dependency. For example, let us consider the data set of an airplane wing.
The vast majority of normal vectors of points on a wing points either upwards or downwards. However, a uniform
quantization uses the same number of entries in the look-up table for all normal directions.

Most volume rendering methods are based on a quantization using a regular subdivision of the unit sphere.
For example, Gelder and Kim3 tessellate the unit sphere into triangles and use the vertices of the triangles as
look-up vectors. They start by combining the regular icosahedron with its dual, the dodecahedron. This results
in a triangulation consisting of 32 vertices and 60 triangles. Additional re�nements are based on a regular 1-to-4
subdivision of the initial triangles. The general rule for the number of vertices after i re�nement steps is jvj = 30�4i+2.
However, for the common case of an 8-bit look-up table, their method can only use 122 quantized vectors. Even
using the normals of the triangles as look-up vectors only allows the use of the 240 normals of the �rst re�nement
level instead of 256 possible vectors.

Other methods used to create a look-up table are described by Glassner.4 The �rst technique he proposes
partitions each coordinate separately. For an 8-bit table, one can use the �rst four bits for the x-coordinate and
the second four bits for the y-coordinate, partitioning each axis by equidistant intervals. Yet another quantization

2
gradient g

1
gradient gorigin

normal vector n

1α2α

Figure 3. Parameters considered by target function.

method Glassner describes uses an equal-area spiral, which starts at the origin and winds outward. Each position
along this spiral represents one normal.

Our method starts with a random triangulation of the unit sphere with a user-de�ned even number of triangles.
We use the normal vectors of the triangles as look-up vectors. In volume rendering, the zero vector must be included
in a look-up table, because there might be vertices of the data set where the gradient vanishes or is unde�ned.
Therefore, out method still \wastes" one entry in an 8-bit table, thus representing 255 real entries { 14 more than
possible with regular subdivision. In general, our method wastes at most one entry in any given look-up table, where
the regular subdivision scheme tends to become more wasteful as the tables get larger. (A 9-bit table uses 483 of 512
entry possibilities, and a 10-bit table 961 of 1024 entry possibilities.) Additionally, our method is data-dependent
and uses a simulated annealing approach to optimize the partitioning of the sphere into tiles/triangles, see section 3.

Another data-dependent approach is a generalization of Lloyd's algorithm.56 It iteratively optimizes the parti-
tioning based on a random start partition. However, this generalization uses a greedy approach that strongly relies
on the start partition to reach a global optimum. Our tests suggest that the given problem has a large number of
local optima, which is an argument against using a greedy algorithm.

3. THE ALGORITHM

We start with a random convex triangulation of the sphere. We then assign each of the original gradients computed for
a given volumetric data set to a certain triangle, see section 3.1, and apply a method to change the triangulation and
the data assignment randomly, see section 3.2. We optimize the quantization using a simulated-annealing algorithm,
also called Metropolis algorithm.7 Simulated annealing models the state transition from uid to crystalline state of
metals. From an algorithmic view point, this process is an optimization process with extremely high dimension. To
apply simulated annealing to a general optimization problem, one needs to formulate the given problem as a cooling
process. In our application, the temperature of the process is represented by a target function that de�nes a global
error function, which is de�ned as GlobalError =

P
i

�
1� cos(�i)

�
, where �i is the angle between the gradient gi

and the normal ngi of the triangle to which gi is assigned, see Figure 3. This error function is easy to compute,
since 1 � cos(�i) = 1 � gi � ngi (*" indicating the inner product). Mathematically, the value of GlobalError is
proportional to the sum of the squared distances, as

jjg � njj2 = 2
n
1� cos

�
6 (g; n)

�o
: (1)

We change the tessellation randomly, moving random vertices by a small angle { between 10Æ � 15Æ. After each
change, the assignment of gradients to tiles/triangles is updated and the resulting target function is re-computed.
We accept or do not accept a change following the rules of simulated annealing. The overall goal is to minimize
the angle di�erence between the original gradients and the look-up table. Therefore, visual artifacts resulting from
look-up-table-based volume rendering will also be minimized.

procedure quantize(Gradients G, Tessellation T)
f

createRandomTessellation(T);
assignGradients(G, T);
temperature = calculateStartTemperature(G, T, START PROB);
for(i=0; i<CYCLE NR; i++) f /* During each CYCLE the temperature is updated */

for(j=0; j<STEP NR; j++) f /* Number of steps for each temperature */
moveRandomPoint(G, T, temperature);
error di� = reassignGradients(G, T);
p = randomBetween(0, 1);
if (p � exp(-error di�/temperature)) /* Probability to accept the move */

�nalizeChange(G, T);
else

reverseMove(G, T);
g
temperature *= TEMP FAC;

g
g

Figure 4. Pseudocode for gradient quantization.

3.1. Gradient Assignment

There are two possible ways to assign gradients to triangles of the tessellation: 1) One can assign the gradient to
the triangle whose normal vector has the smallest angle di�erence; 2) one can use the convex triangulation as a
partitioning of space, assigning each gradient, interpreted as a normal vector, to the triangle it intersects. The �rst

(a) (b)

origin
gradient

1
t2t1t

1n 1
2

t1 t2

n
n

n2

Figure 5. Gradient assignment.

method is more accurate. For example, let us consider the situation depicted Figure 5: The vectors n1 and n2
represent the normals of triangles. Assigning gradient g to triangle t1, following method 2, results in a larger angle
di�erence than necessary. However, after a con�guration change we can compute the assignment applying method
2 locally. During a vertex movement, we store all changed triangles. Since the border of this triangle patch (all
triangles that share the vertex we move) did not change, all gradients that were assigned to this patch before must
be re-assigned to a triangle of this patch. This is not possible when one uses method 1. Using method 1, one has to
use global, or at least much larger, local test areas. As it turns out, the re-assigning of gradients and re-computing
of the target function are the expensive operations of our algorithm. Furthermore, accuracy is only an issue for long
and skinny triangles, which do not occur often in the resulting triangulations. Therefore, we use the partitioning of
the sphere to guide gradient assignment.

3.2. Con�guration Changes

To change a tessellation, we use a modi�ed version of the algorithms described in Bremer et al.8 and Kreylos and
Hamann.9 They use three di�erent operations: edge rotation, vertex removal, and vertex movement. Edge rotation
only changes the triangulation of two neighboring triangles. To move a vertex Bremer et al. randomly choose a
new position inside a small sphere around the original one. To check the validity of the resulting triangulation all
involved triangles are projected onto the plane de�ned by the vertex normal of the \changing" vertex. This can
lead to degenerate triangles or triangles with wrong orientations. These conicts can be resolved by swapping the
appropriate edges. To remove a vertex, the shortest edge emanating from the vertex is collapsed. For out application,
we only require the vertex movement operation. (The algorithm described in 8. was designed for parametric surfaces
and was later modi�ed for arbitrary triangulated two-manifold surfaces. It is based on projecting the platelet of
a point to be moved without causing self-intersections onto a properly chosen plane. The algorithm changes a
con�guration by sequentially moving vertices and rotating edges, always avoiding degenerate triangles.)

In the case of a sphere tessellation, an appropriate projection plane is easy to �nd. The algorithm of Bremer et al.
only guarantees the absence of local self-intersections. For our algorithm, the triangulation has to be globally convex.
This implies two conditions: 1) The triangulation must be parameterizable on the unit sphere, and 2) the triangulation
must be locally convex. Condition 2) implies condition 1). Therefore, a straightforward approach to extend their
algorithm is to ensure local convexity during con�guration changes. However, this is diÆcult. Considering the

(a) (b)

6
1

7

2
3

5
(d)

7

2
3

4445

6

1’

1

3

5

6
1

(c)

7

2

1

2
3

45

67

1’

Figure 6. Vertex movement.

con�guration show in Figure 6 as a projection of a small part of a tessellation onto a plane, one wants to move vertex
1 to the new position \Æ". The algorithm of 8. handles this situation as if one was dragging the vertex along the
dotted line. Since the shaded triangle degenerates during the movement, one rotates the appropriate edge preserving
all conditions the triangulation must satisfy. All necessary computations can be performed without actually changing
the coordinates of the vertex until all topological changes are done. If one wants to preserve convexity during the
movement, one needs to change 1's coordinates throughout the movement. This is more diÆcult to implement and
can increase the number of operations necessary. Since Figure 6 represents a projection onto a plane, it is possible
that the edge connecting vertices 2 and 3, as part of the sphere tessellation, is convex at stage (a), concave at stage
(b), and convex again at the �nal stage (d).

We use a di�erent approach. During vertex movement, we preserve only the weaker condition 1) (parametrizabil-
ity) and store all edges that are a�ected by the change. Depending on the distance by which we move a vertex, there
are cases, when one cannot preserve condition 1). When this is the case we do not move the vertex. After vertex
movement, we process the stored edges. For each edge, we test for convexity. If the edge is convex it is removed; if
it is concave, the edge is rotated and all a�ected edges are added to the list.

There are cases when it is impossible to execute a movement, because we cannot preserve the constraints. As
the distances of vertex movements increase, the rotating patterns become more complex, and cases not permitting
movement happen more often. This results in unnecessary computations. However, the computational cost is small,
compared to the cost of re-assigning normal vectors and re-computing the target function.

3.3. Implementation Issues

The most expensive part of our algorithm is the re-assignment of gradients. Our implementation attempts to
avoid any redundant calculations. This becomes especially important when applying simulated annealing. For each
proposed vertex movement, one has to re-assign gradients and re-compute the target function. However, a move
might get rejected, and all e�ects have to be reversed. How to reverse a movement itself is described in detail in 8.
It is our goal to avoid re-assigning gradients a second time. Each triangle has two associated lists of indices referring
to a gradient array, see Figure 7 (a). The Old List contains all gradients currently assigned to this triangle. During
a vertex movement, all these gradients must be re-assigned. However, we do not want to change the Old List until
we know that the move is not rejected. Instead, we re-assign not the elements of the Old List but \twins" of these
elements. This assignment is stored in the New List, see Figure 7 (b). If the move is accepted, we switch Old List
and New List, and the former twins become the original, see Figure 7 (c). If the move is rejected, we delete the
New List. This method enables us to re-assign each gradient only once during a vertex movement. Unfortunately,
we must store each gradient index twice. Compared to the memory requirements of the gradients themselves (three
double-precision numbers per gradient), the memory requirement for one list element (one integer and two pointer
variables) is minor.

Our implementation also allows us to use pre-quantized gradients. In this case, each initial gradient has an
associated multiplicity, that denotes how many original gradients it represents. During error calculation, the error is
multiplied by this multiplicity.

4. RESULTS

We have tested our algorithm for di�erent resolutions and di�erent data sets, comparing it to the regular subdivision
scheme described in section 2. One important factor for any simulated annealing scheme is the choice of the cooling
schedule. One needs to de�ne an initial temperature and a cooling factor. We de�ne the initial temperature in
the following way: We track how the error function would change if k moves were performed. By Averaging the
changes these moves would imply we get an approximation of the expected change of error function E(error) for a
random move. The user de�nes a probability START PROB, and we calculate the initial temperature so that a move
that increases the error function by E(error) is accepted with the probability START PROB. The second factor is
the cooling factor. After each cycle, see Figure 4, we multiply the current temperature by TEMP FAC to simulate
cooling. We have performed several test sequences to �nd the \best" parameter combination, and some results are
shown in Figure 8. It is interesting to notice that, for a large range of parameters, the simulating annealing is
relatively insensitive to parameter changes. This e�ect is even more pronounced than the graphs suggest, since the
graphs show averages over several runs using the same settings. While the di�erences in certain parts of the graphs
between two curves range between 100 and 200, the range of possible values for the same parameter setting is also
between 100 and 200.

We �rst tested our method for analytical functions. For example, we chose 5000 uniformly distributed normalized
gradient vectors of the function x2 + 15y2 + 15z2 and quantized them to 254 normals. The resulting tessellation is
shown in Figure 9. The two real data sets used for Table 1 are a volumetric data set of a human foot and the geometry
of an airplane wing. We pre-quantized the normals of the foot data set to 64 bits to reduce data size. However, we
kept track of how many original normals were assigned to one 64-bit normal and assigned weights accordingly. The
results are shown in Table 1. The two error norms norm 1 and 2 are shown. We used error norm 1 (see Section 3)
during the quantization and error norm 2 (the square error norm de�ned as

pP
i jjgi � ngi jj

2). Using 254 normals,
our method yields a result similar to the one obtained from regular subdivision using 960 normals. Using 1022
normals produces results similar to those obtained when using 3840 normals based on regular subdivision. Results
are shown in Figures 10 to 15.

All tests were performed on an SGI Onyx2 with 512MB using one R10000 processor with 195MHz. The opti-
mizations required between four and 8 minutes. However, since re-assigning normals is the dominating factor for run
time, the algorithm runs faster when using more normals to quantize to. For very large data sets, our implementation
exhibits a high level of parallelism that could be exploited.

pool of twin indices

T

gradient table

gradient indices

T

NULLNULL

Tesselation

T T

NULL NULL

pool of twin indices

Tesselation

gradient table

symbolic movement

triangle

(a) (b)

(c)

pointer

T

New_List

Old_List

TT

Tesselation

gradient table

pool of twin indices

Figure 7. Data structure: (a) original; (b) gradient re-assignment; (c) �nalize movement.

0.84 0.86 0.88 0.9 0.92 0.94 0.96
TEMP_FAC

3700

3800

3900

4000

4100

4200

4300
er

ro
r

fu
nc

tio
n

0.2 START_PROB
0.3
0.5
0.6
0.7

Figure 8. Behavior of error function for di�erent parameter settings (foot data set using 254 normals.)

Figure 9. Tessellation of the sphere for the ellipsoid x2 + 15y2 + 15z2 using 510 normals.

Figure 10. Airplane wing: view one original.

Figure 11. Airplane wing: view one using 254 optimized normals.

Figure 12. Airplane wing: view one using 240 evenly distributed normals.

Figure 13. Airplane wing: view two using the original normals.

Figure 14. Airplane wing: view two using 254 optimized normals.

Figure 15. Airplane wing: view two using 240 evenly distributed normals.

Algorithm # of normals Foot data set Airplane wing
error norm 1 error norm 2 error norm 1 error norm 2

254 3788.26 43.52 14.39 2.68
Simulated 510 1761.74 29.68 6.51 1.80
Annealing 1022 754.50 19.42 4.03 1.42

240 13030.88 80.72 74.18 6.10
Regular 960 3800.05 43.59 15.61 2.79

Subdivision 3840 906.63 21.29 4.11 1.43

Table 1. Error for foot and head data sets using di�erent numbers of normals to quantize to.

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation under contracts ACI 9624034 (CAREER Award),
through the Large Scienti�c and Software Data Set Visualization (LSSDSV) program under contract ACI 9982251,
and through the National Partnership for Advanced Computational Infrastructure (NPACI); the OÆce of Naval
Research under contract N00014-97-1-0222; the Army Research OÆce under contract ARO 36598-MA-RIP; the
NASA Ames Research Center through an NRA award under contract NAG2-1216; the Lawrence Livermore National
Laboratory under ASCI ASAP Level-2 Memorandum Agreement B347878 and under Memorandum Agreement
B503159; the Lawrence Berkeley National Laboratory; the Los Alamos National Laboratory; and the North Atlantic
Treaty Organization (NATO) under contract CRG.971628. We also acknowledge the support of ALSTOM Schilling
Robotics and SGI. We thank the members of the Visualization and Graphics Research Group of the Center for Image
Processing and Integrated Computing (CIPIC) at the University of California, Davis and the members of the Welfen
Laboratory at the University of Hannover, Germany.

REFERENCES

1. R. J. Renka, \Algorithm 772 stripack: delaunay triangulation and voronoi diagram on the surface of a sphere,"
ACM Transactions on Mathematical Software 23, pp. 416{434, 1997.

2. A. K. Jain, M. N. Murty, and P. J. Flynn, \Data clustering: a review," ACM Computing Surveys 31, pp. 264{323,
1999.

3. A. van Gelder and K. Kim, \Direct rendering with shading via three-dimensional textures," in Symposium on

Volume Visualization, Proc. IEEE , pp. 23{30, 1996.

4. A. S. Glassner, \Normal coding," in Graphic Gems, pp. 257{264, Academic Press, New York, 1990.

5. Y. Linde, A. Buzo, and R. M. Gray, \An algorithm for vector quantization design," IEEE Transactions on

Communications 28, pp. 84{95, 1980.

6. P. Ning and L. Hesselink, \Vector quantization for volume rendering," in Workshop on Volume Visualization,
ACM Proc. , pp. 69{74, 1992.

7. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, \Equations of state calculations
by fast computing machine," J. Chem. Phys. 21, pp. 1087{1091, 1953.

8. P. T. Bremer, B. Hamann, O. Kreylos, and F. E. Wolter, \Simpli�cation of closed triangulated surfaces using sim-
ulated annealing," in Mathematical Methods in CAGD: Oslo 2000, T. Lyche and L. Schumaker, eds., Vanderbilt
University Press, Nashville, Tennesse, 2001 (to appear).

9. O. Kreylos and B. Hamann, \On simulated annealin and the construction of linear spline approximations for
scattered data," in Symposium on Visualization, E. Groeller, M. Loe�elmann, and W. Ribarsky, eds., Proc. Joint
EUROGRAPHICS-IEEE TVCG , pp. 189{198, Springer-Verlag, 1999.

