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1 Introduction

Recently, data visualization has become increasingly
important in several fields. Every year, the quality
of imaging and computational simulation technology
improves substantially. This results in an enormous
increase in the amount of data produced. However,
it has become apparent that, for many applications
large parts of data sets are often not necessary for
generating a “good picture”. The goal was and still
is to reduce data sets in such a way that the pictures
generated from a reduced data set are highly similar
to those produced from the original one.

We are concerned with polygonal surfaces and their
compression. Furthermore, we focus on triangulated
two-dimensional (2D) manifolds with no boundaries.
For an extensive overview of the field of polygonal sur-
face simplification, we refer to Heckbert and Garland
[2] and Rossignac [4]. We present a randomized algo-
rithm that preserves a specified error bound.

2 Related Work

When approximating a polygonal surface using the
min-e approach, one has to determine, for a given
number n, an approximation that consists of n vertices
and minimizes the approximation error. Many of the
common algorithms use min-e optimization, and sev-
eral references are given in [2],[4]. Of special interest
is Kreylos and Hamann [3], since they use a method
closely related to the one presented here.

Using a min-# approximation approach, one tries
to find an approximation with the minimal number of
vertices that satisfies a tolerance condition [1]. Our
algorithm ensures that no point of the approximating
surface deviates more than e from the original surface.
This requires us to consider an “offset” around the
original surface, and the approximation surface must
stay inside this offset. Such an approach was first pro-
posed by Cohen et al. [1] and was called a simplifiction
envelope. A simplification envelope is a linearized and,
in some respects, simplified version of the exact offset.

The simplification envelope of a triangulated surface
is constructed in the following way: For each vertex,
one computes its normal n as a combination of the

normals of the surrounding triangles, normalized to
length €; one defines two offset vertices, the (+e¢)-offset
and the (—e)-offset vertices, by adding/subtracting n
to/from the original vertex. This defines a so-called
fundamental prism.

Another problem is caused by self-intersections: Co-
hen et al. [1] require a simplification envelope that
does not self-intersect. They use the global e-value
whenever possible and decrease it in areas of possible
self-intersections. Our approach is not impacted by
self-intersections and can handle every e-value at any
given vertex.

3 Atomic Envelopes

To satisfy an a-priori error bound, we define atomic
envelopes. For each triangle, we construct an atomic
envelope such that the simplification envelope equals
the union of atomic envelopes. Our implementation
uses fundamental prisms as atomic envelopes but dif-
ferent constructions are possible when higher accuracy
is desired.

During simplification, we have to decide whether
a triangle lies inside the simplification envelope. To
answer this query we decide whether there exists a set
of atomic envelopes whose union contains the triangle.
First we find all atomic envelopes that might intersect
the triangle. Then we search for points where the
triangle might leave the envelope. Finally, these points
are separated into critical and non-critical exit points.
If a triangle has no critical exit points it lies inside the
simplification envelope.

The same basic algorithm can also be used with
more complicated atomic envelopes. For example, a
construction that does not only use the vertex normal
but also the normal of the triangle to create the atomic
envelope. This new atomic envelope approximates the
exact non-linear offset much better, especially in re-
gions of high curvature.

4 Simplification

We simplify the given surface using a simulated an-
nealing algorithm, also called Metropolis algorithm.



Simulated annealing models the state transition from
fluid to crystalline state of metals. From the algo-
rithmic point of view, this process is an optimization
process of extremely high dimensionality. For our ap-
plication, we interpret the configuration of a polyg-
onal surface as the configuration of metal molecules.
Our internal energy is represented by a target func-
tion, and the random heat movement of molecules is
represented by random changes in the configuration.

The target function describes the quality of an ap-
proximation. Furthermore, the target function should
not only prefer configurations that consist of few ver-
tices but also configurations that lead to vertex re-
movals. We use the sum of the square roots of the
angles between triangle normals as the target func-
tion. This function is highly related to the number of
vertices. It also prefers planar surfaces, since a large
number of small angles has a higher target function
value than a smaller number of large angles. This
leads to near-planar platelets of triangles, where we
can delete vertices. This target function is also easy
to compute and can be recomputed locally after local
changes.

To change a configuration, we use the method of
Kreylos and Hamann [3], adapted to our problem. We
use three different operations: edge rotation, vertex
removal, and vertex movement. The edge rotation
only changes the triangulation of two neighboring tri-
angles. To move a vertex we randomly choose a new
position inside a small sphere around the original one.
To check the validity of the resulting triangulation we
project all involved triangles onto the plane defined
by the vertex normal of the changing vertex. This can
lead to degenerate triangles or triangles with wrong
orientations. We resolve these conflicts by swapping
the appropriate edges. To remove a vertex we collapse
the shortest edge emanating from it.

5 Future Research

The main drawback of our algorithm is its lack of com-
putational efficiency. The simulated annealing is es-
pecially expensive. However, it provides a means to
use any point inside the envelope as a possible ver-
tex position. Future work will be done to replace the
simulated annealing approach, while keeping this ad-
vantage.

Figure 1: Drill bit data set original (1964 vertices)

Figure 2: Drill bit data set simplified using 1/2% error
bound (430 vertices)

Figure 3: Sphere data set original (602 vertices) and
simplified using 1/2% error bound (200 vertices)
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