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ABSTRACT

Given a set of points with associated velocity vectors, the goal is to
partition a given data set into segments that capture the structure of
the underlying two-dimensional (2D) field as defined by its critical
points. The presented method models a vector field data as an undi-
rected, weighted graph with the weights computed by a similarity
measure that considers locally constructed linear least-squares ap-
proximations. A normalized-cut technique is used to partition a
given data set into segments such that the vectors in each segment
are highly correlated. For very large vector field data sets, we dis-
cuss a multilevel method that incorporates coarsening and refine-
ment operations.

1 INTRODUCTION

A common problem in visualizing large vector field data is caused
by the large numbers of critical points present in the datasets. The
large number of critical points implies a complex topology that is
difficult for a user to understand. First reported in [1], We present
a method that transforms the 2D vector field visualization problem
into an eigenproblem and a maximal matching problem. Assum-
ing that our data is represented in a piecewise-linear fashion, our
method models a discrete 2D vector field as a graph, where edges
are defined by relationships of the data. Clusters are extracted from
the dataset by using an image segmentation algorithm called nor-
malized cut (NC) [4] that utilizes the second smallest eigenvector
of the graph’s associated normalized Laplacian matrix. To improve
the quality of clusters, a variant of the Kernighan-Lin (KL) refine-
ment algorithm [3] is applied to clusters after segmentation. On the
finest level of data representation, a cluster is the set of all originally
provided vectors associated with the same critical point that can be
expressed or approximated well by a linear polynomial associated
with that critical point.

For vector field data with a large number of vectors and critical
points, we use multilevel approach that combines a graph coars-
ening scheme with the NC method. The NC method is applied to
the coarsest graph with the smallest number of vertices. Deatil is
inserted back into the resulting partition until the original graph is
partitioned. A refinement scheme is applied to the graph at every
level to improve the quality of partitions.
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2 ALGORITHM

2.1 Feature Identification
A piecewise linear vector field defined in the ��� -plane can be ex-
pressed as��� ��������� ��� � � ���!�"��$# � ���!�"�&% � �(')�!* � �,+ ')�!* # �-+/. �'"# * � �,+ '"# * # �-+/. # %� ��' �!* � ' �!* #' # * �0' # * # % � � � % + � . �. # %� 1(2(+/3�4 (1)

A critical point � �)5��!�65�� is a point where ��� ��5��!�65��-�87 . Our ob-
jective is to cluster vectors associated with the same critical point
together. Essentially, these vectors should be reproducible by the
same 1 and 3 matrices.

2.2 Pairwise Similarity Measures
Considering vector data ��9 � � � 9 * : � � 9 * ; �=< located at position� � 9 �!� 9 � < , ��> � � � > * : � � > * ; � < located at position � � > �!� > � < , and��? � � � ? * : � � ? * ; � < located at position � � ? �!� ? � < let @� > be the ap-
proximated vector at location � � > �!� > � < . We define the similarity
between data A and B asCD� AE�FBG�H�JILK�MON dist P 9 * >RQ + �=SUT IV�WK�MON diff P >XQ 4 (2)

The parameter I is set to vary between zero and one. A small
value of I emphasizes difference in direction and magnitude, while
a large value of I places more weight on distance between data lo-
cations. Euclidean distance can be used in the “dist” term in (2),
i.e.,

dist � A!�YBG�Z�\[ � � 9 T � > � # + � � 9 T � > � # 4 (3)

The “diff ” term can be defined as relative ] # -norm:

diff � BG�H� [ � � > * : T_^� > * : � # + � � > * ; T_^� > * ; � #[ � #> * : + � #> * ; 4 (4)

2.3 Vector Field Segmentation
To model a discretized vector field ��� ���!�"� represented by `
vectors, we first construct an undirected, weighted graph ab��dc �=ef� . The vertices in c represent the data points, while the
weighted edges in e denote similarities. The goal of this method
is to minimize the “disassociation” between two disjoint subsets A



and B, where ����� � c and ����� ��� . Disassociation is defined
as

NCut � �D�	�,�V� cut � �D�
� �
assoc � � � c � + cut � �D���,�

assoc � �(� c � � (5)

where cut � � �	�,� � ������ * � ���,e ��� � � � , assoc � �D� c � ������� * � ���De ��� �	�!� , and assoc � � � c �Z�������� * � ��� e ��� �	�E� .
It was shown that the minimization of NCut � �D�	�,� is an NP-

complete problem [4]. However, an approximate solution is
obatined by funding the second smallest eigenvector of the normal-
ized Laplacian matrix, defined as � N�� K � � T e �VK!� N"� , where

� � A!�YBG�Z� #%$ � A�&� B$4��'?!( � e � AE�*)"�b� AW� B$4 (6)

2.4 Cluster Refinement
Let � 9 � � � 9 * : � � 9 * ; � < �!A�� S �,+G��- ��4�4X4���. 5 be the vectors asso-
ciated with a cluster and @��9 � ��^� 9 * : � ^� 9 * ; �=< be the approximated
vectors, the quality of the cluster is defined by the mean-squared
error (MSE):

MSE � S. 50/213 9 ( �54 �d� 9 * : T ^� 9 * : � # + �d� 9 * ; T ^� 9 * ; � #,6 4 (7)

The basic idea of the refinement scheme is to move a datum with
the largest squared-error value to another cluster and check whether
the MSE decreased. This process is repeated until no further im-
provement is possible.

2.5 Multilevel Graph Coarsening
Graph coarsening technique is used to accelerate the segmentation
process for vector field data with a large number of vectors and crit-
ical points. A simplified representation can be reduced further until
a desired level of complexity is achieved. Eventually, a spectral
graph partitioning technique can be applied to the coarsest level of
representation. A key aspect of this multilevel approach is the use
of the solution obtained from the coarser levels for the construction
of the finer levels. The results obtained for the coarser levels can
be viewed as partial solutions to the problem at the finer level. NC
method is applied to the coarsest graph with the smallest number of
vertices. The resulting partition is “projected back” to finer levels
until the original graph is partitioned. A KL–type algorithm is ap-
plied to the graph at every level to improve the quality of partitions.
We use heavy-edge matching to construct the coarse graphs [2].

3 RESULTS

An analytically defined vector field with a saddle point and a re-
pelling focus along the resulting segmentation is shown in Fig. 1.
The NC method was also applied recursively to a portion of a nu-
merically simulated dataset describing turbulent flow. A hierarchi-
cal representation of the vector field was obtained by recursively
applying the NC method. The similarity measure defined by (2)
was used along with the “dist” term defined by (3) and the “diff ”
term defined by (4). Level one contains the original vector field;
level two contains the two clusters extracted from level one. The
original vector field and some of its streamlines are shown in parts
(a) and (b) of Fig. (2); parts (c) and (d) show some of the stream-
lines obtained from the approximated vector fields using two and
28 clusters, respectively.
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Figure 1: (a) Saddle-focus vector field of resolution 40-by-40. (b)
Streamlines computed from the original vector field (a). (c) Re-
fined partition obtained. (d) Streamlines computed from the ap-
proximated vector field after refinement.
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Figure 2: (a) Portion of a turbulent flow field dataset. (b) Stream-
lines computed from original vector field data shown in (a). (c)
Streamlines computed from approximated vector field with two
clusters used. (d) Streamlines computed from approximated vec-
tor field with 28 clusters used.

REFERENCES

[1] J.-L. Chen, Z. Bai, B. Hamann, and T. J. Ligocki. A
normalized-cut algorithm for hierarchical vector field data seg-
mentation. In Visualization and Data Analysis, 2003, pages
79–90, 2003.

[2] G. Karypis and V. Kumar. A fast and high quality multilevel
scheme for partitioning irregular graphs. SIAM Journal on Sci-
entific Computing, 20(1):359–392, 1998.

[3] B. W. Kernighan and S. Lin. An efficient heuristic procedure
for partitioning graphs. The Bell System Technical Journal,
49(2):291–307, 1970.

[4] J. Shi and J. Malik. Normalized cuts and image segmentation.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 22(8):888–905, 2000.


